我国湿法烟气脱硫装置运行普遍存在的问题

我国湿法烟气脱硫装置运行普遍存在的问题
我国湿法烟气脱硫装置运行普遍存在的问题

我国湿法烟气脱硫装置运行普遍存在的问题

石灰石-石膏湿法工艺是我国目前烟气脱硫装置的主流工艺。根据统计分析结果,截止2007年底,投运或已签订合同的烟气脱硫工程,其工艺技术仍以石灰石-石膏湿法为主,占90%以上。(如不作特别说明,本文中提到的湿法烟气脱硫装置均指石灰石-石膏湿法烟气脱硫装置。)

由于某些原因,我国湿法烟气脱硫装置的投运率一直偏低。2008年第一季度投入运行的脱硫装置容量约1亿千瓦,占烟气脱硫设施装机总容量的37%。而在投运的装置中,又由于各种因素导致装置运行中出现较多问题,部分问题甚至影响到系统的安全、稳定运行,导致系统退出或间断运行,不能实现真正意义上的投运。在当前日益严峻的环保形势下,国家加强了环保执法力度,加大烟气脱硫设施运行在线监管和就地检测,脱硫装置的运行问题与环保监管之间的矛盾将显得更加突出,如何保证脱硫装置的安全稳定运行是脱硫行业目前亟待解决的重要课题。

1 系统设计

目前国内烟气脱硫工程的建设一般采取由脱硫公司进行EPC总承包的形式,设计是整个工程的源头,也是保证装置能安全、稳定运行最重要的环节。任何设计失误、考虑不周或系统参数选择不当都将影响系统的安全可靠运行。

1.1氧化系统

目前有石膏脱水系统的脱硫装置普遍采用强制氧化的方式,将石膏浆液内的亚硫酸钙氧化成硫酸钙,亚硫酸盐氧化程度是湿法脱硫装置强制氧化工艺重要的控制参数。一个设计良好的脱硫系统,强制氧化程度应接近100%。

部分脱硫装置氧化装置设计不合理,氧化空气分布不均匀,或由于过于侧重降低投资成本而将氧化风机容量和氧化区的体积设计得偏小,导致装置内会发生大量结垢、垢块堵塞喷嘴、卡住蝶阀、堵塞小口径管道或结垢使流道面积减小的现象。这些将引起故障频发、事故停机或降低出力。此外,亚硫酸钙氧化不充分还将影响脱硫效率、石灰石利用率和石膏品质等系统性能,会导致石膏品质下降、脱水机不能正常工作等一系列问题,影响系统的安全稳定运行。

在系统设计时,应该充分考虑机组特性、烟道漏风率、煤种硫份、当地大气压、当地平均气温、氧化空气的流动性、氧化空气的利用率等多种因素的影响,进行合理设计。

1.2浆液中Cl-浓度及废水排放

浆液中氯化物来源于燃煤、工艺补水和吸收剂。一般石灰石中、工艺水中氯含量较少,FGD浆液中大部分氯化物来源于燃煤。

在正常运行工况下,浆液中氯化物的浓度是稳定的。浆液中的Cl-浓度对FGD系统结构材料的选择有很大的影响。高浓度的Cl-浓度还影响脱硫效率和石灰石利用率,石膏中可溶性氯化物含量过高将影响石膏综合利用价值。

在设计中必须针对燃料、水质、吸收剂品质、系统运行方式以及装置内浆液接触的设备、材料特性确定合适的Cl-浓度,并设计处理容量合适、工艺完善且便于运行维护的废水排放系统,以确保系统的可靠运行和达到性能指标。

1.3系统防腐、防磨损设计

设备、材料的腐蚀、磨损是影响湿法脱硫的常见问题,也是影响系统安全稳定运行的重要原因。造成腐蚀及磨损的因素主要有烟气中及浆液中的硫化物﹑氯化物、浆液介质等。因此在设计中应考虑防腐、防磨损措施。

在运行过程中发现,由于设计及选材不当,经常有装置内玻璃鳞片衬里、橡胶衬里冲刷过快导致脱落,造成罐体、泵、管道、阀门等腐蚀、磨损加快,影响系统可靠运行。

为防止及解决以上由于腐蚀、磨损出现的运行问题,必须进行合理的防腐蚀(磨损)设计,防腐蚀(磨损)设计包括防腐(磨损)结构设计和防腐(磨损)材料选择。

1.4系统防堵塞、结垢设计

结垢和堵塞是湿法脱硫工艺中最严重的问题,可造成吸收塔、氧化槽、管道、喷嘴、除雾器甚至换热器结石膏垢。严重的结垢将会造成压损增大,设备堵塞,因此堵塞、结垢是湿法脱硫装置事故停机最常见、最主要的原因。堵塞、结垢是普遍存在的问题,基本无法完全避免,但可以通过合理设计,减少系统堵塞、结垢情况的发生,降低对系统稳定运行的影响。以下介绍一些比较常见的堵塞、结垢现象,在设计中务必引起重视,避免此类问题的发生。

1.5防冰冻设计

在我国北方,由于冬季气温低,应按规范要求采取保温措施。如果保温、防冻设计不完善,尤其是伴热设计不当,FGD装置容易出现结冰和冻结现象。浆液管道和水管道在气温极其低下的夜间极易发生冻结,堵塞管路,严重威胁FGD装置的安全运行。

为防止以上现象,应进行合理的保温、防冻设计,如沿管道敷设保温层、伴热带等。间歇运行的泵、管道及管件更要注意保温。增压风机稀油站也应设计防冻措施,保证稀油站的投运和增压风机的正常运行。对系统管路应针对防冻薄弱处加强防冻设计,比如易形成死区的管段,排空不畅的管道,小管径且走向复杂的管段,在场地条件许可以及投资容许的范围内尽量设计在室内。

1.6热工仪表设计

装置中的热工仪表是整套系统的"窗口",是运行人员的"眼睛",其数据即时反应设备及系统的运行状态。良好的仪表设计是系统安全稳定运行的重要保证。

2 设备质量及施工质量

2.1设备质量

脱硫装置的安全、稳定、高效率运行必须保证运行工况的稳定,而运行工况的稳定是以各主、辅设备的可靠运行为前提。资料分析表明,目前国内湿法脱硫装置运行中存在的最大问题是设备质量问题。由于脱硫工程总承包利润的下降,承包商在采购设备时,往往采用最低价中标的方式,导致一批价格低、质量差的设备进入脱硫装置,设备性能不能得到保证,同时增大投资及能耗。

(1)浆液泵

浆液泵运行介质一般是50°左右的浆液,常发生汽蚀现象,由于汽蚀及磨损的联合作用,加上叶轮叶片材质不合适及制造质量不过关,出现叶轮损坏,经拆下检查,叶片上出现大量的小坑洼,严重影响了泵的正常运行。机械密封和减速机等附件存在质量问题也是常见现象。其中机械密封损坏使得泵漏(喷)浆是最常见的问题,导致泵无法连续运行。由于减速机的质量问题,在冷却系统正常投运的前提下,循环泵减速机在运行中温度偏高,在冬天温度也会经常升到报警温度甚至引起循环泵连锁停机,导致系统保护退出等。

(2)阀门

阀门的作用是对管路介质的流动进行控制,通过截断或调节流量实现介质的隔离或输送。其质量的优劣直接影响系统的运行状态。然而,由于大多数国产阀门本身质量还存在一定问题,加上大多数承包商对此重视程度不够,采购的阀门质量不能令人满意,阀门内漏、外漏、卡涩打不开、开关不到位等问题严重影响了系统的正常运行。

(3)搅拌器

吸收塔搅拌器为侧进式搅拌器,主要问题是机封不严密,漏浆现象常有发生。顶入式搅拌器绝大多数为国产设备,运行存在的主要问题是减速机轴承箱漏油和电机轴承温度高,其原因主要是国内搅拌器的减速机多采用摆线针轮形式,该形式减速机加工精度低,密封效果差,运行中异产生漏油、温度升高等现象。

