大学物理 第3章刚体力学基础(完全版)

合集下载

大学物理第三章刚体力学

大学物理第三章刚体力学

三维
dm dm dV :质量体密度
(2) 决定刚体转动惯量的因素
① 与刚体的总质量m有关
② 与转轴的位置有关
例题2. 求长为L、质量为m的均匀细棒AB的转动惯量.
(1) 对于通过棒的一端与棒垂直的轴;
(2) 对于通过棒的中心与棒垂直的轴.
J r 2dm
解:设 为单位长度的质量, m L ,则: dm dx

(1)
受力分析; 对于质点:牛顿第二定律
F
ma

要 (2) 列方程: 对于刚体:定轴转动定律 M J

线量与角量的关系:at R
(3) 解方程.
单选题 25分
4. 一轻绳跨过一轴承光滑的定滑轮,滑轮视为圆盘,绳的两端
分别悬有质量为m1和m2的物体,且m1<m2. 设滑轮的质量为M, 半径为R,绳与轮之间无相对滑动,则滑轮两侧绳中张力的大小
(1)求角加速度和从制动开始到停止转动飞轮转过的圈数;
(2)求从制动开始后 t =10s 时飞轮的角速度;
(3)设飞轮半径为0.5m,求在t =10s时飞轮边缘上一点的线速度和切
向及法向加速度.
解:(1)
已知0
2
1800 60
t 0 t
60 rad/s;t 20s时,t t 0 3 rad/s2
A 一定为零
B 不一定为零 C 一定不为零
提交
F
F
Fi 0 , M i 0
F
F
Fi 0 , M i 0
结论: 一个刚体所受合外力为零,其所受合外力矩不一定为零
3.2.2 定轴转动定律 转动惯量
1. 定轴转动定律
取刚上切a体式向it 内两:riF任F端iit 一同f质f乘iitF元以it irm,mif再iitiaa它i求it 所和m受ir:i 合 外力为Fo iz,ri f内i mf力iit 为Fit fFii:r

大学物理教程课件讲义刚体力学基础

大学物理教程课件讲义刚体力学基础
图3.13 例3.4图
3.2 刚体的定轴转动定律
例3.5 一根长为l,质 量为m的均匀细杆,可绕通过 其一端且与杆垂直的光滑水 平轴转动,如图3.14所示, 将杆由水平位置静止释放, 求它下摆到角度为θ 时
的角加速度和角速度。
图3.14 例3.5图
3.2 刚体的定轴转动定律
3.3 刚体定轴转动的角动量定理 角动量守恒定律
3.4 刚体定轴转动的动能定理
3.4.5
1.刚体定轴转动的功能原理
如果刚体在定轴转动中除受到外力矩外,还受到 保守力矩的作用,而在刚体的定轴转动中,涉及的势 能主要是重力势能。所以,保守力只考虑重力,当系 统取地球和刚体时,式(3-22) 可写为
3.4 刚体定轴转动的动能定理
3.4 刚体定轴转动的动能定理
3.2 刚体的定轴转动定律
图3.12 平行轴定理
3.2 刚体的定轴转动定律
以上例子是根据转动惯量的定义式(3-5)计算规则几 何形状的刚体的转动惯量,对于几何形状较复杂的刚体通 常要用实验测定。表3.1列出几种几何形状简单、规则、密 度均匀的物体对通过质心的不同转轴的转动惯量。
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
3.2.3 力对转轴的力矩
图3.9 转动定律
3.2 刚体的定轴转动定律
3.2 刚体的定轴转动定律
由转动定律的表达式M=Jβ可以看出,在相同的外力矩作 用下,刚体的转动惯量J越大,刚体所获得的角加速度β越小, 则刚体的转动状态不易改变;刚体的转动惯量J越小,刚体所获 得的角加速度β越大,刚体的转动状态容易发生变化。转动惯 量J是和质量m相对应的物理量,物体的质量m是质点的平动惯性 的量度,而刚体的转动惯量J是刚体转动惯性的量度。

