2003北京市中考数学试题答案

合集下载

数学—2003-2014年北京市中考数学试题分类汇编:专题15+应用题(原卷版)

数学—2003-2014年北京市中考数学试题分类汇编:专题15+应用题(原卷版)

1.(2005年北京市4分)李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号 1 2 3 4 5 6 7 8 9 10 质量(千克)14 21 27 17 18 20 19 23 19 22 据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别为【】A、200千克,3000元B、1900千克,28500元C、2000千克,30000元D、1850千克,27750元2.(2006年北京市大纲4分)某学校在开展“节约每一滴水”的活动中,从初三年级的240名同学中任选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量(单位:吨) 1 1.2 1.5 2 2.5同学数 4 5 6 3 2用所学的统计知识估计这240名同学的家庭一个月节约用水的总量大约是【】A、240吨B、300吨C、360吨D、600吨3.(2013年北京市4分)如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。

若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于【】A. 60mB. 40mC. 30mD. 20m1. (2003年北京市4分)如图,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=450,∠ACB=450,BC=60米,则点A到岸边BC的距离是▲ 米。

2.(2004年北京市4分)我们学习过反比例函数.例如,当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式可以写为a=Sb(S为常数,S≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:▲ ;函数关系式:▲ .3.(2012年北京市4分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ m.4.(2014年北京市4分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为▲ m.1. (2003年北京市6分)列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”。

1998—2019北京市中考数学试卷含详细解答(历年真题)

1998—2019北京市中考数学试卷含详细解答(历年真题)

2019年北京市中考数学试卷一、选择题(本题共16分,每小题2分)1.(2分)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103 2.(2分)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.3.(2分)正十边形的外角和为()A.180°B.360°C.720°D.1440°4.(2分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.15.(2分)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD6.(2分)如果m+n=1,那么代数式()•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.37.(2分)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.38.(2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④二、填空题(本题共16分,每小题2分)9.(2分)分式的值为0,则x的值是.10.(2分)如图,已知△ABC,通过测量、计算得△ABC的面积约为cm2.(结果保留一位小数)11.(2分)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)12.(2分)如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).13.(2分)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y上,点A关于x轴的对称点B在双曲线y,则k1+k2的值为.14.(2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.15.(2分)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12s02(填“>”,“=”或”<”)16.(2分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:||﹣(4﹣π)0+2sin60°+()﹣1.18.(5分)解不等式组:<>19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G,求AO的长.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为万美元;(结果保留一位小数)(4)下列推断合理的是.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为;(3)7天后,小云背诵的诗词最多为首.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC,D,E分别是AB,AC的中点,画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.2019年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)1.(2分)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×103【解答】解:将439000用科学记数法表示为4.39×105.故选:C.2.(2分)下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.3.(2分)正十边形的外角和为()A.180°B.360°C.720°D.1440°【解答】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选:B.4.(2分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.5.(2分)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM,∴∠MCD=180°﹣α,又∵∠CMN∠OCN=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.6.(2分)如果m+n=1,那么代数式()•(m2﹣n2)的值为()A.﹣3B.﹣1C.1D.3【解答】解:原式•(m+n)(m﹣n)•(m+n)(m﹣n)=3(m+n),当m+n=1时,原式=3.故选:D.7.(2分)用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.8.(2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5﹣25.5之间②这200名学生参加公益劳动时间的中位数在20﹣30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20~30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20~30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解答】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5﹣25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20﹣30 之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10 的人数在0﹣15 之间,当人数为0 时中位数在20﹣30 之间;当人数为15 时,中位数在20﹣30 之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0﹣15,35,15,18,1,当0≤t<10时间段人数为0 时,中位数在10﹣20 之间;当0≤t<10时间段人数为15 时,中位数在10﹣20 之间,故④错误.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)分式的值为0,则x的值是1.【解答】解:∵分式的值为0,∴x﹣1=0且x≠0,∴x=1.故答案为1.10.(2分)如图,已知△ABC,通过测量、计算得△ABC的面积约为 1.9cm2.(结果保留一位小数)【解答】解:过点C作CD⊥AB的延长线于点D,如图所示.经过测量,AB=2.2cm,CD=1.7cm,∴S△ABC AB•CD 2.2×1.7≈1.9(cm2).故答案为:1.9.11.(2分)在如图所示的几何体中,其三视图中有矩形的是①②.(写出所有正确答案的序号)【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.12.(2分)如图所示的网格是正方形网格,则∠P AB+∠PBA=45°(点A,B,P是网格线交点).【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°,故答案为:45.13.(2分)在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y上,点A关于x轴的对称点B在双曲线y,则k1+k2的值为0.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y上,∴k1=ab;又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.(2分)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为12.【解答】解:如图1所示:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,∴AC=2OA=6,BD=2OB=4,∴菱形ABCD的面积AC×BD6×4=12;故答案为:12.15.(2分)小天想要计算一组数据92,90,94,86,99,85的方差s02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为s12,则s12=s02(填“>”,“=”或”<”)【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,两数进行相减,方差不变,∴则s12=S02.故答案为=.16.(2分)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.二、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程,17.(5分)计算:||﹣(4﹣π)0+2sin60°+()﹣1.【解答】解:原式1+2414=3.18.(5分)解不等式组:<>【解答】解:<①> ②,解①得:x<2,解②得x<,则不等式组的解集为x<2.19.(5分)关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.20.(5分)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G,求AO的长.【解答】(1)证明:连接BD,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠ADO,∴tan G=tan∠ADO,∴OA OD,∵BD=4,∴OD=2,∴OA=1.21.(5分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第17;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 2.8万美元;(结果保留一位小数)(4)下列推断合理的是①②.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.【解答】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;故答案为:2.8;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值;合理;故答案为:①②.22.(6分)在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵AD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.23.(6分)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i=1,2,3,4;②对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;③每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为4,5,6;(3)7天后,小云背诵的诗词最多为23首.【解答】解:(1)(2)∵每天最多背诵14首,最少背诵4首,∴x1≥4,x3≥4,x4≥4,∴x1+x3≥8①,∵x1+x3+x4≤14②,把①代入②得,x4≤6,∴4≤x4≤6,∴x4的所有可能取值为4,5,6,故答案为:4,5,6;(3)∵每天最多背诵14首,最少背诵4首,∴由第2天,第3天,第4天,第5天得,x1+x2≤14①,x2+x3≤14②,x1+x3+x4≤14③,x2+x4≤14④,①+②+④﹣③得,3x2≤28,∴x2,∴x1+x2+x3+x414,∴x1+x2+x3+x4≤23,∴7天后,小云背诵的诗词最多为23首,故答案为:23.24.(6分)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 2.3和4cm.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,从图和表格可以看出位置4和位置6符合要求,即AD的长度为2.3和4.0.25.(5分)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k 分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.【解答】解:(1)令x=0,y=1,∴直线l与y轴的交点坐标(0,1);(2)由题意,A(k,k2+1),B(,﹣k),C(k,﹣k),①当k=2时,A(2,5),B(,﹣2),C(2,﹣2),在W区域内有6个整数点:(0,0),(0,﹣1),(1,0),(1,﹣1),(1,1),(1,2);②直线AB的解析式为y=kx+1,当x=k+1时,y=﹣k+1,则有k2+2k=0,∴k=﹣2,当0>k≥﹣1时,W内没有整数点,∴当0>k≥﹣1或k=﹣2时W内没有整数点;26.(6分)在平面直角坐标系xOy中,抛物线y=ax2+bx与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.【解答】解:(1)A(0,)点A向右平移2个单位长度,得到点B(2,);(2)A与B关于对称轴x=1对称,∴抛物线对称轴x=1;(3)∵对称轴x=1,∴b﹣2a,∴y=ax2﹣2ax,①a>0时,当x=2时,y<2,当y时,x=0或x=2,∴函数与AB无交点;②a<0时,当y=2时,ax2﹣2ax2,x或x当2时,a;∴当a时,抛物线与线段PQ恰有一个公共点;27.(7分)已知∠AOB=30°,H为射线OA上一定点,OH1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M 总有ON=QP,并证明.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD OP=1∴OD∵OH1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∠∠∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP28.(7分)在△ABC中,D,E分别是△ABC两边的中点,如果上的所有点都在△ABC 的内部或边上,则称为△ABC的中内弧.例如,图1中是△ABC的一条中内弧.(1)如图2,在Rt△ABC中,AB=AC,D,E分别是AB,AC的中点,画出△ABC 的最长的中内弧,并直接写出此时的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC 中,D,E分别是AB,AC的中点.①若t,求△ABC的中内弧所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧,使得所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.【解答】解:(1)如图2,以DE为直径的半圆弧,就是△ABC的最长的中内弧,连接DE,∵∠A=90°,AB=AC,D,E分别是AB,AC的中点,∴BC4,DE BC4=2,∴弧2π=π;(2)如图3,由垂径定理可知,圆心一定在线段DE的垂直平分线上,连接DE,作DE 垂直平分线FP,作EG⊥AC交FP于G,①当t时,C(2,0),∴D(0,1),E(1,1),F(,1),设P(,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上均可,∴m≥1,∵OA=OC,∠AOC=90°∴∠ACO=45°,∵DE∥OC∴∠AED=∠ACO=45°作EG⊥AC交直线FP于G,FG=EF根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP上时也符合要求;∴m综上所述,m或m≥1.②如图4,设圆心P在AC上,∵P在DE中垂线上,∴P为AE中点,作PM⊥OC于M,则PM,∴P(t,),∵DE∥BC∴∠ADE=∠AOB=90°∴AE,∵PD=PE,∴∠AED=∠PDE∵∠AED+∠DAE=∠PDE+∠ADP=90°,∴∠DAE=∠ADP∴AP=PD=PE AE由三角形中内弧定义知,PD≤PM∴AE,AE≤3,即3,解得:t,∵t>0∴0<t.2018年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)下列几何体中,是圆柱的为()A.B.C.D.2.(2分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4B.c﹣b>0C.ac>0D.a+c>0 3.(2分)方程组的解为()A.B.C.D.4.(2分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2B.7.14×104m2C.2.5×105m2D.2.5×106m2 5.(2分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°6.(2分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.47.(2分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2分)若在实数范围内有意义,则实数x的取值范围是.11.(2分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.14.(2分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2分)某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.。