还有其他设备质量问题,此处由于篇幅有限,不再一一阐述。为减少以至消除设备质量问题对系统运行产生的不利影响,须从源头解决此问题。为此,须从设备招标方面严把质量关,优先选择质量优、业绩多、服务好的设备供应商,在此基础上再兼顾价格因素。

设备在工程制造过程中,要根据技术协议要求加强设备监造,包括设备制造、性能验收、出厂试验等,并对设备的运输、保管、售后服务提出明确要求和加强监督,避免因为质量问题对系统安全稳定运行造成影响。

2.2施工质量

由于脱硫工程建安费用的不断下降,施工队伍水平的参差不齐,导致大部分脱硫工程施工质量不容乐观,影响脱硫装置运行的施工问题主要有以下几个方面。

(1)GGH安装

安装质量对设备及系统的安全运行有重要影响。常见的问题有密封片安装不严密,导致原、净烟气串风,加快GGH及烟道的腐蚀并造成系统脱硫效率下降。主轴安装偏心,导致运转时有异响,振动大。

(2)增压风机和循环泵安装

增压风机安装精度和安装质量不过关,运行时发现X及Y方向振动较大,严重时候引起增压风机跳闸。循环泵也存在同样的情况。某电厂一台循环泵安装时找正不理想,导致轴承温升较快,后停机校正后消除了该问题。

(2)管道安装

浆液管道安装不按图施工,管道不设坡度,改动管道走向及布置,导致运行时管道经常堵塞。施工单位为省材料费和工作量,部分管道不按照图纸要求设置支吊架,造成管道振动过大,严重时候造成该系统无法投入。管道及设备法兰处螺栓没充分拧紧,运行一段时间后,由于管道振动,介质从法兰密封处泄漏,影响系统运行和现场文明生产。

(3)防腐施工

防腐施工质量直接影响防腐衬里材料的防腐功能。施工质量受气候环境、工人水平、施工工具、管理组织等因素影响。有的脱硫装置几个月内烟道、吸收塔内玻璃鳞片大面积脱落,管道衬胶磨损露出管壁等,给系统的运行带来极大的安全隐患。

为减少施工对脱硫系统运行的影响,必须牢牢控制施工质量。从招标阶段从严把关,选择水平过硬的施工队伍。在现场施工中,充分发挥监理和技术人员的作用,加强监督,并要求施工队伍加强组织管理力度,在充分消化图纸的基础上按图施工,坚决杜绝不能满足施工质量要求的人员、工具参与施工,对施工组织方案严格评审,不符合安全、质量要求的不予批准等。通过各种措施,保证施工不影响系统运行。

3 运行管理及维护

脱硫装置随着使用年限的增加,在日常运行中时常会出现各种问题。本文从以下四个方面就如何提升系统的运行维护水平,保证系统安全、稳定、连续、高效运行进行初步探讨。

3.1系统运行控制

系统运行过程中出现的很多问题如石膏脱水困难,吸收塔液位波动大,脱硫效率低等问题可以通过在运行中加强监视并及时调整系统主要运行参数来解决。

3.2加大化学监测力度

目前大部分电厂对脱硫装置中介质成分及性质的化学监测与分析重视不够,无专门专用实验室及化学分析仪器。由于对表计的校验、维护、检修等不够及时,再加上表计本身质量不过关,大多数运行中的脱硫装置热工仪表的故障率较高,很多仪表的显示数据与装置中的实际数据偏差较大,而脱硫运行部门过于依赖热工仪表测量的可靠性,等发现问题时,系统的安全可靠运行已经受到影响。由于无专用实验室,还须委托外单位对相关介质进行化学分析,影响了处理速度,对装置的长期稳定运行不利。

为此,必须配备有专用实验室和相关化学分析仪器,在日常运行中加大脱硫装置中各介质的化学监测力度,与相关仪表进行比较,以判断仪表数据是否准确和仪表的工作状态,若仪表存在问题,应及时检修处理,避免影响系统运行。加大化学监测力度,定期对石膏浆液、石灰石浆液、石灰石品质、石膏品质等进行分析,及时向运行人员反馈分析结果,

供运行调整参考。

3.3日常运行维护

装置日常运行中的检查与维护

在运行过程中,对系统进行日常的检查与维护必不可少,及时消除设备的安全隐患,确保设备处于健康状态,以保证装置的安全稳定运行。

在正常运行过程中,运行人员严格巡查按照运行规程所要求的各系统及设备的监测项目对系统中重要的运行介质如石灰石品质、石膏浆液、石膏品质、烟气成分、工艺水品质等进行化学采样分析,为运行调节提供依据。

3.4运行人员水平

由于脱硫对电厂来说是独立主业外的崭新领域,其运行人员一般都是从主业其他部门调来或当地招聘而来,接触脱硫时间短,脱硫知识有限,实际操作及解决问题的能力还有待提高。目前多数脱硫装置处于停运或间断运行的状态,业主并不太重视脱硫运行人员的技能培训,导致恶性循环。由于严格的环保政策法规的出台,脱硫装置实现真正投运将是趋势。运行人员作为脱硫装置最基层、最前沿的一线工作人员,其知识水平、业务能力、工作经验以及责任心将直接影响装置的安全稳定运行。

业主以及承包商应积极采取各种措施对运行人员进行培训。在业主接管脱硫装置前,由承包商对运行人员进行多次培训,包括理论知识培训和实际操作培训。在业主接管后,也需要经常安排对运行人员的培训及教育,尤其是针对于运行人员在实际运行过程中暴露出来的问题进行分析、讨论,使运行人员受到教育,避免在以后的工作中再次发生。培训及教育的形式可以采取请专家进行知识讲座、操作技能竞赛、外出参观学习等。

3.5运行管理

为保证脱硫装置的正常运行,业主应加强对脱硫运行的管理,建议做到以下几个方面:

1、机构及人员管理。

完善脱硫管理的组织机构和人员编制,将脱硫装置的运行纳入全厂的正常生产管理,制定详细的目标和指标、全面做好运行统计分析。生产管理部门向脱硫运行部门下达年度、月度生产计划,脱硫运行部门向生产管理部门提供每月的脱硫运行统计报表,供生产管理部门决策。

生产管理部门将脱硫装置的运行状况与脱硫运行人员的经济效益挂钩,增强运行人员学习技术、提高自身水平的积极性。通过技术比武、考核等措施,提高运行人员的水平。

脱硫运行部门制定脱硫装置运行规程,保证对脱硫装置进行严格的运行管理。运行人员当班所有操作均作记录,并可通过交班会议让下一班了解上一班的操作内容、出现的问题和解决措施、以及遗留下的问题,以利于工作内容的无缝对接,保证装置的安全稳定连续运行。

2、设备管理

要使系统安全、稳定、高效运行必须保证系统设备的健康以达到设备运行的最佳状态。脱硫运行部门或者全厂设备部门针对脱硫设备,建立设备的健康及维修档案,并进行分类,按照厂家资料要求进行运行维护,到期进行必要的检修、部件及耗材的更换等,随时监控设备的健康状态,加强缺陷管理与消除力度,保证设备的可靠运行。

4 进入脱硫系统的介质参数与设计值的差异

由于多种因素的影响,脱硫装置在实际运行过程中往往不能保证进入系统的介质参数与设计值相符,经常出现较大偏差,影响脱硫系统的运行,这是国内湿法脱硫装置普遍存在的共性问题。

4.1燃煤煤质的变化

由于目前我国电煤供需矛盾突出,电煤质量下降严重,一些电厂实际燃用煤种已与原设计煤种有较大差异,原煤中硫含量明显增加,有的煤中硫份达到原设计值的3倍以上,给脱硫装置的稳定运行带来严重影响,甚至导致系统无法运行。

硫份的增加导致进入吸收塔的二氧化硫质量浓度增加,在液气比不变的情况下,系统脱硫效率下降;同时浆液池中的吸收反应和氧化结晶的时间、空间不足,浆液pH值下降,对设备的安全性带来影响。浆液中亚硫酸钙质量浓度增高,影响石膏脱硫系统的正常运行。当硫份增加到一定数值后,超过了吸收系统参数设计的裕度范围,整个吸收反应系统的动态平衡被打破,脱硫系统将无法维持运行。