第3章 刚体力学

第3章 刚体力学

说明 ( 1)
M J , 与 M 方向相同.
(2) 为瞬时关系. (3) 转动中 M J 与平动中 F ma 地位相同.
第三章 刚体力学
如果刚体所受合力为零,同时 合力矩为零, 好,现在我们可以问一个问题: Fi 0 , Mi 0 则刚体会做什么样的运动?
R
2
dm m R
R
r
dr
一质量为m、半径为R的均匀圆盘,求通过盘中心O并与 盘面垂直的轴的转动惯量。 解:设盘质量面密度为 ,在盘上取半径为r,宽为dr的圆环
m π R2
R 2 0
dm 2 π rdr
3
J r dm
R
0
1 2 π R mR 2πσr dr 2 2
v v0 at 2 x x0 v0t 1 at 2 2 2 v v0 2a( x x0 )
ω ω0 βt θ θ 0 ω 0 t 12 β t 2 ω 2 ω 02 2 β ( θ θ 0 )
第三章 刚体力学
z
重要
刚体定轴转动的特点 O
第三章 刚体力学
5. 角速度正负的判断
0
0
逆时钟转动
顺时钟转动
第三章 刚体力学 (2)角量和线量的关系
z

s r
v r
an r 2
O
at r

dv d(r ) at r dt dt
(3)角量与线量的公式比较
x
质点匀变速直线运动
刚体绕定轴作匀变速转动
平 动 刚体:外力作用下形状和大小都不发生变化的物体。 转 动 二、刚体的运动形式 [实例]

大学物理.第三章.刚体的转动PPT课件

大学物理.第三章.刚体的转动PPT课件

M ij
O
rj
d ri
i
j
Fji Fij
M ji
Mij M ji
第33页/共66页
例3-4 如图所示, 均匀细杆, 长为L,在平面内以角
速度ω绕端点转动,摩擦系数为μ 求M摩擦力。
ω
解: 质量线密度:
m L
质量元:
r dm dr
所受摩擦力为:
dF gdm gdr
第34页/共66页
例3-5 现有一圆盘在平面内以角速度ω转动,求 摩擦力产生的力矩(μ、m、R)。
ω
解:
dm ds rdrd
dF gdm grdrd
dM1
rdF
r2gdrd 第35页/共66页
要揭示转动惯量的物理意义,实际上是要找到一 个类似于牛顿定律的规律——转动定律。
二、转动定律 刚体可看成是由许多小质元组 成,在p点取一质元,
O
受力:外力 ,与 成 角
P
合内力 ,与 成 角
第36页/共66页
如图可将力分解为两个
力,只求那个垂直于轴
的力的力矩就可以了。 第39页/共66页
3)转动定律说明了I是物体转动惯性大小的量度。 因为:
即I越大的物体,保持原来转动状态的性质就 越强,转动惯性就越大;反之,I越小,越容 易改变状态,保持原有状态的能力越弱。或者 说转动惯性越小。 如一个外径和质量相同的实心圆 柱与空心圆筒,若 受力和力矩一 样,谁转动得快些呢?
当杆到达铅直位置时重力矩所作的功.
FN ZL
以杆为研究对象
受力: mg,FN
φ mg
重力矩: M
A mg 1
L
mg
1 2
L
cos

大学物理Ⅰ第三章 刚体力学

大学物理Ⅰ第三章 刚体力学

作 用点 P 的径矢 .
F 对转轴Z 的力 矩
M rF
M Frsin Fd
M
z
M
r
Od
F
P*
d -力臂
F
F
Fi 0 , Mi 0
F
F
Fi 0 , Mi 0
讨论 1)合力矩等于各分力矩的矢量和
M M1 M2 M3
2) 刚体内作用力和反作用力的力矩互相抵消
M ij
O
rj
0t
1 2
t 2
v2
v
2 0
2a(x
x0 )
2 02 2 ( 0 )
三 角量与线量的关系
d
dt
d d 2
dt d 2t
v r
a
an
r
a
v
a r an r 2
a
r
r2 n
例1 一飞轮半径为 0.2m、 转速为150r·min-1, 因 受制动而均匀减速,经 30 s 停止转动 . 试求:(1) 角加速度和在此时间内飞轮所转的圈数;(2)制动开 始后 t = 6 s 时飞轮的角速度;(3)t = 6 s 时飞轮边缘 上一点的线速度、切向加速度和法向加速度 .
M
dL
dt
t2 t1
Mdt
L2
L1
冲量矩
t2
M
dt
t1
质点的角动量定理:对同一参考点 O ,质点所受的冲量
矩等于质点角动量的增量.
3 质点的角动量守恒定律
M 0 , L 恒矢量
质点所受对参考点 O 的合力矩为零时,质点对该参考 点 O 的角动量为一恒矢量.
例5.12 P143
例5.13 P144