2003年全国初中数学联赛试卷参考答案与试题解析

2003年全国初中数学联赛试卷参考答案与试题解析

2003年全国初中数学联赛试卷参考答案与试题解析一、选择题(共6小题,每小题7分,满分42分)1.(7分)的值等于().5﹣4B.4﹣1 C解答:解:原式==+=,故选D.2.(7分)在凸10边形的所有内角中,锐角的个数最多是()3.(7分)若函数y=kx(k>0)与函数的图象相交于A,C两点,AB垂直x轴于B,则△ABC的面积为()解答:解:设点A的坐标为(x,y),则xy=1,故△ABO的面积为,又∵△ABO与△CBO同底等高,∴△ABC的面积=2×△ABO的面积=1.故选A.解答:解:由可得,(﹣)(++)=0,∵++>0,∴﹣=0,∴,故选B.5.(7分)设△ABC的面积为1,D是边AB上一点,且=,若在边AC上取一点E,使四边形DECB的面积为,则的值为().B.C.D.解答:解:连接BE.∵=,∴△ADE和△ABE的面积比是1:3.设△ADE的面积是k,则△ABE的面积是3k,则△BDE的面积是2k.设△BCE的面积是x,则有(2k+x)=(3k+x),解得x=k.则△ABE和△BCE的面积比是3:1,则的值为.故选B.6.(7分)如图,在▱ABCD中,过A、B、C三点的圆交AD于E,且与CD相切.若AB=4,BE=5,则DE的长为().D.解答:解:连接CE;∵,∴∠BAE=∠EBC+∠BEC;∵∠DCB=∠DCE+∠BCE,由弦切角定理知:∠DCE=∠EBC,由平行四边形的性质知:∠DCB=∠BAE,∴∠BEC=∠BCE,即BC=BE=5,∴AD=5;由切割线定理知:DE=DC2÷DA=,故选D.二、填空题(共4小题,每小题7分,满分28分)7.(7分)抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac= ﹣解答:解:设A(x1,0),B(x2,0),由△ABC是直角三角形可知x1、x2必异号,则x1•x2=<0,由于函数图象与y轴相交于C点,所以C点坐标为(0,c),由射影定理知,|OC|2=|AO|•|BO|,即c2=|x1|•|x2|=||,故|ac|=1,ac=±1,由于<0,所以ac=﹣1.故答案为:﹣1.8.(7分)设m是整数,且方程3x2+mx﹣2=0的两根都大于﹣而小于,则m= 4 .解答:解:由题设可知,,解得.因为m是整数,所以m=4.故答案为4.9.(7分)如图,AA′、BB′分别是∠EAB、∠DBC的平分线,若AA′=BB′=AB,则∠BAC的度数为12°.∴∠CAB=∠BB′A,∴∠B′BD=2x°,∵BB′是∠DBC的平分线,∴∠CBD=4x°,∵AB=AA′,∴∠AA′B=∠ABA′=∠CBD=4x°,∵∠A′AB=(180°﹣x°),∴(180°﹣x°)+4x°+4x°=180°,∴x°=12°.故答案为:12°.10.(7分)已知正整数a、b之差为120,它们的最小公倍数是其最大公约数的105倍,那么,a、b中较大的数是225 .解答:解:设(a,b)=d,且a=md,b=nd,其中m>n,且m与n互质,于是a、b的最小公倍数为mnd,依题意有即,则m>n据②可得或或或根据①只取可求得d=15,故两个数中较大的数是md=225.三、解答题(共5小题,满分120分)11.(20分)试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数.解答:解:设前后两个二位数分别为x,y,∴(x+y)2=100x+y.x2+2(y﹣50)x+(y2﹣y)=0.b2﹣4ac=4(y﹣50)2﹣4(y2﹣y)=4(2500﹣99y)≥0,解得y≤25,当y≤25时,原方程有解.∴x==50﹣y±,∴2500﹣99y必为完全平方数,∵完全平方数的末位数字只可能为0;1;4;5;6;9.x的数位是2位,y是2位.∴y=25,∴x=30或20,12.(25分)在△ABC中,D为AB的中点,分别延长CA、CB到点E、F,使DE=DF,过E、F分别作CA、CB 的垂线相交于P,设线段PA、PB的中点分别为M、N.求证:①△DEM≌△DFN;②∠PAE=∠PBF.解答:证明:①如图,在△ABP中,∵D、M、N分别是AB、AP、BP的中点,∴DM=BP,DN=AP,又∵PE⊥AE,BF⊥PF∴EM=AP=DN,FN=BP=DM,∵DE=DF∴△DEM≌△DFN(SSS);②∵由①结论△DEM≌△DFN可知∠EMD=∠FND,∵DM∥BP,DN∥AP,∴∠AMD=∠BND=∠APB,∴∠AME=∠BNF又∵PE⊥AE,BF⊥PF,∴△AEP和△BFP都为直角三角形,又M,N分别为斜边PA与PB的中点,∴AM=EM=AP,BN=NF=BP,∴∠MAE=∠MEA,∠NBF=∠NFB,∴∠PAE=(180°﹣∠AME),∠PBF=(180°﹣∠BNF).即∠PAE=∠PBF,13.(25分)已知实数a、b、c、d互不相等,且,试求x的值.解答:解:由已知有a+=x,①; b+=x,②;c+=x,③;d+=x,④;即dx3﹣(ad+1)x2﹣(2d﹣a)x+ad+1=0⑦由④得ad+1=ax,代入⑦得(d﹣a)(x3﹣2x)=0由已知d﹣a≠0,∴x3﹣2x=0若x=0,则由⑥可得a=c,矛盾.故有x2=2,x=±15.(25分)已知四边形ABCD的面积为32,AB、CD、AC的长都是整数,且它们的和为16.(1)这样的四边形有几个?(2)求这样的四边形边长的平方和的最小值.解答:解:(1)如图,记AB=a,CD=b,AC=l,并设△ABC的边BA上的高为h1,△ADC的边DC上的高为h2,则S四边形ABCD=S△ABC+S△ADC=(h1a+h2b)≤l(a+b),当且仅当h1=h2=l时等号成立,即在四边形ABCD中,当AC⊥AB,AC⊥CD时,等号成立,由已知得64≤l(a+b),又∵a+b=16﹣l,得64≤l(16﹣l)=64﹣(l﹣8)2≤64,于是l=8,a+b=8,且这时AC⊥AB,AC⊥CD,因此这样的四边形由如下4个:a=1,b=7,l=8;a=2,b=6,l=8;a=3,b=5,l=8;a=b=4,l=8;(2)由于AB=a,CD=8﹣a,则BC2=82+a2,AD2=82+(8﹣a)2,故这样的四边形的边长的平方和为:2a2+2(8﹣a)2+128=4(a﹣4)2+192,当a=b=4时,平方和最小,且为192.故答案为:4,192.。

2003年北京中考数学含答案

2003年北京中考数学含答案

北京市2003年数学中考试题一、选择题(共14个小题,每小题4分,共56分)1.-5的绝对值是(A) 5 (B) 15 (C) -15 (D) -52.3-2计算的结果是(A) -9 (B) -6 (C) - 19 (D) 193.计算a 3·a 4的结果是(A) a 12 (B) a (C) a 7 (D) 2a 34.2002年我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为(A) 6×102亿立方米 (B) 6×103亿立方米 (C) 6×104亿立方米 (D) 0.6×104亿立方米5.下列图形中,不是中心对称图形的是(A) 菱形 (B) 矩形 (C) 正方形 (D) 等边三角形 6.如果两圆的半径分别为3cm 和5cm ,圆心距为10cm ,那么这两个圆的公切线共有(A) 1条 (B) 2条 (C) 3条 (D) 4条7.如果反比例函数y =kx 的图象经过点P(-2,3),那么k 的值是(A) -6 (B) - 32 (C) - 23(D) 68.在△ABC 中,∠C=90°,如果tanA =512 ,那么sinB 的值等于(A) 513 (B) 1213 (C) 512 (D) 1259.如图,CA 为⊙O 的切线,切点为A ,点B 在⊙O 上,如果∠CAB =55o,那么∠AOB 为(A) 55o(B) 90o(C) 110o(D) 120oABOC第9题图· BCDA O E第13题图10.如果圆柱的底面半径为4cm ,母线长为5cm ,那么它的侧面积等于(A) 20πcm 2 (B) 40πcm 2 (C) 20 cm 2 (D) 4 0 cm 211.如果关于x 的一元二次方程kx 2-6x +9=0有两个不相等的实数根,那么k 的取值范围是(A) k <1 (B) k ≠0 (C) k <1且k ≠0 (D) k >112.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是(A) 68,65 (B) 55,68 (C) 68,57 (D) 55,5713.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =10,CD =8,那么AE 的长为(A) 2 (B) 3 (C) 4 (D) 514.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升, 那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是二、填空题(共4个小题,每小题4分,共16分)15.在函数y =x +3 中,自变量x 的取值范围是___________.16.如图,在等边三角形ABC 中,点D 、E 分别在AB 、AC 边上,且DE ∥BC ,如果BC =8cm ,AD:AB =1:4,那么△ADE 的周长等于________cm .日 期 答题个数 5月8日 5月9日 5月10日 5月11日 5月12日 5月13日 5月14日 68555056544868h(米) O 106 13510 (A )t(天) t(天) h(米)O 106 13510 (B )h(米)t(天) O 106 13510 (C )h(米)t(天)O 10613510 (D )17.如图,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=45o,∠ACB=45o,BC=60米,则点A到岸边BC的距离是_______米.18.观察下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=41,…….猜想:第n个等式(n为正整数)应为____________________________.三、(共3个小题,共14分)19.(本小题满分4分)分解因式:x2-2xy+y2-920.(本小题满分4分)计算:12 +1-8 +( 3 -1)0ADB CE第16题图AB C第17题图21.(本小题满分6分)用换元法解方程:x2-3x+5+6x2-3x=0四、(本题满分5分)22.如图,在ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).⑴连结______________.⑵猜想:____________ = ____________.⑶证明:·DAB CF E五、(本题满分6分)23.列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.六、(本题满分7分)24.已知:关于x的方程x2-2mx+3m=0的两个实数根是x1,x2,且(x1-x2)2=16.如果关于x的另一个方程x2-2mx+6m-9=0的两个实数根都在x1和x2之间,求m的值.七、(本题满分8分)25.已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.⑴求证:AF=DF;⑵求∠AED的余弦值;⑶如果BD=10,求△ABC的面积.AFMBD C E八、(本题满分8分)26.已知:抛物线y =ax 2+4ax +t 与轴的一个交点为A(-1,0).⑴ 求抛物线与x 轴的另一个交点B 的坐标;⑵ D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式; ⑶ E 是第二象限内到x 轴、y 轴的距离的比为5:2的点,如果点E 在⑵中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.2003北京市中考数学试题答案第I 卷 (机读卷 共56分) 一. 选择题(共14个小题,每小题4分,共56分) 1. A 2. D 3. C 4. B 5. D 6. D 7. A8. B 9. C10. B 11. C 12. A 13. A 14. B第II 卷(非机读卷 共64分)二. 填空题(共4个小题,每小题4分,共16分) 15. x ≥-3 16. 6 17. 30 18. 91109()n nn -+=-(或911011()()nn n -+=-+)三. (共3个小题,共14分)19. (本小题满分4分)分解因式:x x y y 2229-+-解:x x y y 2229-+-=--()xy 292分=-+--()()x y x y 33 4分20. (本小题满分4分)计算:1218310+-+-()解:1218310+-+-()=--+21221 3分 =-24分21. (本小题满分6分)用换元法解方程x x x x2235630-++-=解:设x x y23-=,1分则原方程化为y y++=562分∴++=y y 2560解得y y 1223=-=-,3分当y =-2时,x x 232-=-∴-+=x x 2320解得x x 1212==, 4分当y =-3时,x x 233-=-∴-+=xx 2330 ∆=-<9120,∴此方程无实数根。