针对该问题,可从以下几个方面进行应对:

1、在新的脱硫项目立项时,业主方对主要烟气参数的确定,一定要充分考虑到实际燃煤煤种的变化趋势,设定一定的裕度范围。在系统设计时,在业主给定的烟气参数条件下,设计单位也应对系统、设备等的设计留有一定裕量。

2、加强脱硫运行与燃料运行的联系,根据脱硫运行的情况反馈,燃料运行在一定范围内尽可能将低硫煤与高硫煤混合使用,保持入炉煤含硫量不要与设计值偏离太大。

3、在烟气含硫量有限增加时可通过调整运行控制参数的方法,尽量维持脱硫系统稳定运行。可采用的手段是适当提高吸收浆液的pH值以增加吸收塔反应的强度;另一方面应增加氧化空气量,在一定范围内增大亚硫酸钙氧化量。吸收塔浆液的pH值也不可能过高,过高会降低钙的利用率,影响副产品石膏的品质。

4、当烟气参数大幅度或较长时间偏离设计值时,脱硫装置的反应平衡将被破坏,最终导致脱硫装置被迫退出运行。为了避免这种情况,可采取人为限制脱硫装置的进烟量,以保持脱硫装置在设计的含硫负荷内运行,可避免由于烟气含硫量变化对设备寿命带来的影响,但系统的整体性能无法达到环保要求。

5、当由于实际燃煤硫份及其他参数大幅提高,又必须符合环保排放要求时,应对该脱硫装置进行改造,以满足对系统的可靠运行及性能保证的要求。如在吸收塔内增加喷淋层层数以增大液气比,或往浆液内添加化学添加剂如镁盐、二元酸和甲酸等,保持要求的脱硫效率。

针对特定的脱硫装置,由于燃煤煤种的变化导致的系统运行问题乃至对现有装置进行技术改造,须认真分析讨论,提出切实可行的方法,经过各方专家仔细论证后落实。

4.2吸收剂品质的变化

在湿法脱硫中,吸收剂的品质是重要的工艺指标之一,因为吸收剂的品质影响脱硫效率、吸收剂耗用量、石膏副产品的质量和对设备的磨损。吸收剂的品位随产地不同有相当大的差别。

吸收剂的品质数据一般由业主提供,在项目前期确定该数据时,多数业主单位并没有充分调研吸收剂的来源及变化趋势,具体的采样分析也没有根据规范要求进行,存在很大的随意性,故该数据并不能反应实际吸收剂性能。

由于项目确定的数据本身存在偏差,以及后来吸收剂来源地的变化导致吸收剂品质的变化,故实际运行时的吸收剂品质与设计值有出入。当实际投运的吸收剂品质包括碳酸钙含量、杂质含量、反应活性、细度等参数低于设计要求时,会导致真正参与反应的钙偏少,反应不充分,脱硫效率下降,石膏品质降低,石灰石浆液系统磨损、堵塞等一系列问题。值得提出的是吸收剂中SiO2的含量对对系统的磨损存在一定的影响,若在前期数据中无此项或不准确,而实际吸收剂中该值过大,将造成设备磨损严重。

针对该问题,可从以下几个方面进行应对:

1、在新的脱硫项目立项时,业主方对吸收剂品质数据确定时,一定要经过充分调研,严格采样分析,考虑到实际使用的吸收剂来源的变化趋势,设定一定的裕度范围。在系统设计时,在业主给定的吸收剂参数条件下,设计单位也应对系统、设备等的设计留有一定裕量。

2、加强对吸收剂品质的化学分析,提供给脱硫运行部门参考。采购部门尽量采购品质与设计数据偏差不大的吸收剂块料或粉料。

3、在吸收剂品质偏差不大的范围内可通过调整运行控制参数的方法,尽量维持脱硫系统稳定运行。可采用的手段是适当提高石灰石浆液供给量,保证参与反应的钙量。加大供

浆管道滤网的清洁频率,保证供浆管道的畅通。

4、当吸收剂品质大幅度或较长时间偏离设计值时,由于设备选型、系统参数的设计裕度有限,且吸收塔须保持水平衡,石灰石供浆量不能长时间、大幅度增大。此时脱硫装置的反应平衡将被破坏,最终导致脱硫装置被迫退出运行。为了避免这种情况,可采取人为限制脱硫装置的进烟量,以保持脱硫装置在设计的钙硫比内运行,保证系统的安全运行。

4.3GGH吹扫介质品质的变化

对GGH进行日常的有效吹扫是保证GGH能正常运行的前提,吹扫介质品质是影响吹扫效果的重要因素。GGH吹扫蒸汽(本文只讨论应用最多的蒸汽吹扫,压缩空气吹扫不作讨论)一般来自主机汽轮机段抽汽,目前很多建设有脱硫装置的电厂无论是老机组改造还是新建机组建设,提供给脱硫装置的蒸汽品质往往达不到设计要求。

一般来说,300MW机组的GGH吹扫蒸汽参数要求为1.0-1.5MPa,350℃[3],然而大多数电厂主机提供的蒸汽达不到该品质,GGH吹扫效果减弱,使得GGH腐蚀、结垢加快,换热能力下降,阻力增大等,影响系统的安全运行。

对此,业主要充分认识到GGH腐蚀、结垢、堵塞对设备以及整个系统的危害性,采取措施,尽可能提供满足吹扫要求的蒸汽。若长时间内无法解决该问题,可以从以下几个方面考虑处理方法:

1、改用压缩空气吹扫,必须保证压缩空气品质满足要求。

2、通过参数控制及运行维护,降低进入GGH内的飞灰、石膏浆液、垢块等杂质量。

3、运行人员加强GGH日常巡检与维护,对压差等参数的变化重点关注,及时启动吹扫程序。

5 结语

脱硫装置的运行涉及到很多方面的内容,业主在充分了解与脱硫装置运行相关的内容,并做好相应的工作,才能保证脱硫装置的安全、稳定运行。

本文对国内湿法脱硫装置运行中存在的普遍问题进行了初步探讨,提出相应对策。对新建脱硫装置,可供相关部门借鉴,避免出现类似的问题;对正在运行中的脱硫装置,可供业主管理部门及脱硫运行部门参考。

工业锅炉及炉窑湿法烟气脱硫工程技术规范HJ462-2009

HJ 中华人民共和国国家环境保护标准 HJ 462-2009 工业锅炉及炉窑湿法烟气脱硫 工程技术规范 Wet flue gas desulfurization project technical specification of industrial boiler and furnace (发布稿) 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 2009-03-06发布 2009-06-01实施 环 境 保 护 部发布

目 次 前 言........................................................................II 1 适用范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (2) 4 总体设计 (3) 5 脱硫工艺系统 (4) 6 材料、设备选择 (9) 7 施工与验收 (10) 8 运行与维护 (11)

前 言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,执行国家《锅炉大气污染物排放标准》、《工业炉窑大气污染物排放标准》,防治工业锅炉及炉窑大气污染,改善环境质量,制定本标准。 本标准对工业锅炉及炉窑湿法烟气脱硫工程的术语和定义、总体设计、脱硫工艺系统、材料和设备选择、施工与验收、运行与维护提出了技术要求。 本标准为首次发布。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:浙江天蓝脱硫除尘有限公司、中国环境保护产业协会、北京市环境保护科学研究院、浙江大学环境工程研究所、杭州天蓝环保设备有限公司、北京西山新干线脱硫有限公司、六合天融(北京)集团公司、北京利德衡环保工程有限公司。 本标准环境保护部2009年3月6日批准。 本标准自2009年6月1日起实施。 本标准由环境保护部解释。

动力波烟气脱硫工艺(湿法)