[理学]大学物理课件第3章-刚体

[理学]大学物理课件第3章-刚体

m 2mrdr dm 2 r dr 2 2 R R
2mgr 2 dr dM 2 R
M dM
r
0
2mgr dr 2 mgR 2 R 3
2
d M J dt
2 1 2 d mgR mR 3 2 dt
3R dt d 4 g
3R 0 dt 0 4 g d
A
c o
1 2 3g 3g 2 sin 0 2 2l 2l
3g l

B
0
例6. 一半径为R,质量为m的均匀圆盘平放在粗糙的 水平面上。若它的初速度为o,绕中o心旋转,问经 过多长时间圆盘才停止。(设摩擦系数为)

dM dF r dmg r
dr r o R
T m mg
例5.一质量为m,长为l 的均质细杆,转轴在o点,距 A端l/3。今使棒从静止开始由水平位置绕o点转动, 求:(1)水平位置的角速度和角加速度。(2)垂直 位置时的角速度和角加速度。
解:
J o J c md
2
2
1 2 l 1 2 J 0 ml m ml 12 6 9
( 1)
A
c o
B
o 0
M mgl 6 3g 2 J 0 ml 9 2l
(2)
d M J dt
l 1 2 d 1 2 d mg cos ml ml 6 9 dt 9 d
3g d cos d 2l


0
d

2
0
3g cos d 2l
定轴转动:
转轴固定不动的转动。
刚体的转动动能
I mi ri

第3章-刚体 大学物理课件


2020/10/29
例4. 质量为M =16 kg的实心滑轮,半径为R = 0.15 m。 一根细绳绕在滑轮上,一端挂一质量为m的物体。
求(1)由静止开始1秒钟后,物体下降的距离。(2)
绳子的张力。
解: (1) T
M
M
m
mg
m
2020/10/29
TR1MR2 a 2R
T
mgTma
T 1 Ma 2
m
NT
2
2
m2g
m2 g
a
T2
Ny
rom
Nx
mg T 1
T1
m1 a
列方程如下:
m 1g T1 m 1a
T2 m 2g m 2a
T1r
T2r
1 2
mr
2
a r
m1 g
可求解
解:在地面参考系中,选取m1 、 m2和滑轮m为研 究对象,分别运用牛顿定律和刚体定轴转动定律得。
2020/10/29
2020/10/29
(2) 由刚体的机械能守恒得:
mgl 1 J2
22
1 ml22
6
3g l
A
c
o
B
0
零势点
2020/10/29
例11. 长为 l 的均质细直杆OA,一端悬于O点铅直下
垂,如图所示。一单摆也悬于O点,摆线长也为l,摆
球质量为m。现将单摆拉到水平位置后由静止释放,
摆球在 A 处与直杆作完全弹性碰撞后恰好静止。试
转轴固定不动的转动。
2020/10/29
定轴转动的特点:
• 各质点都作圆周运动; • 各质点圆周运动的平面垂直于轴线,圆心
在轴线上; • 各质点的矢径在相同的时间内转过的角度

大学物理课件第3章-刚体

大学物理课件第3章-刚体
刚体力学是大学物理课程的重要组成部分。它涵盖了刚体的定义、运动学、 动力学、静力学、力学、弹性和应用等多个方面内容,为学习者提供了全面 的知识体系。
刚体的定义
刚体的概念
刚体是指具有固定形状和 大小,并且内部各点相对 位置保持不变的物体。
理想刚体的定义
理想刚体是指无限刚度、 无限强度、不变形且能够 保持自身形状和大小的物 体。
刚体的动力学
刚体的动量
刚体的动量是其质 量乘以速度,刚体 受到外力时动量会 发生变化。
刚体的角动量
刚体的角动量是其 惯性矩乘以角速度, 刚体绕固定轴旋转 时角动量会发生变 化。
刚体的动能
刚体的动能是其质 量乘以速度的平方, 与速度和质量有关。
刚体的动力学定 理
动力学定理描述了 刚体受力和加速度 之间的关系,F = ma。
实际刚体的特点
实际刚体在外力作用下会 发生微小的形变,但变形 较小,可以近似看作刚体。
刚体的运动学
1
刚体的运动状态
刚体可以既进行平动运动,也可以进行转动运动。
2
刚体的平动运动
刚体的平动运动包括直线运动和曲线运动,由质心位置和速度决定。
3
刚体的转动运动
刚体的转动运动包括绕固定轴的转动,由角位移和角速度决定。
刚体的静力学
1 刚体的平衡条件
刚体在平衡状态下,力 矩和力的合力为零。
2 刚体的平衡性质
刚体在平衡状态下,质 心位置不变,不会发生 任何运动。
3 刚体的平衡实例
如天平平衡ቤተ መጻሕፍቲ ባይዱ桥梁平衡 等实际应用中,刚体的 平衡性质起到重要作用。
刚体的力学
刚体的受力分析
通过力的分析,可以确定刚体 受力的大小、方向和作用点。