北京市海淀区2003年中考试卷

北京市海淀区2003年中考试卷

北京市海淀区2003年中考试卷一、选择题(本题共78分,每小题3分.在下列各题的四个备选答案中,只有一个是正确的)1.-3的相反数是( ). A .31-B .-3C .3D .-| 3|2.计算03)(π-的结果是( ).A .0B .1C .3-πD .π-3 3.若∠α=30°,则∠α的补角为( ).A .30°B .60°C .120°D .150°4.羊年话“羊”,“羊”字象征着美好和吉祥.下列图案都与“羊”字有关,其中是轴对称图形的个数是( ).A .1B .2C .3D .4 5.函数3-=x y 的自变量x 的取值范围是( ).A .x ≥3B .x >3C .x ≠3D .x ≤36.2003年5月19日,国家邮政局特别发行“万众一心 抗击‘非典’”邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争.其邮票发行量为12500000枚,用科学记数法表示正确的是( ). A .5101.25⨯枚 B .6101.25⨯枚 C .7101.25⨯枚 D .8101.25⨯枚7.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的中点.若DE =4,则BC 等于( ).A .2B .4C .8D .12 8.用换元法解方程1)2()2(2=+-+xx xx ,设xx y 2+=,则原方程可化为( ).A .012=--y y B .012=++y y C .012=-+y y D .012=+-y y9.如图,直线c 与直线a 、b 相交,且a ∥b ,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中正确的个数为( ).A .0B .1C .2D .310.点P (-2,3)关于x 轴对称的点的坐标为( ). A .(-2,3) B .(2,3) C .(2,-3) D .(-2,-3) 11.下列各式中正确的是( ).A . 422=--B .5233)3(=C .12121+=- D .248x x x =÷12.若两圆相交,则这两圆的公切线( ).A .只有一条B .有两条C .有三条D .有四条13.如图,四边形ABCD 内接于⊙O ,E 在BC 延长线上.若∠A =50°,则∠DCE 等于( ).A .40°B .50°C .70°D .130°14.不等式组⎩⎨⎧35,062>-+<-x x 的解集是( ).A .2<x <3B .-8<x <-3C .-8<x <3D .x <-8或x >315.在下列二次根式中与2是同类二次根式的是( ).A .8B .10C .12D .27 16.在△ABC 中,∠C =90°,∠B =2∠A ,则cos A 等于( ). A .23 B .21 C . 3 D .3317.方程022=+-x x 根的情况是( ). A .只有一个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根18.已知反比例函数xk y =的图象经过点(1,2),则函数y =-kx 可确定为( ).A .y =-2xB .x y 21=-C .x y 21=D .x y 2=19.如图,在方格纸中有四个图形①、②、③、④,其中面积相等的图形是( ).A .①和②B .②和③C .②和④D .①和④ 20.若01442=-++++y x y y ,则xy 的值等于( ).A .-6B .-2C .2D .621.如果圆柱的母线长为5 cm ,底面半径为2 cm ,那么这个圆柱的侧面积是( ). A .102cm B .10π2cm C .202cm D .20π2cm 22.二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( ).A .a >0,b <0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b >0,c >023.如图,PA 切⊙O 于点A ,PO 交⊙O 于点B .若PA =6,BP =4,则⊙O 的半径为( ).A .45 B .25 C .2 D .524.某同学在测量体温时意识到体温计的读数与水银柱的长度之间可能存在着某种函数关系,就此他与同学们选择了一种类型的体温计,经历了收集数据、分析数据、得出结论的探索过程.他们收集到的数据如下:42)之间存在的函数关系是( ). A .661012-=t l B .t l 70113=C .23076-=t l D .tl 23955=25.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( ).A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)26.甲、乙两同学约定游泳比赛规则:甲先游自由泳到泳道中点后改为蛙泳,而乙则是先游蛙泳到泳道中点后改为自由泳.两人同时从泳道起点出发,最后两人同时游到泳道终点.又知甲游自由泳比乙游自由泳速度快,并且二人自由泳均比蛙泳速度快.若某人离开泳道起点的距离s与所用时间t的函数关系可用图象表示,则下列选项中正确的是().A.甲是图①,乙是图②B.甲是图③,乙是图②C.甲是图①,乙是图④D.甲是图③,乙是图④二、填空题(本题共21分,每空3分)27.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=A C.若∠B=20°,则∠C=________°.2=________.28.分解因式:b+-2aba-29.若三角形的两边长分别为6、7,则第三边长a的取值范围是________.30.今年5月海淀区教育网开通了网上教学.某校初三年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图.已知从左至右各个小组的频率分别是0.15、0.25、0.35、0.20、0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119分钟之间的学生人数是________人.如果只用这40名学生这一天上网学习时间作为样本去推断该校初三年级全体学生该天上网学习时间,这样的推断是否合理?________(填“合理”或“不合理”).31.如图,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.若34tan =AEH ∠,四边形EFGH 的周长为40 cm ,则矩形ABCD 的面积为________2cm .32.已知二次函数11)(2k 2--+=x kx y 与x 轴交点的横坐标为1x 、2x (21x x <),则对于下列结论:①当x =-2时,y =1;②当2x x >时,y >0;③方程011)(22=-+-x k kx 有两个不相等的实数根1x 、2x ;④11-<x ,12>-x ;⑤kk 41x x 212+=-,其中所有正确的结论是________(只需填写序号).三、解答题(本题共21分,第33题5分,第34题7分,第35题9分)33.某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)问该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?34.已知:以Rt △ABC 的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,E 为BC 边上的中点,连结DE .(1)如图,求证:DE 是⊙O 的切线;(2)连结OE ,AE .当∠CAB 为何值时,四边形AOED 是平行四边形?并在此条件下求s in ∠CAE 的值.(第(2)问答题要求:不要求写出解答过程,只需将结果填写在答题卡相应题号的横线上.)35.已知:如图,点A 在y 轴上,⊙A 与x 轴交于B 、C 两点,与y 轴交于点D (0,3)和点E (0,-1).(1)求经过B 、E 、C 三点的二次函数的解析式;(2)若经过第一、二、三象限的一动直线切⊙A 于点P (s ,t ),与x 轴交于点M ,连结PA 并延长与⊙A 交于点Q ,设Q 点的纵坐标为y ,求y 关于t 的函数关系式,并观察图形写出自变量t 的取值范围;(3)在(2)的条件下,当y =0时,求切线PM 的解析式,并借助函数图象,求出(1)中抛物线在切线PM 下方的点的横坐标x 的取值范围.参考答案一、选择题(本题共78分,每小题3分)1.C 2.B 3.D 4.B 5.A 6.C 7.C 8.A 9.D 10.D 11.C 12.B 13.B 14.C 15.A 16.A 17.D 18.A 19.A 20.A 21.D 22.D 23.B 24.C 25.B 26.C二、填空题(本题共21分,每空3分) 27.20 28.(a -b )(a +b +1) 29.1<a <13 30.14,不合理 31.192 32.①、③、④三、解答题(本题共21分,第33题5分,第34题7分,第35题9分.解答题与所给答案方法不同,但解答正确的相应给分)33.解:(1)解法一:设书包的单价为x 元,则随身听的单价为(4x -8)元.根据题意,得4x -8+x =452.…………………………………………………………1分 解这个方程,得x =92. 4x -8=4×92-8=360.答:该同学看中的随身听单价为360元,书包单价为92元.………………………2分 解法二:设书包的单价为x 元,随身听的单价为y 元. 根据题意,得⎩⎨⎧.84,452-==+x y y x ……………………………………………………………………………1分解这个方程组,得⎩⎨⎧.360,92==y x答:该同学看中的随身听单价为360元,书包单价为92元.………………………2分 (2)在超市A 购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A 购买. ………………………………………3分 在超市B 可先花费现金钱360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:360+2=362(元). 因为362<400,所以也可以选择在超市B 购买.……………………………………4分 因为362>361.6,所以在超市A 购买更省钱.…………………………………………5分 34.(第(2)问答题要求:不要求写出解答过程,只需将结果填写在答题卡相应题号的横线上.) 解:(1)证法一:连结OD 、DB . ∵ AB 是⊙O 的直径,∴ ∠ADB =90°.∴ ∠CDB =90°. ∵ E 为BC 边上的中点, ∴ CE =EB =DE .∴ ∠1=∠2.……………………………………………………………………………1分 ∵ OB =OD ,∴ ∠3=∠4.∴ ∠1+∠4=∠2+∠3.………………………………………………………………2分 ∵ 在R t △ABC 中,∠ABC =∠2+∠3=90°, ∴ ∠EDO =∠1+∠4=90°.∵ D 为⊙O 上的点,∴ DE 是⊙O 的切线.…………………………………………………………………3分证法二:连结OD 、OE .∵ OA =OD ,∴ ∠1=∠2.∵ E 为BC 边上的中点,O 为AB 边上的中点, ∴ OE ∥AC .∴ ∠1=∠3,∠2=∠4.∴ ∠3=∠4.……………………………………………………………………… 1分 ∵ OD =OB ,OE =OE ,∴ △EDO ≌△EBO . ∴ ∠EDO =∠EBO .……………………………………………………………………2分 ∵ △ABC 为直角三角形,∴ ∠EBO =90°.∴ ∠EDO =90°. ∵ D 为⊙O 上的点,∴ DE 是⊙O 的切线.…………………………………………………………………3分 (2)解:∠CAB =45°.………………………………………………………………4分 ∴ 1010sin =∠CAE .………………………………………………………………7分35.解:(1)解法一:连结AC . ∵ DE 为⊙A 的直径,DE ⊥BC , ∴ BO =CO . ∵ D (0,3),E (0,-1), ∴ 4)1(3=--=DE ,OE =1. ∴ AO =1,221==DE AC .在R t △AOC 中,222OC AO AC +=, ∴ 3=OC .∴ C (3,0),B (3-,0).设经过B 、E 、C 三点的抛物线的解析式为)3)(3(+x x a y -=,则)30)(30(1+--=a .解得31=a .∴ 131)3)(3(312-=+-=x x x y .………………………………………………2分解法二:∵ DE 为⊙A 的直径,DE ⊥BC , ∴ BO =CO .∴ OE OD OC ⋅=2.∵ D (0,3),E (0,-1),∴ OD =3,OE =1.∴ 3132==⨯OC .∴ 3=OC .∵ C (3,0),B (3-,0). 以下同解法一.(2)解法一:过点P 作PF ⊥y 轴于F ,过点Q 作QN ⊥y 轴于N . ∵ ∠P AF =∠QAN =90°,F 点的纵坐标为t ,N 点的纵坐标为y . ∴ ∠P AF =∠QAN ,P A =QA ,∴ △PFA ≌△QNA .∴ F A =NA .∵ AO =1,∴ A (0,1). ∴ y t -=-11.∵ 动切线PM 经过第一、二、三象限,观察图形可得1<t <3,-1<y <1. ∴ t -1=1-y ,即y =-t +2. ∴ y 关于t 的函数关系式为 y =-t +2(1<t <3).…………………………5分解法二:(ⅰ)当经过一、二、三象限的切线PM 运动到使得Q 点与C 重合时,y =0.连结PB .∵ PC 是直径,∴ ∠PBC =90°.∴ PB ⊥x 轴. ∴ PB =t .∵ P A =AC ,BO =OC ,AO =1, ∴ PB =2AO =2.∴ t =2,即t =2时,y =0.(ⅱ)当经过一、二、三象限的切线PM 运动使得Q 点在x 轴上方时,y >0.观察图形可得1<t <2. 过P 作PS ⊥x 轴于S ,过Q 作QT ⊥x 轴于T ,则PS ∥AO ∥QT . ∵ 点A 为线段PQ 的中点, ∴ 点O 的线段ST 的中点.∵ AO 为梯形QTSP 的中位线.∴ 2PSQT AO +=.∴ 21t y +=∴ 2+=-t y .∴ y =-t +2(1<t <2).(ⅲ)当经过一、二、三象限的切线PM 运动使得Q 点在x 轴下方时,y <0.观察图形可得2<t <3.过P 作PS ⊥x 轴于S ,过Q 作QT ⊥x 轴于T ,设PQ 交x 轴于R ,则QT ∥PS . ∴ △QRT ∽△PRS ∴ PSQR PSQT =.∵ 设AR =m ,则mm t y +=-22-. ①又∵ AO ⊥x 轴,∴ AO ∥PS .∴ △ROA ∽△RSP .∴ RPRA PSAO =.∴ mm t +=21. ②由①、②得2+=-t y . ∴ y =-t +2(2<t <3). 综上所述,y 与t 的函数关系式为y =-t +2(1<t <3).…………………………………………………………………5分 (3)解法一:当y =0时,Q 点与C 点重合,连结PB . ∵ PC 为⊙A 的直径,∴ ∠PBC =90°,即PB ⊥x 轴. ∴ 3-=s .将y =0代入y =-t +2(1<t <3),得0=-t +2. ∴ t =2.∴ p (3-,2).设切线PM 与y 轴交于点I ,则AP ⊥PI , ∴ ∠API =90°.在△API 与△AOC 中,∵ ∠API =∠AOC =90°,∠PAI =∠OAC , ∴ △API ∽△AOC .∴ ACAI AOAP =.∴212AI =.∴ AI =4.∴ OI =5.∴ I 点坐标为(0,5).设切线PM 的解析式为 y =kx +5(k ≠0).∵ P 点的坐标为(3-,2), ∴ 532+=-k .解得3=k .∴ 切线PM 的解析式53+=x y .…………………………………………………7分设切线PM 与抛物线1312-=x y 交于G 、H 两点, 由⎪⎩⎪⎨⎧53,1312+=-=x y x y 可得 2113331-=x ,2113332+=x .因此,G 、H 的横坐标分别为211333-、211333+.根据图象可得抛物线在切线PM 下方的点的横坐标x 的取值范围是 211333-<x <211333+.……………………………………………………9分解法二:同(3)解法一,可得P (3-,2).∵ 直线PM 为⊙A 的切线,PC 为⊙A 的直径,∴ PC ⊥PM .在R t △CPM 与R t △CBP 中,PC CBCM PCPCM ==∠cos .∵ 32=CB ,PC =4.∴ 33832162===CB PCCM .设M 点的坐标为(m ,0),则3383=m CM -=.∴ 335=-m ,即M (335-,0).设切线PM 的解析式为y =kx +b (k ≠0).得⎪⎩⎪⎨⎧.32,3350b k b k +=-+=-解得⎩⎨⎧=.5,3b k = ∴ 切线PM 的解析式为53+=x y .…………… 7分 以下同解法一.。