动力波烟气脱硫工艺(湿法) 现有的湿法烟气脱硫工艺均为外置塔体式,即在锅炉后部的烟道上加装脱硫塔,经过碱液在塔体内部对烟气的的喷淋、洗涤达到脱除烟气中二氧化硫的目的。一般塔体高度约8m以上,甚至更高(此高度为保证烟气在塔内的停留时间)。 其缺点: 1、浪费材料:由于锅炉烟气温度过高,加上二氧化硫具有强烈的腐蚀作用,所以在塔体的结构、强度方面要求都比较高,一般外塔体用碳钢或用麻石砌筑用以增加强度,内衬防腐材料用以防腐。 2、一次性投资高:单独设立塔体,要延长烟道,一次性投资费用高。 3、运行不可靠:传统的湿法脱硫工艺,采用的是塔体内喷淋工艺,即通过高压水泵将碱液输送到塔体内,通过喷嘴的雾化,使液滴与烟气中的二氧化硫接触达到脱硫的目的,为保证脱硫效果、保证碱液与二氧化硫气体的充分接触,就需要碱液的雾化程度很高,这样对喷嘴的要求就高,喷嘴使用寿命短。喷嘴一旦损坏,维修不方便。 4、运行液气比大,脱硫效率低:由于采用喷淋吸收,为保证烟气和碱液的充分接触,必须大量的碱液,液气比通常为1.5—2,脱硫效率最高达80%。 5、系统阻力大,运行费用高:由于单独设立塔体,增加、改动

烟道,增加脱水器,造成系统阻力增大,影响锅炉出力,同时高效雾化也需要高压泵的运行功率增大,所以运行费用就增大。 6、管路结垢严重,影响系统运行:由于脱硫液采用石灰水,所以在运行过程中会产生硫酸钙附着在管路和喷嘴内部,导致管路堵塞,影响系统运行。 动力波烟气湿法脱硫塔 动力波脱硫塔是通过设计适当的洗涤器喉管,来控制烟气在管内的速度,使烟气与碱液在喉管内形成一个泡沫区,在泡沫区内气液充分接触,强烈的湍动使混合强化并使接触面更新,从而获得极高的反应效率。动力波洗涤器不需要碱液的雾化程度过高,而靠洗涤器内部形成的湍流达到气、液的充分接触,这样就减少了喷嘴的堵塞了影响脱硫效果,同时也减少碱液泵的运行功率。烟气在动力波洗涤器喉管内流速设计为25—30米/秒。动力波洗涤塔长度为6---8m,其中湍动区长度为2.5m。 动力波脱硫塔根据现场需要,可水平安装,也可竖直安装,作为烟道的一部分,直径仅为烟道的1.3倍。 循环液: 循环液采用“双碱流程”工艺,主要是是为了克服循环液系统容易结垢的弱点和提高SO2的去除率。 系统运行前,将循环池中灌满一定浓度的NaOH和Ca(OH)2溶液,系统运行时,烟气中的SO2与循环液中的Ca2+和OH-反应,生成 Ca(SO4)2和水,其中硫酸钙沉淀在循环池中,可定期打捞,只有OH-

湿法烟气脱硫技术的研究现状与进展

1.研究背景 众所周知,二氧化硫是当今人类面临的主要大气污染物之一,根据15年来60多个国家监测获得的统计资料显示,由人类制造的二氧化硫每年达1.8亿吨,比烟尘等悬浮粒子1.0亿吨还多,己成为大气环境的第一大污染物。 在我国的能源结构中,能源结构中煤炭所占比例高达73%,石油为21%,天然气和水能仅占2%和4%。这个比例在一个相当长的时期内不会有根本性的改变。而据对主要大气污染物的分类统计分析,在直接燃烧的燃料中,燃煤排放的大气 污染物数量约占燃烧排放总量的96%,大气中90%S0 2,71%CO,85%的CO 2 ,70%的 NO以及70%的粉尘来自煤炭的直接燃烧。因此,我国的大气环境污染仍然以煤烟 型为主,主要污染物是二氧化硫和烟尘。目前我国S0 2 年排放量连续超过2000 万吨,超过欧洲和美国,使我国成为世界S0 2 排放第一大国。 二氧化硫污染对人类造成的危害己被世人所知,二氧化硫的污染属于低浓度、长期的污染,它的存在对自然生态环境、人类健康、工农业生产、建筑物及 材料等方面都造成了一定程度的危害。S0 2 污染排放问题已成为制约我国国民经 济发展的一个重要因素,对S0 2 排放的控制与治理己刻不容缓。其中,火力发电机组二氧化硫排放量的削减更成为了重中之重。 与此同时,气候变暖也已经成为一项全球性的环境问题,受到了许多国家的关注。人类活动所释放的二氧化碳是导致全球变暖的最重要的温室气体。其中火 电厂燃用矿物燃料所释放的CO 2 ,是全球二氧化碳浓度增加的主要原因之一。 随着我国经济的快速发展,控制能源消耗造成的环境污染,特别是控制燃煤造成的二氧化硫污染和二氧化碳的排放成为保证社会和经济可持续发展的迫切要求。 烟气脱硫是目前世界上唯一大规模商业化应用的脱硫方式,是控制酸雨和二氧化硫污染的主要技术手段。湿法石灰石一石膏烟气脱硫作为一种相对较成熟、脱硫效率较高的脱硫技术,得到了广泛的应用。石灰石- 石膏湿法烟气脱硫因其脱硫效率高、工艺成熟、安全性可靠性高、系统运行稳定、维护简单、投资成本与运行成本较低、脱硫副产物可综合利用等优势而成为目前火电厂烟气脱硫最常采用的工艺。世界各国的湿法烟气脱硫工艺流程、形式和机理大同小异,主要是使用石灰石(CaCO3)、石灰(CaO)等浆液作洗涤剂,在反应塔中对烟气进行洗涤,从而除去烟气中的SO2。 2.湿法石灰石/ 石膏脱硫工艺原理 当采用石灰为吸收剂时,石灰粉经经破碎磨细成粉状后加水搅拌制成吸收浆。在吸收塔内,吸收浆液与烟气接触混合,烟气中的So2与浆液中的碳酸钙进行化学反应、再通过鼓入空气氧化,最终产物为石膏。脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排人烟囱。脱硫石膏浆经脱水装置脱水后回收。 石灰或石灰石法主要的化学反应机理为:

石灰石-石膏湿法脱硫系统的设计计算解析

石灰石 - 石膏湿法脱硫系统 设计 (内部资料) 编制: x xxxx 环境保护有限公司 2014年 8 月 1.石灰石 - 石膏法主要特点 ( 1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达 95%以上。(2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于 3%的高硫燃料,还是含 硫量小于 1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到 90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石 - 石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触 ,循环浆液吸收大部分 SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→ H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+(结晶) H+ +HCO3-→ H2CO3(中和) H2CO3→ CO 2+H2O 总反应式: SO2+ CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分 HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的 HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→ CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) 4)其他污染物