大学物理上第3章 刚体的定轴转动


z
(ω, β )
r fi
F 两边乘以r 两边乘以ri ,有: it ri + f it ri = ∆mi ait ri
对所有质元的同样的式子求和, 对所有质元的同样的式子求和,有:
fit
∆mi
Fit
r Fi
Fir
o
Fit ri + ∑ f it r i = ∑ ∆mi ait ri = β ∑ ( ∆mi ri 2 ) ∑
表示合外力矩,记作M ∑ F r 表示合外力矩,记作 表示内力矩之和, ∑ f r 表示内力矩之和,其值等于零
it i
it i
(∆mi ri 2 ) 称为刚体对轴的转动惯量,记作J 称为刚体对轴的转动惯量,记作 ∑
则上式可简写成: 则上式可简写成:M = Jβ
11
M = Jβ
刚体定轴转动定律: 刚体定轴转动定律:刚体所受的对于某一固定转动 轴的合外力矩等于刚体对此转轴的转动惯量与刚体 在此合外力矩作用下所获得的角加速度的乘积。 在此合外力矩作用下所获得的角加速度的乘积。 说明: 说明: 1. 上式是矢量式(在定轴转动中力矩只有两个方向)。 上式是矢量式(在定轴转动中力矩只有两个方向)。 2. M、J、β是对同一轴而言的。 是对同一轴而言的。 3. 上式反映了力矩的瞬时效应。M = Jβ = J dω 上式反映了力矩的瞬时效应。 dt 4. 刚体转动定律的地位与牛顿第二定律相当。 刚体转动定律的地位与牛顿第二定律相当。 5. 转动惯量 是刚体转动惯性大小的量度。 转动惯量J是刚体转动惯性大小的量度 是刚体转动惯性大小的量度。
2
§3.1
3.1.1 刚体的运动
刚体定轴转动的描述
刚体的平动:刚体在运动过程中, 刚体的平动:刚体在运动过程中,其 上任意两点的连线始终保持平行。 上任意两点的连线始终保持平行。 可以用质点动力学的方法 来处理刚体的平动问题。 来处理刚体的平动问题。 刚体的定轴转动: 刚体的定轴转动:刚体上各点都绕同 一直线作圆周运动, 一直线作圆周运动,而直线本身在空 间的位置保持不动的一种转动。 间的位置保持不动的一种转动。这条 直线称为转轴 转轴。 直线称为转轴。

3-第3章 刚体力学基础

大学物理学(第5版)
二、定轴转动定律
把刚体看作一个质点系
Fi
f i Δ m i a i
ri Fi ri f i Δ m i ri a i
加速度: a i a i a in
§3-2力矩 刚体定轴转动的转动定律
Mi
z M iz
Fi
Fi //
ri
mi Fi
(ri Fi ) (ri fi ) Δmi ri ai Δmi ri ai Δmi ri ain
§3-2力矩 刚体定轴转动的转动定律
M外z Miz ( mi ri 2 ) ( mi ri 2 )
i
i
i
若令
J z (mi ri 2 )
i
M 外z J z
绕定轴转动的刚体的角加速度与作用于刚体上的合外力矩成正比,与刚体的转
动惯量成反比。
注意:
——刚体定轴转动中的转动定律
(1)M和J均对于同一转轴而言;
1
2
合外力矩对定轴转动刚体所做的功等于刚体转动动能的增量。 ——刚体定轴转动时的动能定理
章目录 节目录 上一页 下一页
“十二五”普通高等教育本科国家级规划教材
大学物理学(第5版)
§3-3 刚体定轴转动的动能定理
四、机械能守恒定律
1、刚体的势能
EP mghc
m为刚体的总质量; hc为刚体质心的高度。
dm dx m dx O
r2 x2
l
dm x dx
l
x
J l x2 m dx 1 m x3 l
J 1 ml 2
J=
0
1 ml 2 3
l
1 12
3l
ml 2 m
0
l2 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档