往年北京市中考数学真题及答案

往年北京市中考数学真题及答案

往年北京市中考数学真题及答案一. 选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.9-的相反数是A.19-B.19C.9-D.92.首届中国(北京)国际服务贸易交易会(京交会)于往年年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为A.96.01110⨯B.960.1110⨯C.106.01110⨯D.110.601110⨯3.正十边形的每个外角等于A.18︒B.36︒C.45︒D.60︒4.右图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱5.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是A.16B.13C.12D.236.如图,直线AB,CD交于点O,射线OM平分AOC∠,若76BOD∠=︒,则BOM∠等于A.38︒B.104︒C.142︒D.144︒7.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量(度)120 140 160 180 200 户数 2 3 6 7 2A.180,160 B.160,180 C.160,160 D.180,1808. 小翔在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示方向经过点B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t ( 单位:秒),他与教练的距离为y ( 单位:米),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的 A .点MB .点NC .点PD .点Q二. 填空题( 本题共16分,每小题4分) 9. 分解因式:269mn mn m ++= .10.若关于x 的方程220x x m --=有两个相等的实数根,则m 的值是 . 11.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40cm DE =,20cm EF =,测得边DF 离地面的高度1.5m AC =,8m CD =,则树高AB = m .12.在平面直角坐标系xOy 中,我们把横 . 纵坐标都是整数的点叫做整点.已知点()04A ,,点B 是x 轴正半轴上的整点,记AOB △内部( 不包括边界)的整点个数为m .当3m =时,点B 的横坐标的所有可能值是 ;当点B 的横坐标为4n ( n 为正整数)时,m = ( 用含n 的代数式表示.)三. 解答题( 本题共30分,每小题5分) 13.计算:()11π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭.14.解不等式组:4342 1.x x x x ->⎧⎨+<-⎩,15.已知023a b =≠,求代数式()225224a ba b a b -⋅--的值.16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,.求证:BC ED =.17.如图,在平面直角坐标系xOy 中,函数()40y x x=>的图象与一次函数y kx k =-的图象的交点为()2A m ,.( 1)求一次函数的解析式;( 2)设一次函数y kx k =-的图象与y 轴交于点B ,若P 是x 轴上一点,且满足PAB △的面积是4,直接写出点P 的坐标.18.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四. 解答题( 本题共20分,每小题5分)19.如图,在四边形ABCD 中,对角线AC BD ,交于点E ,9045302BAC CED DCE DE ∠=︒∠=︒∠=︒=,,,,22BE =.求CD 的长和四边形ABCD 的面积.20.已知:如图,AB 是O ⊙的直径,C 是O ⊙上一点,OD BC ⊥于点D ,过点C 作O ⊙的切线,交OD 的延长线于点E ,连结BE . ( 1)求证:BE 与O ⊙相切;( 2)连结AD 并延长交BE 于点F ,若9OB =,2sin 3ABC ∠=,求BF 的长.21.近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.请根据以上信息解答下列问题:( 1)补全条形统计图并在图中标明相应数据;( 2)按照2011年规划方案,预计2020年北京市轨道交通运营里程将达到多少千米? ( 3)要按时完成截至2015年的轨道交通规划任务,从2011到2015这4年中,平均每年需新增运营里程多少千米?22.操作与探究:( 1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13,再把所得数对应的点向右平移1个单位,得到点P 的对应点P '.点A B ,在数轴上,对线段AB 上的每个点进行上述操作后得到线段A B '',其中点A B ,的对应点分别为A B '',.如图1,若点A 表示的数是3-,则点A '表示的数北京市轨道交通已开通线路相关数据统计表(截至2010年底) 开通时间 开通线路 运营里程(千米) 1971 1号线 31 1984 2号线 23 2003 13号线 41 八通线 19 2007 5号线 28 20088号线 5 10号线 25 机场线 28 20094号线 28 2010房山线 22 大兴线22 亦庄线 23 昌平线 21 15号线20是 ;若点B '表示的数是2,则点B 表示的数是 ;已知线段AB 上的点E 经过上述操作后得到的对应点E '与点E 重合,则点E 表示的数是 ;( 2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每 个点的横. 纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位( 00m n >>,),得到正方形A B C D ''''及其内部的点,其中点A B ,的对应点分别为A B '',。

数学阅读理解型问题(专题4)