湿法烟气脱硫的原理

湿法烟气脱硫的原理 湿法烟气脱硫的原理 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理 气体吸收可分为物理吸收和化学吸收两种。如果吸收过程不发生显著的化学反应,单纯是被吸收气体溶解于液体的过程,称为物理吸收,如用水吸收SO2。物理吸收的特点是,随着温度的升高,被吸气体的吸收量减少。 物理吸收的程度,取决于气--液平衡,只要气相中被吸收的分压大于液相呈平衡时该气体分压时,吸收过程就会进行。由于物理吸收过程的推动力很小,吸收速率较低,因而在工程设计上要求被净化气体的气相分压大于气液平衡时该气体的分压。物理吸收速率较低,在现代烟气中很少单独采用物理吸收法。 (2)化学吸收法的基本原理 若被吸收的气体组分与吸收液的组分发生化学反应,则称为化学吸收,例如应用碱液吸收SO2。应用固体吸收剂与被吸收组分发生化学反应,而将其从烟气中分离出来的过程,也属于化学吸收,例如炉内喷钙(CaO)烟气脱硫也是化学吸收。 在化学吸收过程中,被吸收气体与液体相组分发生化学反应,有效的降低了溶液表面上被吸收气体的分压。增加了吸收过程的推动力,即提高了吸收效率又降低了被吸收气体的气相分压。因此,化学吸收速率比物理吸收速率大得多。 物理吸收和化学吸收,都受气相扩散速度(或气膜阻力)和液相扩散速度(或液膜阻力)的影响,工程上常用加强气液两相的扰动来消除气膜与液膜的阻力。在烟气脱硫中,瞬间内要连续不断地净化大量含低浓度SO2的烟气,如单独应用物理吸收,因其净化效率很低,难以达到SO2的排放标准。因此,烟气脱硫技术中大量采用化学吸收法。用化学吸收法进行烟气脱硫,技术上比较成熟,操作经验比较丰富,实用性强,已成为应用最多、最普遍的烟气脱硫技术。 (3)化学吸收的过程 化学吸收是由物理吸收过程和化学反应两个过程组成的。在物理吸收过程中,被吸收的气体在液相中进行溶解,当气液达到相平衡时,被吸收气体的平衡浓度,是物理吸收过程的极限。被吸收气体中的

湿法烟气脱硫除尘一体化技术

湿法烟气脱硫除尘一体化技术 根据世界卫生组织对60个国家10~15年的监测发现,全球污染最严重的 10个城市中我国就占了8个,我国城市大气中二氧化硫和总悬浮微粒的浓度 是世界上最高的。大气环境符合国家一级标准的不到1%,62%的城市大气中 二氧化硫年日平均浓度超过了3级标准(100mg/m3)。全国酸雨面积已占国土资源的30%,每年因酸雨和二氧化硫污染造成的损失高达1100亿元。1997 年下半年,世界银行环境经济专家的一份报告指出:中国环境污染的规模居世 界首位,大城市的环境污染状况在目前是世界上最严重的,全球大气污染最严 重的20个城市中有10个在中国。大气中的二氧化硫和氮氧化物与降水溶合成酸雨,现在中国是仅次于欧洲和北美的第三大酸雨区。大气污染严重破坏生态 环境和严重危害人体呼吸系统,危害心血管健康,加大癌症发病率,甚至影响 人类基因造成遗传疾病。 我国政府对二氧化硫和酸雨污染十分重视。1990年12月,国务院环委会 第19次会议通过了《关于控制酸雨发展的意见》;1992年国务院批准在贵州、长沙等九大城市开展征收工业烧煤二氧化硫排污费和酸雨结合防治试点工 作。1995年8月,全国人大常委会通过了新修订的《中华人民共和国大气污 染防治法》,规定在全国划定酸雨控制区和二氧化硫控制区,并在“两控区 ”内强化对二氧化硫和酸雨的污染控制。1998年1月,国务院正式批准《酸 雨控制区和二氧化硫控制区划分方案》。为了实现两控区的控制目标,国务 院文件还具体规定:新建、改造烧煤含硫量大于1%的电厂,必须建设脱硫的 设施。现有烧煤含硫量大于1%的电厂,要在2010年前分期分批建成脱硫设 施或采取其他相应结果的减排SO2的措施。 削减二氧化硫的排放量,控制大气二氧化硫污染、保护大气环境质量, 是目前及未来相当长时间内我国环境保护的重要课题之一。 二氧化硫污染控制技术颇多,诸如改善能源结构、采用清洁燃料等,但 是,烟气脱硫也是有效削减SO2排放量不可替代的技术。烟气脱硫的方法甚 多,但根据物理及化学的基本原理,大体上可分为吸收法、吸附法、催化法 三种。吸收法是净化烟气中SO2的最重要的应用最广泛的方法。吸收法通常 是指应用液体吸收净化烟气中的SO2,因此吸收法烟气脱硫也称为湿法或湿 式烟气脱硫。 湿法烟气脱硫的优点是脱硫效率高,设备小,投资省,易操作,易控制, 操作稳定,以及占地面积小。目前常见的湿法烟气脱硫有:石灰石/石灰— —石膏法抛弃法、钠洗法、双碱法、威尔曼——洛德法及氧化镁法等。 1 湿法烟气脱硫的基本原理 (1)物理吸收的基本原理

烟气脱硫基本原理及方法

烟气脱硫基本原理及方 法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

烟气脱硫基本原理及方法 烟气脱硫基本原理及方法: 1 、基本原理: =亚硫酸盐(吸收过程) 碱性脱硫剂+ SO 2 亚硫酸盐+ O =硫酸盐(氧化过程) 2 ,先反应形成亚硫酸盐,再加氧氧化成为稳定的硫酸盐,然碱性脱硫剂吸收 SO 2 后将硫酸盐加工为所需产品。因此,任何烟气脱硫方法都是一个化工过程。 2 、主要烟气脱硫方法 烟气脱硫的技术方法种类繁多。以吸收剂的种类主要可分为: ( 1 )钙法(以石灰石 / 石灰-石膏为主); ( 2 )氨法(氨或碳铵); ( 3 )镁法(氧化镁); ( 4 )钠法(碳酸钠、氢氧化钠); ( 5 )有机碱法; ( 6 )活性炭法; ( 7 )海水法等。 目前使用最多是钙法,氨法次之。钙法有石灰石 / 石灰-石膏法、喷雾干燥法、炉内喷钙法,循环流化床法、炉内喷钙尾部增湿法、 GSA 悬浮吸收法等,其中

用得最多的为石灰石 / 石灰-石膏法。氨法亦多种多样,如硫铵法、联产硫铵和硫酸法、联产磷铵法等,以硫铵法为主。 二、烟气脱硫技术简介: ( 一 ) 石灰石 / 石灰 - 石膏湿法烟气脱硫技术: 石灰石 / 石灰 - 石膏湿法烟气脱硫工艺采用价廉易得的石灰石作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌制成吸收浆液。当采用石灰为吸收剂时,石灰粉经消化处理后加水搅拌制成吸收浆液。在吸收塔内吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气进行化学反应,最终反应产物为石膏。同时去除烟气中部分其他污染物,如粉尘、 HCI 、 HF 等。脱硫后的烟气经除雾器除去带出的细小液滴,经热交换器加热升温后排入烟囱。脱硫石膏浆经脱水装置脱水后回收。该技术采用单循环喷雾空塔结构,具有技术成熟、应用范围广、脱硫效率高、运行可靠性高、可利用率高,有大幅度降低工程造价的可能性等特点。

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 2014年8月

1、石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别就是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论就是含硫量大于3%的高硫燃料,还就是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,就是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2、反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中与) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其她污染物

石灰石-石膏湿法烟气脱硫工艺的化学原理

石灰石-石膏湿法烟气脱硫工艺的化学原理 一、概述:脱硫过程就是吸收,吸附,催化氧化和催化还原,石灰石浆液洗涤含SO 2 烟气,产生化学反应分离出脱硫副产物,化学吸收速率较快与扩散速率有关,又与化学反应速度有关,在吸收过程中被吸收组分的气液平衡关系,既服从于相平衡(液气比L/G,烟气和石灰石浆液的比),又服从于化学平衡(钙硫比Ca/S,二氧化硫与炭酸钙的化学反应)。 1、气相:烟气压力,烟气浊度,烟气中的二氧化硫含量,烟尘含量,烟气中的氧含量,烟气温度,烟气总量 2、液相:石灰石粉粒度,炭酸钙含量,黏土含量,与水的排比密度, 3、气液界面处:参加反应的主要是SO 2和HSO 3 -,它们与溶解了的CaCO 3 的反应 是瞬间进行的。 二、脱硫系统整个化学反应的过程简述: 1、 SO 2 在气流中的扩散, 2、扩散通过气膜 3、 SO 2 被水吸收,由气态转入溶液态,生成水化合物 4、 SO 2 水化合物和离子在液膜中扩散 5、石灰石的颗粒表面溶解,由固相转入液相 6、中和(SO 2 水化合物与溶解的石灰石粉发生反应) 7、氧化反应 8、结晶分离,沉淀析出石膏, 三、烟气的成份:火力发电厂煤燃烧产生的污染物主要是飞灰、氮氧化物和二氧 化硫,使用静电除尘器可控制99%的飞灰污染。 四、二氧化硫的物理、化学性质: ①. 二氧化硫SO 2 的物理、化学性质:无色有刺激性气味的有毒气体。密度比空气大,易液化(沸点-10℃),易溶于水,在常温、常压下,1体积水大约能 溶解40体积的二氧化硫,成弱酸性。SO 2 为酸性氧化物,具有酸性氧化物的通性、

还原性、氧化性、漂白性。还原性更为突出,在潮湿的环境中对金属材料有腐蚀性,液体SO 2 无色透明,是良好的制冷剂和溶剂,还可作防腐剂和消毒剂及还原剂。 ②. 三氧化硫SO 3的物理、化学性质:由二氧化硫SO 2 催化氧化而得,无色易挥 发晶体,熔点16.8℃,沸点44.8℃。SO 3为酸性氧化物,SO 3 极易溶于水,溶于 水生成硫酸H 2SO 4 ,同时放出大量的热, ③. 硫酸H 2SO 4 的物理、化学性质:二元强酸,纯硫酸为无色油状液体,凝固点 为10.4℃,沸点338℃,密度为1.84g/cm3,浓硫酸溶于水会放出大量的热,具有强氧化性(是强氧化剂)和吸水性,具有很强的腐蚀性和破坏性, 五、石灰石湿-石膏法脱硫化学反应的主要动力过程: 1、气相SO 2被液相吸收的反应:SO 2 经扩散作用从气相溶入液相中与水生成亚硫 酸H 2SO 3 亚硫酸迅速离解成亚硫酸氢根离子HSO 3 -和氢离子H+,当PH值较高时, HSO 3二级电离才会生成较高浓度的SO 3 2-,要使SO 2 吸收不断进行下去,必须中和 电离产生的H+,即降低吸收剂的酸度,碱性吸收剂的作用就是中和氢离子H+当吸收液中的吸收剂反应完后,如果不添加新的吸收剂或添加量不足,吸收液的酸 度迅速提高,PH值迅速下降,当SO 2溶解达到饱和后,SO 2 的吸收就告停止,脱 硫效率迅速下降 2、吸收剂溶解和中和反应:固体CaCO 3的溶解和进入液相中的CaCO 3 的分解, 固体石灰石的溶解速度,反应活性以及液相中的H+浓度(PH值)影响中和反应速度和Ca2+的氧化反应,以及其它一些化合物也会影响中和反应速度。Ca2+的形 成是一个关键步骤,因为SO 2正是通过Ca2+与SO 3 2-或与SO 4 2-化合而得以从溶液中 除去, 3、氧化反应:亚硫酸的氧化,SO 32-和HSO 3 -都是较强的还原剂,在痕量过渡金属 离子(如锰离子Mn2+)的催化作用下,液相中的溶解氧将它们氧化成SO 4 2-。反应的氧气来源于烟气中的过剩空气和喷入浆液池的氧化空气,烟气中洗脱的飞灰和石灰石的杂质提供了起催化作用的金属离子。 4、结晶析出:当中和反应产生的Ca2+、SO 32-以及氧化反应产生的SO 4 2-,达到一 定浓度时这三种离子组成的难溶性化合物就将从溶液中沉淀析出。沉淀产物: ①. 或者是半水亚硫酸钙CaSO 3·1/2H 2 O、亚硫酸钙和硫酸钙相结合的半水固溶 体、二水硫酸钙CaSO 4·2H 2 O。这是由于氧化不足而造成的,系统易产生硬垢。

湿法烟气脱硫培训教材

中国华电集团公司 石灰石—石膏湿法烟气脱硫工程 培训教材 版本:A版 中国华电集团公司 中国华电工程(集团)有限公司 2008-06

为了更好地促进火电厂烟气脱硫产业健康发展,提高电厂脱硫运行人员对脱硫系统的管理和运行水平,特编写本教材,教材针对石灰石—石膏湿法烟气脱硫系统(以下简称FGD)进行介绍,侧重于脱硫设备运行维护。 本培训教材按照中国华电集团公司要求,由华电集团公司安全生产部组织,中国华电工程(集团)有限公司编写。主要起草人:沈明忠、刘书德、陶爱平、王凯亮、沈煜辉、范艳霞、李文、谷文胜、张华等。

目录 1绪论 (7) 1.1 国家或行业相关标准 (7) 1.2 中国华电集团相关企业标准 (7) 1.3 石灰石—石膏湿法脱硫系统构成简述 (7) 1.3.1 系统简图 (7) 1.3.2 系统构成 (8) 2石灰石—石膏湿法脱硫技术简介 (10) 2.1 石灰石—石膏湿法脱硫化学机理 (10) 2.1.1 吸收原理 (10) 2.1.2 化学过程 (10) 2.2 影响脱硫系统性能的主要因素 (11) 2.3 脱硫系统水平衡问题 (11) 2.3.1 FGD系统的水损失 (12) 2.3.2 FGD系统的补充水 (12) 2.3.3 FGD系统的水平衡 (12) 3石灰石—石膏湿法烟气脱硫系统介绍 (14) 3.1 烟气系统及设备 (14) 3.1.1 烟气系统 (14) 3. 1.2 烟气系统主要设备 (15) 3.2 SO 吸收系统及设备 (18) 2 吸收系统 (18) 3.2.1 SO 2 吸收系统主要设备 (19) 3.2.2 SO 2 3.3 石灰石浆液制备、供应系统及设备: (19) 3.3.1 石灰石浆液制备及供应系统 (19) 3.3.2 石灰石浆液制备及供应系统主要设备 (22) 3.4 石膏脱水系统及设备 (24) 3.4.1 石膏脱水系统 (24)

石灰石石膏湿法脱硫系统的设计计算

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 8月

1.石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于3%的高硫燃料,还是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。(4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分

SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中和) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其它污染物 烟气中的其它污染物如SO3、Cl-、F-和尘都被循环浆液吸收和捕集。SO3、HCl和HF与悬浮液中的石灰石,按以下反应式发生反应: SO2+H2O→2H++SO32- Ca CO3 +2HCl<==>CaCl2 + H2O+ CO2 Ca CO3 +2HF <==>CaF2 +H2O+ CO2 3.工艺流程

【CN110038415A】一种湿法烟气脱硫塔【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910312805.2 (22)申请日 2019.04.18 (71)申请人 中国能源建设集团湖南省电力设计 院有限公司 地址 410007 湖南省长沙市雨花区劳动西 路471号 (72)发明人 易超 王新 胡署根 李学军  (74)专利代理机构 长沙星耀专利事务所(普通 合伙) 43205 代理人 李林凤 宁星耀 (51)Int.Cl. B01D 53/78(2006.01) B01D 53/48(2006.01) (54)发明名称 一种湿法烟气脱硫塔 (57)摘要 一种湿法烟气脱硫塔,包括塔体,塔体内从 下至上依次设有脱硫浆液池、托盘、浆液喷淋层 和普通除雾器,普通除雾器上方还设有加热式除 雾器,加热式除雾器包括烟气入口集箱、入口母 管、散热管、散热片、出口母管和连接烟道,烟气 入口集箱与入口母管连通,入口母管与散热管连 通,散热管与出口母管连通;散热管上设有散热 片;所述出口母管通过连接烟道与塔体内托盘下 部空间连通。本发明能够从源头上降低“石膏雨” 和“有色烟羽(冒白烟)” 出现的可能。权利要求书1页 说明书3页 附图1页CN 110038415 A 2019.07.23 C N 110038415 A