阅读理解型问题(专题4)——合情推理【考点透视】阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题.在阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维.因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理, 【典型例题】例1.已知正数a 和b ,有下列命题:(1)a +b =2,ab ≤1; (2)a +b =3,ab ≤23; (3)a +b =6,ab ≤3.根据以上三个命题所提供的规律猜想:若a +b =9,ab ≤ .(2000年北京市东城区中考试题)分析:观察(1)、(2)、(3)中的数字规律:不等号右边的数都是等号右边的数的21,由此可以作出猜想.解:ab ≤29. 说明:本题要求直接通过不完全归纳,总结规律,猜想结论. 例2.例2.(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”.①322322=+( );②833833=+( ); ③15441544=+( ); ④24552455=+( ). (2)你判断完以上各题之后,发现了什么规律?请用含有n 的式子将规律表示出来,并注明n 的取值范围: .图4—1AD nB CD 1 D 2D 3E 1 E 2 E 3 E n 图4—2(3)请用数学知识说明你所写式子的正确性.(2000年江苏省常州市中考试题)分析:判断式子①、②、③、④内在的规律时可以发现:①中3=2 2-1;②中8=3 2-1;③中15=4 2-1;④中24=5 2-1.这样就可以统一用含n 的式子表示出来.解:(1)①√;②√;③√;④√.(2)12-+n n n =n 12-n n.其中n 为大于1的自然数. (3)12-+n n n =123-n n =122-⋅n n n =n 12-n n . 说明:本题虽然需要说明所写式子的正确性,但本题主要考查学生的合情推理能力,即用含有n 的式子将规律表示出来.例3.下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是S .按此规律推断,S 和n 的关系式是 .(2000年山西省中考试题)分析:由正三角形每条边的花盆数n 与花盆的总数S 之间的关系,可以看出S 总是比n 的3倍少3. 解:S =3n -3.说明:本题的答案不唯一,其它形式也可以. 例4. 如图4—2所示,在△ABC 中,BC =a ,若D 1、E 1分别是AB 、AC 的中点,则D 1E 1=a 21; 若D 2、E 2分别是D 1B 、E 1C 的中点,则D 2E 2=a a a 43)2(21=+; 若D 3、E 3分别是D 2B 、E 2C 的中点,则D 3E 3=a a a 87)43(21=+;…………若D n 、E n 分别是D 1-n B 、E 1-n C 的中点,则D n E n = (n ≥1,且n 为整数).(2001年山东省济南市中考试题)分析:因为12121=;2221243-=;3321287-=;……,所以D n E n 也可以用含数字2的式子来表示.解:D n E n =11212---n n (n ≥1,且n 为整数).说明:寻找数字规律,应把已给的数写成有规律的一组数.n =2,S =3 n =3,S =6 n =4,S =9例5.问题:你能很快算出19952吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方.任意一个个位数为5的自然数可写成10•n+5,即求(10•n+5)2的值(n为自然数).你试分析n=1,n=2,n=3,…,这些简单情况,从中探索规律,并归纳、猜想出结论(在下面空格内填上你的探索结果).(1)通过计算,探索规律:152=225可写成100×1(1+1)+25,252=625可写成100×2(2+1)+25,352=1225可写成100×3(3+1)+25,452=2025可写成100×4(4+1)+25,……752=5625可写成,852=7225可写成,……(2)从第(1)的结果,归纳、猜想得:(10n+5)2=.(3)根据上面的归纳、猜想,请算出:19952=.(1999年福建省三明市中考试题)分析:在对这些式子进行规律探索的时候,要找出哪些数是不变的,哪些数是随式子的序号变化而逐步变化的.然后就可以用n来表示这些逐步变化的数.解:(1)100×7(7+1)+25;100×8(8+1)+25.(2)100n2+100n+25100n(n+1)+25.(3) 100×199(199+1)+25=3980025.说明:本题不仅要求归纳猜想和探索规律,而且要运用归纳猜想得出的结论解决问题.例6.如图4—3,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P',使得OP·OP'=r 2 ,这种把点P变为点P'的变换叫做反演变换,点P与点P'叫做互为反演点.图4—3 图4—4(1) 如图4—4,⊙O 内外各一点A 和B ,它们的反演点分别为A '和B '.求证:∠A '=∠B ; (2) 如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线l 与⊙O 相交,那么它关于⊙O 的反演图形是( ). (A)一个圆 (B)一条直线 (C)一条线段 (D)两条射线 ②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .(2001年江苏省南京市中考试题)分析:求解本题首先要理解“反演变换”的意义,并理解圆内的点的反演点在圆外,圆上的点的反演点在圆上,圆外的点的反演点在圆内;其次,第(2)题的第①小题,由于直线与圆的交点的反演点是它本身,因此只要在该直线的圆内、圆外部分各取几点,画出反演点,便可推测该直线的反演图形.另外,第(2)题的第②小题,由于直线与圆的切点的反演点是它本身,因此只要在该直线上取几点,画出反演点,便可推测该直线的反演图形.(1)证明:∵A 、B 的反演点分别是A’、B’,∴OA ·OA’=r 2,OB ·OB’=r 2. ∴OA ·OA’=OB ·OB’,即''OA OBOB OA . ∵∠O =∠O ,∴△ABO ∽△B’A’O . ∴∠A’=∠B .. (2)解:①A .②圆;内切.说明:本题主要考查学生通过观察、分析,从特殊的点的研究归纳、推测图形形状的合情推理能力.另外,还可以研究下列问题:如果直线⊙O’与⊙O 相切,那么它关于⊙O 的反演图形是什么?该图形与圆O 的位置关系是是什么?例7.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图4—5中的三角形被一个圆所覆盖,图4—6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (2)边长为1cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (3)长为2cm ,宽为1cm 的矩形被两个半径为r 的圆所覆盖,r 的最小值是 cm , 这两个圆的圆心距是 cm.(2003年江苏省南京市中考试题)图4—5图4—6分析:本题首先要理解图形被圆所覆盖的定义,其次,可以推测正方形、等边三角形被一个半径为r 的圆所覆盖,r 取最小值时,显然这个圆就是正方形、等边三角形的外接圆.而第(3)题可把长为2cm ,宽为1cm 的矩形分割成两个边长为1 cm 的正方形,根据第(1)题,不难得到结论.解:(1)22; (2)33; (3)22,1. 说明:本题的合情推理是建立在空间想象的基础上,并把问题转化为多边形的外接圆问题.另外,还可以研究下列问题:1.如果边长为1cm ,有一个锐角是60°的菱形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?2.如果上低和腰长都是1cm ,下低长是2cm 的梯形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?【习题4】1.观察下列各式,你会发现什么规律?3×5=15,而15=42-1; 5×7=35,而35=62-1;11×13=143,而143=122-1; ……请你猜想到的规律用只含一个字母的式子表示出来: .(2000年山东省济南市中考试题)2.观察下列顺序排列的等式:9×0+1=1, 9×1+2=11, 9×2+3=21, 9×3+4=31, 9×4+5=41, ……猜想:第n 个等式(n 为正整数)应为 .(2003年北京市中考试题)3.观察下列各式: 1×3=12+2×1, 2×4=22+2×2, 3×5=32+2×3,……请你将猜想到的规律用自然数n (n ≥1)表示出来: .(2003年福建省福州市中考试题)4.观察以下等式:1×2=31×1×2×3;1×2+2×3=31×2×3×4;1×2+2×3+3×4=31×3×4×5;1×2+2×3+3×4+4×5=31×4×5×6;……根据以上规律,请你猜测:1×2+2×3+3×4+4×5+…+n ×(n +1)= .(2001年山东省威海市中考试题)5.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 …… …… 28 26根据上面的排列规律,则2000应在( ).A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列(2001年湖北省荆州市中考试题)6.细心观察图形4—7,认真分析各式,然后解答问题. 21,21)1(12==+S ; 22,31)2(22==+S ; 23,41)3(32==+S ; ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 1 2+S 2 2+S 3 2+…+S 10 2的值.(2003年山东省烟台市中考试题)7.(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB |.当A 、B 两点中有一点在原点时,不妨设点A 在原点, 如图4—8,|AB |=|OB |=|b |=|a -b |; 当A 、B 两点都不在原点时,①如图4—9,当点A 、B 都在原点右边时,则 |AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |; ②如图4—10,当点A 、B 都在原点左边时,则O (A ) B图4—8O B A图4—9O A B 图4—10O A 2 A 4A 1 …1 A 5S 3 S 5 S 2S 1 S 41 1 1A 6 A 3…图4—7|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |;③如图4—11,当点A 、B 在原点的两边时,则 |AB |=|OA |+|OB |=|a |+|b |=a +(-b )=|a -b |. 综上,数轴上A 、B 两点之间的距离|AB |=|a -b |.(2)回答相应问题:①数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 . ②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 . ③当代数式|x +1|+|x -2|取最小值时,x 相应的取值范围是 .(2002年江苏省南京市中考试题)8.如图4—12,在正方形ABCD 中,E 是AD 的中点,F 是 BA 延长线上一点, AF =21AB . (1)求证:△ABE ≌△ADF . (2)阅读下面材料:如图4—13,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置; 如图4—14,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置; 如图4—15,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置.象这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换. (3)回答下列问题:①在图4—12中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到 △ADF 的位置?答: . ②指出图4—12中线段BE 与DF 之间的关系.答: .(2000年江苏省南京市中考试题)9.在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .某学生研究这一问题时,发现了如下事实.EDCBADCBAEDCA图4—13 图4—14 图4—15FABC D E图4—12OA B a 图4—11图4—16E A B C O D图4—17 B C A D EOB C A 图4—18 D E O C A 图4—19 D F EO①当11121+==AC AE 时,有21232+==AD AO (如图4-16); ②当21131+==AC AE 时,有22242+==AD AO (如图4-17); ③当31141+==AC AE 时,有32252+==AD AO (如图4-18). 在图4-19中,当n AC AE +=11时,参照上述研究结论,请你猜想用n 表示ADAO的一般结论,并给出证明(其中n 是正整数).(2001年河北省中考试题)10.某厂要制造能装250毫升(1毫升=1厘米3 )饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部的厚度都是0.02厘米,顶部厚度是底部厚度的3倍,这是为了防止“呯”的一声打开易拉罐时把整个顶盖撕下来.设一个底面半径是x 厘米的易拉罐的用铝量是y 厘米3. (1)利用用铝量=底圆面积×底部厚度+顶圆面积×顶部厚度+侧面积×侧壁厚度)求y 与x 之间的函数关系式;(2②根据上表推测:要使用铝量y (厘米)的值尽可能小,底面半径x (厘米)的值所在范围是( ).A .1.6≤x ≤2.4B .2.4<x <3.2C .3.2≤x ≤4(2002年江苏省南京市中考试题)11.如图20,正方形ABCD 和正方形EFGH 对角线BD 、FH 都在直线l 上.O 1、O 2 分别是正方形的中心,O 1D =2,O 2F =1,线段O 1O 2的长叫做两个正方形的中心距....当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.(1)当中心O 2在直线l 上平移到两个正方形只有一个公共点时,中心距O 1O 2 = . (2)随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程 ).(2003年江苏省徐州市中考试题)图4—20【习题4】1.解:(2n -1)(2n +1)=(2n )2-1. 2.解:9(n -1)+n =10(n -1)+1. 3.解: n (n +2)=n 2 +2n .4.解:1×2+2×3+3×4+4×5+…+n ×(n +1)=31×n ×(n +1)×(n +2).5.解:选C .6.解:(1)2,11)(2nS n n n =+=+. (2)∵OA 1=1,OA 2=2,OA 3=3,…, ∴OA 10=10.(3)S 1 2+S 2 2+S 3 2+…+S 10 2=2)21(+2)22(+2)23(+…+2)210(=41(1+2+3+…+10) =455. 7.解:(1)3,3,4;(2)∣x +1∣,-3或1; (3)-1≤x ≤2. 8.解:(1)证明:在正方形ABCD 中, ∵ AB=AD ,AD ⊥AB , ∴∠BAE =∠DAF =90°.∵AE =21AD ,AF =21AB , ∴AE =AF .∴△ABE ≌△ADF .(3)①答:△ABE 绕点A 逆时针旋转90度到△ADF 的位置. ②答:BE =DF ,且BE ⊥DF .9.解:根据题意,可以猜想:当n AC AE +=11时,有n AD AO +=22成立. 证明:过D 作DF ∥BE 交AC 于点F .∵D 是BC 的中点, ∴F 是EC 的中点. ∵n AC AE +=11, ∴n EC AE 1=. ∴nEF AE 2=.∴nAF AE +=22. ∵DF ∥BE , ∴nAF AE AD AO +==22. 10.解:(1)解:222250202.0302.0xx x x y ππππ⋅+⋅⋅+⋅=·0.02 =xx 102522+π. (2)B .11.解:.(1)2,1. (2)3.(3)①当1<O 1O 2<3时,两个正方形有2个公共点;②当O 1O 2=1时,两个正方形有无数个公共点;③当O 1O 2 <1,或O 1O 2>3时,两个正方形没有公共点.。