权 利 要 求 书1/1页CN 110038415 A 1.一种湿法烟气脱硫塔,包括塔体,塔体内从下至上依次设有脱硫浆液池、托盘、浆液喷淋层和普通除雾器,其特征在于:所述普通除雾器上方还设有加热式除雾器,所述加热式除雾器包括烟气入口集箱、入口母管、散热管、散热片、出口母管和连接烟道,所述烟气入口集箱与入口母管连通,入口母管与散热管连通,散热管与出口母管连通;所述散热管上设有散热片;所述出口母管通过连接烟道与塔体内托盘下部空间连通。 2.如权利要求1所述的湿法烟气脱硫塔,其特征在于:所述烟气入口集箱引出多根入口母管,每根入口母管斜下方引出两组散热管,组成三角形布置的分单元。 3.如权利要求2所述的湿法烟气脱硫塔,其特征在于:所述加热式除雾器的每个三角形布置的分单元内部设有上、下两根除雾器冲洗管道。 4.如权利要求1-3之一所述的湿法烟气脱硫塔,其特征在于:所述散热片呈折流板形。 5.如权利要求1-3之一所述的湿法烟气脱硫塔,其特征在于:所述散热管的截面为椭圆形。 2

石灰石湿法烟气脱硫技术

石灰石湿法烟气脱硫技术 一.工艺流程 1脱硫系统由下列子系统组成: 1.1石灰石制粉系统 1.2吸收剂制备与供应系统 1.3烟气系统 吸收系统 1.4 SO 2 1.5石膏处理系统 1.6废水处理系统 1.7公用系统 1.8电气系统 2 .烟气脱硫工艺流程简介 (石灰石——石膏湿法脱硫工艺流程图) 作为脱硫吸收剂的石灰石选用石灰石矿生产的3-10mm、水份<1%的石灰石颗粒,运输至石灰石料仓。石灰石经磨粉机磨制成325目90%通过、颗粒度≤43μm的石灰石粉。合格的石灰石粉经制浆系统与水配置成30%浓度的悬浮浆液,根据烟气脱硫的需要,在自动控制系统的操纵下通过石灰石浆液泵和管道送入吸收塔系统。石灰石由于其良好的活性和低廉的价格因素是目前世界上广泛采用的脱硫剂制备原料。 烟气脱硫系统采用将升压风机布置在吸收塔上游烟气侧运行的设计方案,以保证整个FGD 系统均为正压运行操作,同时还可以避免升压风机可能受到的低温烟气腐蚀。升压风机为烟气提供压头,使烟气能克服整个FGD系统从进口分界到烟囱之间的烟气阻力。 为了将FGD系统与锅炉分离开来在整个脱硫烟气系统中设置有带气动执行机构保证零泄漏的烟气档板门.在要求紧急关闭FGD系统的状态下,旁路档板门在5s自动快速开启,原烟气档板门在55s、净烟气档板门50s内自动关闭。为防止烟气在档板门中泄漏,原烟气和旁路档板门设有密封空气系统。 脱硫系统运行时,锅炉至烟囱的旁路档板门关闭,锅炉引风机来的全部烟气经过各自的原烟气档板门汇合后进入升压风机.升压后的烟气至气气热交换器(GGH)原烟气侧,GGH 选用回

转再生式烟气换热器,涂搪瓷换热元件选用先进波形和高传热系数产品, 以减小GGH总重和节约业主方未来更换换热元件的费用。GGH利用锅炉出来的原烟气来加热经脱硫之后的净烟气,使净烟气在烟囱进口的最低温度达到80℃以上, 大于酸露点温度后排放至烟囱。GGH转子采用中心驱动方式。每台GGH设两台电动驱动装置,一台主驱动,一台备用, 电机均采用空气冷却形式。如果主驱动退出工作,辅助驱动自动切换,防止转子停转。GGH的设计能适应在厂用电失电的情况下,转子停转而不发生损坏、变形。GGH采取主轴垂直布置, 即气流方向为原烟气向上(去吸收塔),净烟气向下(去烟囱排放)。因为原烟气中含有一定浓度的飞灰,飞灰可能会沉积在装置的内侧,随着时间的推移,热传递的效率可能会降低。为防止GGH传热面间的沉积结垢而影响传热效率, 增大阻力和漏风率, 减小寿命,需要通过吹灰器使用压缩空气清洗或用高压水进行定时清洗,吹灰器配有一根可伸缩的喷枪。视烟气中飞灰含量情况, 决定每班或每隔数小时冲洗一次GGH,或当压降超过给定最大值时,说明有一定程度的石膏颗粒沉积, 需启动高压水泵冲洗。但用高压水泵冲洗只能在运行时进行在线冲洗。当FGD装置停运时,可用低压水冲洗换热器(离线冲洗)。 GGH的防腐主要有以下措施: 对接触烟气的静态部件采取玻璃鳞片树脂涂层保护, 保护寿命约为1个大修周期; 对转子格仓, 箱条等回转部件采用厚板考登钢15-20mm厚板, 寿命为30年; 密封片采用高级不锈钢AVESTA 254SMO/904L; 换热元件采用脱碳钢镀搪瓷, 寿命约为2个大修周期。 在热量交换后烟气温度降温冷却至 101℃和89.3℃后进入逆流喷淋吸收塔,冷却后的原烟气进入吸收塔与同时通过吸收塔上部的喷嘴进入吸收塔,并与向下喷出的雾状石灰石浆液接 触进行脱硫反应,烟气中的SO 2、SO 3 等被吸收塔内循环喷淋的石灰石浆液洗涤,并与浆液中 的CaCO 3 发生反应生成的亚硫酸钙悬浮颗粒在吸收塔底部的循环浆池内,再次被氧化风机鼓 入的空气强制氧化而继续发生化学反应,最终生成石膏颗粒。与此同时,部分其他有害物质如飞灰、SO3、HCI、HF等也得到清除,这时的原烟气温度已被降低至饱和温度47.22℃和4 5.53℃。在吸收塔的出口设有除雾器,脱除SO 2 后的烟气经除雾器除去烟气中携带的细小的液滴,进入气气热交换器净烟气侧加热,此时的烟气温度进入GGH升温到80℃以上,经脱硫系统净烟气档板门最后送入烟囱,排向大气。 在整个脱硫系统中多处烟气温度已降至100℃以下,接近酸露点,为烟道和支架防腐,在设计中采用了玻璃鳞片树脂涂层。考虑到低温烟气对烟囱内壁产生的影响,烟囱内壁均采用刷

(完整word版)烟气脱硫设计计算..docx

烟气脱硫设计计算 1130t/h 循环流化床锅炉烟气脱硫方案 主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h 引风机量 1台,压力满足 FGD 系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口 SO2含量200mg/Nm 3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气 经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2→ MgSO3 + H2O MgSO3 + SO2 + H2O→ Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。这个阶段化学反应如下: MgSO3 + 1/2O2→ MgSO4 Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3 H2SO3 + Mg(OH)2→ MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀, 至 pH 达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产 生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底 部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100 多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160 亿吨 ,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

湿法烟气脱硫技术及工艺流程

湿法烟气脱硫技术及工艺流程 烟气脱硫技术品种达几十种,按脱硫进程能否加水和脱硫产物的干湿状态,烟气脱硫分为:湿法、半干法、干法三大类脱硫工艺。湿法脱硫技术比较成熟,效率高,操作简单。 湿法烟气脱硫技术 优点: 湿法烟气脱硫技术为气液反应,反应速度快,脱硫效率高,一般均高于90%,技术成熟,适用面广。湿法脱硫技术比较成熟,生产运行安全可靠,在众多的脱硫技术中,始终占据主导地位,占脱硫总装机容量的80%以上。 缺点: 生成物是液体或淤渣,较难处理,设备腐蚀性严重,洗涤后烟气需再热,能耗高,占地面积大,投资和运行费用高。系统复杂、设备庞大、耗水量大、一次性投资高,一般适用于大型电厂。 分类: 常用的湿法烟气脱硫技术有石灰石-石膏法、间接的石灰石-石膏法、柠檬吸收法等。 1、石灰石/石灰-石膏法 原理: 是利用石灰石或石灰浆液吸收烟气中的SO2,生成亚硫酸钙,经分离的亚硫酸钙(CaSO3)可以抛弃,也可以氧化为硫酸钙(CaSO4),以石膏

形式回收。是目前世界上技术最成熟、运行状况最稳定的脱硫工艺,脱硫效率达到90%以上。 湿法烟气脱硫技术及工艺流程 优缺点: 目前传统的石灰石/石灰—石膏法烟气脱硫工艺在现在的中国市场应用是比较广泛的,其采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。对比石灰石法脱硫技术,双碱法烟气脱硫技术则克服了石灰石—石灰法容易结垢的缺点。 2、间接石灰石-石膏法 常见的间接石灰石-石膏法有:钠碱双碱法、碱性硫酸铝法和稀硫酸吸收法等。 原理: 钠碱、碱性氧化铝(Al2O3·nH2O)或稀硫酸(H2SO4)吸收SO2,生成的吸收液与石灰石反应而得以再生,并生成石膏。该法操作简单,二次污染少,无结垢和堵塞问题,脱硫效率高,但是生成的石膏产品质量较差。 3、柠檬吸收法 原理: 柠檬酸(H3C6H5O7·H2O)溶液具有较好的缓冲性能,当SO2气体通过柠檬酸盐液体时,烟气中的SO2与水中H发生反应生成H2SO3络合物,SO2吸收率在99%以上。

脱硫计算公式比较全

湿法脱硫系统物料平衡 一、计算基础数据 (1)待处理烟气 烟气量:1234496Nm3/h(wet)、1176998 Nm3/h(dry) 烟气温度:114℃ 烟气中SO2浓度:3600mg/Nm3 烟气组成: 组分分子量V ol% mg/Nm3 SO264.06 0.113 3600(6%O2) O232 7.56(dry) H2O 18.02 4.66 CO244.01 12.28(dry) N228.02 80.01(dry) 飞灰200 石灰石浓度:96.05% 二、平衡计算 (1)原烟气组成计算 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3797 59.33 O27.208 127116 3972.38 H2O 4.66 46214 2564.59 CO211.708 283909 6452.48 N276.283 1177145 42042.89 飞灰200(dry)235 合计1638416 55091.67 平均分子量(0.108×64.06+7.208×32+4.66×18.02+11.708×44.01+76.283×2 8.02)/100=29.74 平均密度 1.327kg/m3

(2)烟气量计算 1、①→②(增压风机出口→ GGH出口): 取GGH的泄漏率为0.5%,则GGH出口总烟气量为1234496 Nm3/h×(1-0.5%)=1228324Nm3/h=1629634kg/h 泄漏后烟气组分不变,但其质量分别减少了0.5%,见下表。 温度为70℃。 组分V ol%(wet) mg/Nm3kg/h Kmol/h SO20.108 3226 (7.56%O2) 3778 59.03 O27.208 126480 3952.52 H2O 4.66 45983 2551.78 CO211.708 282489 6420.22 N276.283 1171259 41832.68 飞灰200 234 合计1630224 54816.21 2、⑥→⑦(氧化空气): 假设脱硫塔设计脱硫率为95.7%,即脱硫塔出口二氧化硫流量为3778×(1-95.7%)=163 kg/h,二氧化硫脱除量=(3778-163)/64.06=56.43kmol/h。 取O/S=4 需空气量=56.43×4/2/0.21=537.14kmol/h×28.86(空气分子量)=15499.60kg/h,约12000Nm3/h。 其中氧气量为537.14 kmol/h×0.21=112.80 kmol/h×32=3609.58kg/h 氮气量为537.14 kmol/h×0.79=424.34 kmol/h×28.02=11890.02kg/h。 氧化空气进口温度为20℃,进塔温度为80℃。 3、②→③(GGH出口→脱硫塔出口): 烟气蒸发水量计算: 1)假设烟气进塔温度为70℃,在塔内得到充分换热,出口温度为40℃。由物性数据及烟气中的组分,可计算出进口烟气的比热约为0.2536kcal/kg.℃,Cp (40℃) =0.2520 kcal/kg.℃。 Cp烟气=(0.2536+0.2520)/2=0.2528 kcal/kg.℃ 氧化空气进口温度为80℃,其比热约为0.2452 kcal/kg.℃,Cp(40℃)

湿法烟气脱硫塔浆液密度计

湿法烟气脱硫塔浆液密度计 一、湿法烟气脱硫塔浆液密度计介绍: 本实用新型属于测量设备,特别是测定液体物质密度的设备。石灰/石灰石一石膏湿法烟气脱硫工艺是钢厂烧结炉、电站锅炉等工业炉窑烟气脱硫应用最多的工艺之一,约占全国总量的80%。设备运行时,脱硫浆液的密度对脱硫效率、石膏品质、运行能耗有着非常重要的影响,必须不间断地在线测量,其中,采用差压式密度计测量方式的约占30%。 (1)普通差压式密度计测量塔内湍流液体的密度时,由于吸收塔底部安装的搅拌器搅拌、氧化空气气浮搅拌、喷淋液循环搅拌作用,对上下膜盒产生不均衡的外力,这种不间断的冲击力不仅造成了测量误差,还增加了感压膜片的不均匀磨损。(2)脱硫浆液中固态物含量较高达20%,脱硫后的浆液中含有大量的石膏结晶体,固态物、石膏晶体对膜盒的磨损、悬浮固体颗粒的结垢问题显著。 (3)为了克服现有差压式密度计测量塔内湍流液体时,由于吸收塔底部安装的搅拌器搅拌、氧化空气气浮搅拌、喷淋液循环搅拌对上下膜盒产生不均衡的外力造成的测量误差和感压膜片的不均匀磨损,以及,脱硫浆液中固态物、石膏晶体对膜盒的磨损、悬浮固体颗粒的结垢问题,本实用新型的目的是提供一种湿法烟气脱硫塔浆液密度计,该湿法烟气脱硫塔浆液密度计不仅防止浆液对压差测量膜盒的磨损和结垢的产生,而且可以提高测量精度。 (4)本实用新型解决其技术问题所采用的技术方案是:一种湿法烟气脱硫塔浆液密度计,包括使用变径法兰安装在脱硫塔外壁上的直角式压差密度计,其特征是:直角式差压密度计的密度计立杆上的上下两个差压测量膜盒外分别装有防波管,防波管上方装有冲洗装置,冲洗装置固定在脱硫塔的冲洗装置接口上。 二、本实用新型的有益效果是: (1)直角式差压密度计采用变径法兰安装,便于后段直角杆的取出; (2)由于在差压测量膜盒设置了防波管,可以对浆液因搅拌器搅拌、氧化空气气浮、喷淋液循环对上下膜盒产生的不均匀冲击力进行屏蔽,避免了因上述因素造成的测量误差,还减轻了浆液对感压膜片的磨损; (3)通过液位配合,冲洗装置定时冲洗可以防止密度计立杆上石膏结晶、悬浮固体颗粒的沉积、结垢的发生。 三、操作方法: 实施例l,一种湿法烟气脱硫塔浆液密度计,包括使用变径法兰接口4安装在脱硫塔3外壁上的直角式压差密度计7,其特征是:直角式差压密度计的密度计立杆l 上的上下两个差压测量膜盒8外分别装有防波管5,防波管上方装有冲洗装置2,冲洗装置固定在脱硫塔的冲洗装置接口6上。 实施例2,一种湿法烟气脱硫塔浆液密度计,包括使用变径法兰接口4安装在脱硫塔3外壁上的直角式压差密度计7,其特征是:直角式差压密度计的密度计立杆l 上的上下两个差压测量膜盒8外分别装有防波管5,防波管上方装有冲洗装置2,冲洗装置固定在脱硫塔的冲洗装置接口6上。所述的防波管使用螺栓固定在密度计立杆上,防波管内腔52底部开放顶部设有两个半圆形的对流孔51。所述的冲洗装置的出水口与防波管的对流孔位于同一垂线上。所述的半圆形对流孔与差压测量膜盒平行设置,朝向吸收塔中心方向。

相关文档
最新文档