第十三讲 从勾股定理谈起(含答案)-

第十三讲 从勾股定理谈起勾股定理揭示了直角三角形三边之间的关系,大约在公元前1100多年前,商高已经证明了普通意义下的勾股定理,在国外把勾股定理称为“毕达哥拉斯定理”.勾股定理是平面几何中一个重要定理,其广泛的应用体现在:勾股定理是现阶段线段计算、证明线段平方关系的主要方法,运用勾股定理的逆定理,通过计算也是证明两直线垂直位置关系的一种有效手段.直角三角形是一类特殊三角形,有着丰富的性质:两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用.30例题求解【例1】如图,以等腰直角三角形ABC 的斜边AB 为边向内作等边△ABD ,连结DC ,以DC 为边作等边△DCE ,B 、E 在CD 的同侧,若AB=2,则BE= .(2001年重庆市中考题)思路点拨 因BE 不是直角三角形的边,故不能用勾股定理直接计算,需找出与BE 相等的线段转化问题.注 千百年来,勾股定理的证明吸引着数学爱好者,目前有400多种证法,许多证法的共同特点是通过弦图的割补、借助面积加以证明,美国第20任总统加菲尔德(1831—1881)曾给出一个简单证法.勾股定理的发现是各族人民早期文明的特征,有人建议,将来与“外星人”交往,可以把勾股定理转化为光电讯号,传向异域,他们一定懂得勾股定理.现已确定的2002年8月在北京举行的国际数学家大会的会标来源于弦图的图案.BCDA【例2】 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么(a+b)2的值为( )A .13B .19C .25D .169 (2003年山东省中考题)思路点拨 利用勾股定理、面积关系建立a 、b 的方程组.【例3】 如图,P 为△ABC 边BC 上的一点,且PC =2PB , 已知∠ABC =45°,∠APC =60°,求∠ACB 的度数. (“祖冲之杯”邀请赛试题)思路点拨 不可能简单地由角的关系推出∠ACB 的度数,解本例的关键是由条件构造出含30°角的直角三角形.B CAPBCDA【例4】如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB=c ,CD=h .求证:(1)222111hb a =+;(2) h c b a +<+ ;(3) 以b a +、h 、h c +为边的三角形,是直角三角形.思路点拨 (1)只需证明1)11(222=+b a h ,从左边推导到右边;(2)证明(22)()(h c b a +<+;(3)证明222)()(h c h h a +=++.在证明过程中,注意面积关系式ch ab =的应用.【例5】 一个直角三角形的边长都是整数,它的面积和周长的数值相等,这样的直角三角形是否存在?若存在,确定它三边的长,若不存在,说明理由. (2003年北京市竞赛题)思路点拨 假设存在符合条件的直角三角形,它的三边长为a 、b 、c ,其中c 为斜边,则⎪⎩⎪⎨⎧=++=+2222ab c b a c b a ,于是将存在性问题的讨论转化为求方程组的解. 注 当勾股定理不能直接运用时,常需要通过等线段的代换、作辅助垂线等途径,为勾股定理的运用创造必要的条件,有时又需要由线段的数量关系去判断线段的位置关系,这就需要熟悉一些常用的勾股数组.从代数角度,考察方程222z y x =+的正整数解,古代中国人发现了“勾三股,四弦五”,古希腊人找到了这个方程的全部整数解(用代数式表示的勾股数组).17世纪,法国数学家费尔马提出猜想:当n ≥3时,方程n n n z y x =+无正整数解. 1994年,曼国普林斯顿大学堆尔斯教授历尽艰辛证明了这个猜想,被誉为20世纪最伟大的成果.一般地,在有等边三角形、正方形的条件下,可将图形旋转60°或90°,旋转过程中角度、线段的长度保持不变,在新的位置上分散的条件相对集中,以便挖掘隐含条件,探求解题思路.学历训练1.如图,AD 是△ABC 的中线,∠ADC=45°,把△ACD 沿AD 对折,点C 落在点C ′的位置,则BC ′与BC 之间的数量关系是 .(2001年山西省中考题)BCDAC 'BCDAPB CDA(第1题) (第2题) (第3题)2.如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP'重合,若AP =3,则PP ′的长等于 .3.如图,已知AB=13,BC=14,AC=15,AD ⊥BC 于D ,则AD= . (2001年武汉市选拔赛试题)4.如图,四边形ABCD 中,AB =3cm ,BC=4cm ,CD=12㎝,DA=13cm ,且∠ABC=90°,则四边形ABCD 的面积是 cm 2.BCDABCDA(第4题) (第5题) (第7题)5.如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离( )A .等于1米B .大于l 米C .小于l 米D .不确定. (2002年宁波市中考题) 6.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30°,那么这个三角形的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定7.在四边形ABCD 中,∠A=60°,∠B=∠D =90°,BC=2,CD=3,则AB=( ) A .4 B .5 C .23 D .338 8.在由单位正方形组成的网格图中标出了AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,CD ,EFC .AB ,CD ,GH D .AB ,EF ,GH(2003年北京市竞赛题)BCD A GHF E(第8题) (第9题)9.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)使三角形的三边长分别为3,22,5;(2)使三角形为钝角三角形且面积为4. (2002年吉林省中考题)10.如图,在△ABC 中,AB=AC ,∠A=120°,MN 垂直平分AB ,求证:CM=2BM . (2002年南道市中考题)BCANM11.如图,在Rt △ABC 中,∠A=90°,D 为斜边BC 中点,DE ⊥DF ,求证:222CF BE EF +=.BCDAFE12.如图,在△ABC 中,AB=5,AC=13,边BC 上的中线AD=6,则BC 的长为 .(2002年湖北省预赛试题)BCDAB CAP1997(第12题) (第13题) (第14题)13.如图,设P 是等边△ABC 内的一点,PA=3,PB=4,PC=5,则∠APB 的度数是 . 14.如图,一个直角三角形的三边长均为正整数,已知它的一条直角边的长恰是1997,那么另一条直角边的长为 .15.若△ABC 的三边a 、b 、c 满足条件:c b a c b a 262410338222++=+++,则这个三角形最长边上的高为 .BCDAGFE(第17题) (第19题)16.在锐角△ABC 中,已知某两边a=1,b=3,那么第三边的变化范围是( )A .2<c<4B .2< c ≤3C . 2< c <108< c <10。

2003年北京中考数学(含答案)

五.(本题满分6分)
23.列方程或方程组解应用题:
在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:
甲同学说:“二环路车流量为每小时10000辆”;
乙同学说:“四环路比三环路车流量每小时多2000辆”;
10.如果圆柱的底面半径为4cm,母线长为5cm,那么它的侧面积等于
(A) 20πcm2(B) 40πcm2(C) 20 cm2(D) 4 0 cm2
11.如果关于x的一元二次方程kx2-6x+9=0有两个不相等的实数根,那么k的取值范围是
(A) k<1(B) k≠0 (C) k<1且k≠0 (D) k>1
(A) 2 (B) 3 (C) 4 (D)5
14.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h(米)随时间t(天)变化的是
二、填空题(共4个小题,每小题4分,共16分)
15.在函数y= 中,自变量x的取值范围是___________.
(1)求证:
(2)求 的余弦值;
(3)如果BD=10,求 的面积。
解法一:
(1)证明: 平分
DE是半圆C的直径
2分
(2)解:连结DM
是半圆C的直径
可设 ,由勾股定理,得DE=5x
由切割线定理的推论,得
4分
在 中
5分
(3)解:过A点作 于N


在 中
解得 7分
8分
解法二:
(1)证明:同解法一(1)
(2)解:过A点作 于N

北京市2003年中考试卷

北京市2003年中考试卷一、选择题(共14个小题,每小题4分,共56分.在每个小题给出的四个备选答案中,只有一个是符合题目要求的) 1.-5的绝对值是( ). A .5 B .51 C .51- D .-52.计算23-的结果是( ).A .-9B .-6C .91-D .91 3.计算43a a⋅的结果是().A .12a B .a C .7a D .32a4.2002年我国发现首个世界级大气田,储量达6000亿立方米,6000亿立方米用科学记数法表示为( ). A .2106⨯亿立方米 B .3106⨯亿立方米 C .4106⨯亿立方米 D .4100.6⨯亿立方米 5.下列图形中,不是中心对称图形的是( ).A .菱形B .矩形C .正方形D .等边三角形6.如果两圆的半径分别为3 cm 和5 cm ,圆心距为10 cm ,那么这两个圆的公切线共有( ).A .1条B .2条C .3条D .4条7.如果反比例函数x ky =的图象经过点P (-2,3),那么k 的值是( ). A .-6 B .23- C .32- D .68.在△ABC 中,∠C =90°.如果 125tan =A ,那么sin B 的值等于( ).A .135B .1312C . 125D .5129.如图,CA 为⊙O 的切线,切点为A ,点B 在⊙O 上.如果∠CAB =55°,那么∠AOB等于( ).A .55°B .90°C .110°D .120°10.如果圆柱的底面半径为4 cm ,母线长为5 cm ,那么它的侧面积等于( ). A .20π2cm B .40π2cm C .20 2cm D .402cm11.如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值范围是( ).A .k <1B .k ≠0C .k <1且k ≠0D .k >112.在抗击“非典”时期的“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数的记录如下表:在李老师每天的答题个数所组成的这组数据中,众数和中位数依次是( ). A .68,55 B .55,68 C .68,57 D .55,5713.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E .如果AB =10,CD =8,那么AE 的长为( ).A .2B .3C .4D .514.三峡工程在6月1日至6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间.假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是( ).二、填空题(共4个小题,每小题4分,共16分)15.在函数3+=x y 中,自变量x 的取值范围是________.16.如图,在等边三角形ABC 中,点D 、E 分别在AB 、AC 边上,且DE ∥B C .如果BC =8 cm ,AD ∶AB =1∶4,那么△ADE 的周长等于________ cm .17.如图,B 、C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是________米.18.观察下列顺序排列的等式: 9×0+1=1, 9×1+2=11, 9×2+3=21, 9×3+4=31, 9×4+5=41, ……猜想:第n 个等式(n 为正整数)应为________.三、(共3个小题,共14分) 19.(本小题满分4分)分解因式:9222-+-y xy x .20.(本小题满分4分) 计算:0)13(8121-+-+21.(本小题满分6分) 用换元法解方程0365322=-++-xx x x四、(本题满分5分)22.如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE =CF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结________.(2)猜想:________=________. (3)证明:五、(本题满分6分)23.列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下: 甲同学说:“二环路车流量为每小时10000辆.” 乙同学说:“四环路比三环路车流量每小时多2000辆.” 丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.” 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.六、(本题满分7分)24.已知:关于x 的方程0322=+-m mx x 的两个实数根是1x 、2x ,且16)(221=-x x .如果关于x 的另一个方程09622=-+-m mx x 的两个实数根都在1x 和2x 之间,求m 的值.七、(本题满分8分)25.已知:在ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B =∠CAE ,FE ∶FD =4∶3.(1)求证:AF =DF ; (2)求∠AED 的余弦值;(3)如果BD =10,求△ABC 的面积.八、(本题满分8分)26.已知:抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0).(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5∶2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案一、选择题(每小题4分,共56分)1.A 2.D 3.C 4.B 5.D 6.D 7.A 8.B 9.C 10.B 11.C 12.A 13.A 14.B二、填空题(每小题4分,共16分)15.x ≥-3 16.6 17.30 18.9(n -1)+n =10n -9(或9(n -1)+n =10(n-1)+1) 三、(共14分)19.解:9222-+-y xy x9)(2--=y x …………………………………………………………………2分 )3)(3(--+-=y x y x ………………………………………………………4分20.解:0)13(8121-+-+ 12212+--=………………………………………………………… …3分 =2-.…………………………………………………………………………4分21.解:设y x x =-32,…………………………………………………………………1分 则原方程化为065=++yy .………………………………………………………2分∴ 0652=++y y .解得21=-y ,32=-y ……………………………………………………………3分 当y =-2时,232=--x x . ∴ 0232=+-x x .解得11=x ,22=x .…………………………………………………………………4分 当y =-3时,332=--x x . ∴ 0332=+-x x∵ △=9-12<0,∴ 此方程无实数根.………………………………………………………………5分经检验,11=x ,22=x 都是原方程的根.…………………………………………6分 ∴ 原方程的根为11=x ,22=x . 四、(本题满分5分)22.答案一:(1)BF ……………………………………………………………………1分 (2)BF ,DE ……………………………………………………………………………2分(3)证法一:∵ 四边形ABCD 为平行四边形, ∴ AD =BC ,AD ∥BC .∴ ∠DAE =∠BCF .……………………………………………………………………3分 在△BCF 和△DAE 中,⎪⎩⎪⎨⎧=∠∠,,,AE CF DAE BCF AD CB ==∴ △BCF ≌△DAE .……………………………………………4分∴ BF =DE .……………………………………………………………………………5分证法二:连结DB 、DF ,设DB 、AC 交于点O . ∵ 四边形ABCD 为平行四边形, ∴ AO =OC ,DO =OB .∵ AE =FC ,∴ AO -AE =OC -FC .∴ EO =OF .……………………………………………………………………………3分 ∴ 四边形EBFD 为平行四边形.………………………………………………………4分∴ BF =DE .……………………………………………………………………………5分答案二:(1)DF …………………………………………………………………………1分 (2)DF ,BE ……………………………………………………………………………2分 (3)证明:略(参照答案一给分). 五、(本题满分6分)23.解法一:设高峰时段三环路的车流量为每小时x 辆,…………………………1分 则高峰时段四环路的车流量为每小时(x +2000)辆.………………………………2分 根据题意,得3x -(x +2000)=2×10000.…………………………………………4分 解这个方程,得 x =11000. …………………………………………………………5分 x +2000=13000.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. …………………………………………………………………………………………………6分 解法二:设高峰时段三环路的车流量为每小时x 辆,四环路的车流量为每小时y 辆. …………………………………………………………………………………………………1分根据题意,得⎩⎨⎧⨯-.2000,1000023+==x y y x ……………………………………………………………………4分 解这个方程组,得 ⎩⎨⎧.13000,11000==y x ……………………………………………………………………………5分答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. …………………………………………………………………………………………………6分 六、(本题满分7分) 24.解:∵ 1x ,2x 是方程0322=+-m mx x ①的两个实数根, ∴ m x x 221=+,m x x 321=⋅.∵ 16)(221=-x x ,∴ 164)(21221=-+x x x x . ∴ 161242=-m m . 解得 11=-m ,42=m ………………………………………………………………3分 (ⅰ)当m =-1时,方程①为0322=-+x x .∴ 31=-x ,12=x . 方程09622=-+-m mx x ②为01522=-+x x . ∴ 51=-x ',32=x '. ∵ -5、3不在-3和1之间,∴ m =-1不合题意,舍去.…………………………………………………………5分 (ⅱ)当m =4时,方程①为01282=--x x .∴ 21=x ,62=x . 方程②为01582=+-x x .∴ 31=x ',52=x '. ∵ 2<3<5<6,即2211x x x x <<<'',∴ 方程②的两根都在方程①的两根之间.∵ m =4.………………………………………………………………………………7分 综合(ⅰ)(ⅱ),m =4.注:利用数形结合解此题正确的,参照上述评分标准给分. 七、(本题满分8分) 25.解法一:(1)证明:∵ AD 平分∠BAC , ∴ ∠BAD =∠DAC . ∵ ∠B =∠CAE ,∴ ∠BAD +∠B =∠DAC +∠CAE .∵ ∠ADE =∠BAD +∠B ,∴ ∠ADE =∠DAE . ∴ EA =ED .∵ DE 是半圆C 的直径,∴ ∠DFE =90°.∴ AF =DF .……………………………………………………………………………2分(2)解:连结DM .∵ DE 是半圆C 的直径,∴ ∠DME =90°. ∵ FE ∶FD =4∶3,∴ 可设FE =4x ,则FD =3x . 由勾股定理,得DE =5x .∴ AE =DE =5x ,AF =FD =3x .由切割线定理的推论,得AF ·AD =AM ·AE .∴ 3x (3x +3x )=AM ·5x .∴ x AM 518=. ∴ x x x AM AE ME 575185=-=-=. 在R t △DME 中,257557cos ===x xDE ME AED ∠.………………………………………………………5分(3)解:过A 点作AN ⊥BE 于N .由257cos =AED ∠,得2524sin =AED ∠. ∴ x AE AN 5242524==.在△CAE 和△ABE 中,∵ ∠CAE =∠B ,∠AEC =∠BEA , ∴ △CAE ∽△ABE .∴ AECEBE AE =. ∴ CE BE AE ⋅=2.∴ x x x 25)510()5(2⋅+=.解得x =2. ∴ 548524==x AN , 1522510=+=+⨯=DC BD BC . ∴ 72548152121===⨯⨯⋅∆AN BC S ABC .…………………………………………8分解法二:(1)证明:同解法一(1).(2)解:过A 点作AN ⊥BE 于N . 在R t △DFE 中,∵ FE ∶FD =4∶3,∴ 可设FE =4x ,则FD =3x . 由勾股定理,得DE =5x .∴ AE =DE =5x ,AF =FD =3x .∵ AN DE EF AD S ADE ⋅⋅∆2121==, ∴ AN DE EF AD ⋅⋅=.∴ AN x x x x ⋅⋅=54)33(+.∴ .524x AN = ∴ 由勾股定理,得x EN 57=. ∴ 257557cos ===x xAE EN AED ∠.…………………………………………………5分(3)解:在△CAE 和△ABE 中, ∴ ∠CAE =∠B ,∠AEC =∠BEA , ∴ △CAE ∽△ABE .∴AECEBE AE =. ∴ CE BE AE ⋅=2∴ x x x 25)510()5(2⋅+=. 解得x =2.∴ 548524==x AN , 1522510=+=+⨯=DC BD BC .∴ 72548152121===⨯⨯⋅∆AN BC S ABC .…………………………………………8分 八、(本题满分8分)26.解法一:(1)依题意,抛物线的对称轴为x =-2. ∵ 抛物线与x 轴的一个交点为A (-1,0),∴ 由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0). …………………………………………………………………………………………………2分(2)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0),∴ 0)1(4)1(2=+-+-t a a .∴ t =3a . ∴ a ax ax y 342++=. ∴ D (0,3a ).∴ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上, ∵ C (-4,3a ). ∴ AB =2,CD =4.∵ 梯形ABCD 的面积为9,∴ 9)(21=OD CD AB ⋅+. ∴ 93)42(21=+a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342---ax x y =…………………5分(3) 设点E 坐标为(0x ,0y ) 依题意,00<x ,00<y ,且2500=x y .∴ 0025x y =-.①设点E 在抛物线342++=x x y 上,∴ 340200++=x x y .解方程组⎪⎩⎪⎨⎧34,25020000++==-x x y x y 得 ⎩⎨⎧-;=,=15600y x ⎪⎪⎩⎪⎪⎨⎧'-'.=,=452100y x ∵ 点E 与点A 在对称轴x =-2的同侧,∴ 点E 坐标为(21-,45).设在抛物线的对称轴x =-2上存在一点P ,使△APE 的周长最小.∵ AE 长为定值,∴ 要使△APE 的周长最小,只须P A +PE 最小.∴ 点A 关于对称轴x =-2的对称点是B (-3,0), ∴ 由几何知识可知,P 是直线BE 与对称轴x =-2的交点.设过点E 、B 的直线的解析式为n mx y +=,∴ ⎪⎩⎪⎨⎧-.03,4521=+-=+n m n m 解得⎪⎪⎩⎪⎪⎨⎧.23,21==n m ∴ 直线BE 的解析式为2321+=x y . ∴ 把x =-2代入上式,得21=y . ∴ 点P 坐标为(-2,21). ②设点E 在抛物线342---x x y =上,∴ 340200---x x y =. 解方程组⎪⎩⎪⎨⎧---.34,25020000x x y x y ==- 消去0y ,得03x 23x 020=++. ∴ △<0∴ 此方程无实数根.综上,在抛物线的对称轴上存在点P (-2,21),使△APE 的周长最小.…………8分解法二:(1)∵ 抛物线t ax ax y ++=42与x 轴的一个交点为A (-1,0), ∴ 0)1(4)1(2=+-+-t a a .∴ t =3a . ∴ a ax ax y 342++=.令 y =0,即0342=++a ax ax .解得 11=-x ,32=-x .∴ 抛物线与x 轴的另一个交点B 的坐标为(-3,0). 2分(2)由a ax ax y 342++=,得D (0,3a ). ∵ 梯形ABCD 中,AB ∥CD ,且点C 在抛物线a ax ax y 342++=上,∴ C (-4,3a ).∴ AB =2,CD =4.∵ 梯形ABCD 的面积为9,∴ 9)(21=+OD CD AB . 解得OD =3.∴ 33=a .∴ a ±1.∴ 所求抛物线的解析式为342++=x x y 或342--=-x x y .…………………5分(3)同解法一得,P 是直线BE 与对称轴x =-2的交点.∴ 如图,过点E 作EQ ⊥x 轴于点Q .设对称轴与x 轴的交点为F .由PF ∥EQ ,可得EQPF BQ BF =. ∴45251PF =.∴ 21=PF . ∴ 点P 坐标为(-2,21). 以下同解法一.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市中考数学试题答案第I 卷 (机读卷 共56分)一. 选择题(共14个小题,每小题4分,共56分) 1. A 2. D 3. C 4. B 5. D 6. D 7. A 8. B9. C10. B 11. C 12. A 13. A 14. B第II 卷(非机读卷 共64分)二. 填空题(共4个小题,每小题4分,共16分) 15. x ≥-3 16. 6 17. 3018. 91109()n n n -+=-(或911011()()n n n -+=-+)三. (共3个小题,共14分) 19. (本小题满分4分) 分解因式:x xy y 2229-+- 解:x xy y 2229-+-=--()x y 29 2分=-+--()()x y x y 33 4分 20. (本小题满分4分) 计算:1218310+-+-()解:1218310+-+-()=--+212213分 =-24分21. (本小题满分6分)用换元法解方程x x x x2235630-++-= 解:设x x y 23-=,1分 则原方程化为y y++=562分∴++=y y 2560解得y y 1223=-=-,3分当y =-2时,x x 232-=- ∴-+=x x 2320 解得x x 1212==,4分当y =-3时,x x 233-=- ∴-+=x x 2330 ∆=-<9120, ∴此方程无实数根。

5分经检验,x x 1212==,都是原方程的根6分∴原方程的根为x x 1212==,四. (本题满分5分)22. 如图,在平行四边形ABCD 中, 点E 、F 在对角线AC 上,且AE=CF 。

请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可)。

(1)连结____________。

(2)猜想___________=___________。

(3)证明:答案一:(1)连结 BF 1分 (2)猜想: BF = DE 2分 (3)证法一: 四边形ABCD 为平行四边形∴=∴∠=∠AD BC AD BC DAE BCF,//3分在∆ BCF 和∆DAE 中,CB AD BCF DAE CF AE =∠=∠=⎧⎨⎪⎩⎪∴≅∆∆B CF DA E 4分 ∴=BF DE 5分 证法二:连结DB 、DF ,设DB 、AC 交于点O四边形ABCD 为平行四边形∴===∴-=-AO OC DO OB AE FC AO AE OC FC,∴=EO OF 3分 ∴四边形EBFD 为平行四边形 4分 ∴=BF DE 5分 答案二:(1)连结 DF 1分 (2)猜想: DF = BE 2分 (3)证明:略(参照答案一给分)五. (本题满分6分)23. 列方程或方程组解应用题:在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下: 甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”; 丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”。

请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少。

解法一:设高峰时段三环路的车流量每小时x 辆, 1分 则高峰时段四环路的车流量为每小时()x +2000辆。

2分 根据题意,得32000210000x x -+=⨯()4分解这个方程,得x =11000 5分 x +=200013000答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。

6分解法二: 设高峰时段三环路的车流量为每小时x 辆,四环路的车流量为每小时y 辆。

1分 根据题意,得32100002000x y y x -=⨯=+⎧⎨⎩,4分解这个方程组,得x y ==⎧⎨⎩1100013000,5分答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。

6分六. (本题满分7分)24. 已知:关于x 的方程x mx m 2230-+=的两个实数根是x x 12,,且()x x 12216-=。

如果关于x 的另一个方程x mx m 22690-+-=的两个实数根都在x 1和x 2之间,求m 的值。

解: x x 12,是方程x mx m 2230-+=(1)的两个实数根 ∴+=⋅=x x m x x m 121223,()()x x x x x x m m 1221221221641641216-=∴+-=∴-=解得m m 1214=-=,3分(i )当m =-1时, 方程(1)为x x 2230+-= ∴=-=x x 1231,方程x mx m 22690-+-=(2)为x x 22150+-= ∴=-=x x 1253',' -53、不在-3和1之间 ∴=-m 1不合题意,舍去。

5分(ii ) 当m =4时,方程(1)为x x 28120-+=∴==-+=x x x x 1222628150,方程()为∴==x x 1235','2356<<<,即x x x x 1122<<<''∴方程(2)的两根都在方程(1)的两根之间。

∴=m 4 7分 综合(i )(ii ),m =4注:利用数形结合解此题正确的,参照上述评分标准给分。

七. (本题满分8分)25. 已知:在∆ABC 中,AD 为∠BAC 的平分线,以C 为圆心,CD 为半径的半圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠=∠=B CAE FE FD ,::43。

(1)求证:AF DF = (2)求∠AED 的余弦值;(3)如果BD=10,求∆ABC 的面积。

解法一:(1)证明: AD 平分∠BAC∴∠=∠∠=∠∴∠+∠=∠+∠BAD DAC B CAE BAD B DAC CAE∠=∠+∠∴∠=∠∴=A D E BAD B ADE DAE EA EDDE 是半圆C 的直径 ∴∠=︒DFE 90 ∴=AF DF 2分(2)解:连结DMDE 是半圆C 的直径∴∠=︒=D M E FE FD 9043::∴可设FE x FD x ==43,则,由勾股定理,得DE=5x ∴====AE DE x AF FD x 53,由切割线定理的推论,得AF AD AM AE ⋅=⋅∴+=⋅∴=3335185x x x AM xAM x()∴=-=-=ME AE AM x x x 5185754分在Rt D M E ∆中cos ∠===AED ME DE xx 7557255分(3)解:过A 点作AN BE ⊥于N由cos ∠=AED 725得sin ∠=AED 2425∴==AN AE x 2425245在∆∆CAE ABE 的中∠=∠∠=∠∴∴=∴=⋅∴=+⋅C A E B AEC BEA CAE ABE AE BE CEAEAE BE CEx x x ,~()()∆∆22510552解得x =27分∴===+=+⨯=AN x BC BD DC 2454851052215∴=⋅=⨯⨯=S BC AN ABC ∆121215485728分解法二:(1)证明:同解法一(1) (2)解:过A 点作AN BE ⊥于N在Rt DFE ∆中, FE FD ::=43∴可设FE=4x ,则FD=3x 由勾股定理,得DE x =5∴=====⋅=⋅∴⋅=⋅∴+⋅=⋅∴=AE DE x AF FD x S AD EF DE AN AD EF DE AN x x x x ANAN x ADE 5312123345245,() ∆∴由勾股定理,得EN x =75∴∠===cos AED EN AE xx 7557255分(3)解:在∆∆A CAE BE 和中∠=∠∠=∠∴∴=C A E B AEC BEACAE ABEAE BE CEAE,~∆∆∴=⋅∴=+⋅AE BE CEx x x 22510552()() 解得x =2 ∴==AN x 245485BC BD DC =+=+⨯=1052215 ∴=⋅=⨯⨯=S BC AN ABC∆12121548572 8分八. (本题满分8分)26. 已知:抛物线y ax ax t =++24与x 轴的一个交点为A (-1,0)(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴,y 轴的距离 的比为5:2的 点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问 :在抛物线的对称轴上是否存在点P , 使∆APE 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由。

解法一:(1)依题意, 抛物线的对称轴为x =-2 抛物线与x 轴的一个交点为A (-1,0)∴由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0) 2分 (2) 抛物线y ax ax t =++24与x 轴的一个交点为A (-1,0)∴-+-+=∴=∴=++∴a a t t ay ax ax a D a ()()(,)14103430322梯形ABCD 中,AB//CD且点C 在抛物线y ax ax a =++243上,∴-∴==C a AB CD (,),4324梯形ABCD 的面积为9,∴+⋅=∴+=∴=±1291224391()()||'AB CD OD a a∴所求抛物线的解析式为y x x =++243或y x x =---2435分(3)设点E 坐标为(x y 00,),依题意,x y 0000<>,,且||||y x 0052= ∴=-y x 0052(1)设点E 在抛物线y x x =++243上, ∴=++y x x 002043解方程组y x y x x 0000205243=-=++⎧⎨⎪⎩⎪得x y x y 00006151254=-=⎧⎨⎩=-=⎧⎨⎪⎪⎩⎪⎪;''点E 与点A 在对称轴x =-2的同侧∴点E 坐标为(-1254,)设在抛物线的对称轴x =-2上存在一点P ,使∆APE 的周长最小。

AE 长为定值∴要使∆APE 的周长最小,只须PA PE +最小。

点A 关于对称轴x =-2的对称点是B (-30,)∴由几何知识可知,P 是直线BE 与对称轴x =-2的交点。

相关文档
最新文档