课时12二次函数
二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的
解
x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6
第十二课时建立二次函数模型

第十二课时教学内容:建立二次函数模型(P21-22)教学目标1、通过探索得出二次函数的概念。
2、熟练地把二次函数化成一般式,并分清二次项、一次项及其系数和常数。
教学重点和难点教学重点:二次函数的概念。
教学难点:二次函数y=ax2+bx+c中的隐含条件a≠0的应用。
教学方法启发式。
教学手段投影仪、投影片。
教学过程一、创设问题情境,探索建立二次函数模型。
(出示投影1)动脑筋:问题一:植物园的面积随着砌法的不同怎样变化?学校准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形植物园,如图2—1所示,现在已备足可以砌100m长的墙的材料,大家来讨论对应于不同的砌法,植物园的面积会发生什么样的变化。
有没有一种统一的以包括一切可能砌法的探讨方法呢?学生独立思考上述问题,并把结果与同伴交流。
教师针对学生存在的问题予以指正并板书:设与围墙相邻的每一面墙的长度为xm,则与围墙相对的一面墙的长度为(100-2x)m,于是矩形植物园的面积s为s=x(100-2x),0<x<50,即 s=-2x2+100x,0<x<50,①有了公式①,我们对植物园的面积s随着砌法的不同而变化的情况就了如指掌了。
(出示投影2)动脑筋:电脑的价格。
一种型号的电脑两年前的销售价为6000元,现在的售价为y元,如果每年的平均降价率为x,那么降价率变化时,电脑的售价怎样变化呢?学生独立思考上述问题,并把结果与同伴交流。
教师针对学生存在的问题予以指正并边讲边在黑板上板书:y=6000(1-x)2,0<x<1即y=6000x2-12000x+6000,0<x<1。
②教师引入:在上面的两个例子吕,矩形植物园的面积s与相邻于围墙面的每一面墙的长度x的关系式①,电脑价格y与平均降价率x的关系式②有什么共同点?像关系式①、②那样,如果函数的解析式是自变量的二次多项式,那么这样的函数称为二次函数,它的一般形式是:y=ax2+bx+c(a、b、c是常数,a≠0),其中a、b、c分别叫作二次项系数、一次项系数、常数项。
九年级数学中考一轮复习教学案:第12课时 二次函数的图像与性质(一)

第12课时 二次函数的图像与性质(一)【复习目标】1.通过对实际问题的分析,体会二次函数的意义.2.会用描点法画出二次函数的图象,通过图象了解二次函数的性质.3.会用配方法将数字系数的二次函数的解析式化为y =a(x -h)2+k 的形式,并能由此得到二次函数图象的顶点坐标,知道图象的开口方向,会画出图象的对称轴,知道二次函数的增减性,并掌握二次函数图象的平移规律.【知识梳理】1.一般地,形如_______的函数叫做二次函数,当a_______ ,b________时,是一次函数. 2.二次函数y =ax 2+bx +c 的图象是_______,对称轴是_______,顶点坐标是_______. 3.抛物线的开口方向由a 确定,当a>0时,开口_______;当a<0时,开口_______;越大,开口越_______.4.抛物线与y 轴的交点坐标为_______.当c>0时,与y 轴的_______半轴有交点;当c<0时,与y 轴的_______半轴有交点;当c =0时,抛物线过________. 5.若a_______0,当x =2ba -时,y 有最小值,为_______; 若a_______0,当x =2ba-时,y 有最大值,为_______.6.当a>0时,在对称轴的左侧,y 随x 的增大而_______,在对称轴的右侧,y 随x 的增大而_______;当a<0时,在对称轴的左侧,y 随x 的增大而_______,在对称轴的右侧.y 随x 的增大而_______.7.当m>0时,二次函数y =ax 2的图象向_______平移_______个单位得到二次函数y =a (x +m)2的图象;当k>0时,二次函数y =ax 2的图象向_______平移_______个单位得到二次函数y =ax 2+k 的图象.平移的口诀:左“+”右 “-”;上“+”下“-”.【考点例析】考点一 二次函数的有关概念例1已知二次函数y =x 2-4x +5的顶点坐标为 ( ) A .(-2,-1) B .(2,1) C .(2,- 1)D (-2,1)提示由配方可得y=x2-4x+5=(x-2)2+1,从而求得抛物线的顶点坐标.考点二抛物线的平移例2 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 ( )A.y=3(x+2)2+3 B.y=3(x-2)2+3C.y=3(x+2)2-3 D.y=3(x-2)2-3提示由平移规律“上加下减.左加右减”,根据抛物线y=3x2向上平移3个单位,再向左平移2个单位得到平移后抛物线的解析式.考点三同一坐标系下二次函数与其他函数图象的共存问题例 3 在同一坐标系中°一次函数y=ax+1与二次函数y=x2+a的图象可能是( )提示本题主要考查一次函数和二次函数图象位置的确定,由一次函数y=ax+1可知其图象经过(0,1),与y轴交于正半轴.又二次函数y=x2+a.当a>0时,一次函数经过第一、二、三象限,二次函数图象的开口向上,顶点在y轴正半轴上,没有选项符合;当a<0时,一次函数的图象经过第一、二、四象限.二次函数开口向上,顶点在y轴负半轴上,从而确定正确选项.考点四利用二次函数的增减性比较坐标大小例4设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1、y2、y3的大小关系为 ( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y3提示本题根据二次函数图象在对称轴两边的增减性解题,要注意所有点必须先放在对称轴同一侧,然后进行比较.【反馈练习】1.抛物线y=-2x2+1的对称轴是 ( )A.直线y=12B.直线x=-12C.y轴D.直线x=22.已知二次函数y=2(x-3)2+1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象的顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.其中说法正确的有 ( )A.1个B.2个C.3个D.4个3.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是 ( ) A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.(2012.上海)将抛物线y=x2+x向下平移2个单位.所得新抛物线的解析式是________.5.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1_______y2.6.已知二次函数y=-12x2-x+32.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.。
人教版九年级数学上册第二十二章《二次函数》教案

第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.3.通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.4.在探究二次函数的学习活动中,体会通过探究发现的乐趣.【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x 2,m=12n 2-12n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x -2x+1;(4)y=1-3x 2.2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.∴m+1≠0且m 2+1=2,∴m≠-1且m2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分.本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.22.1.2 二次函数y=ax2的图象和性质1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.3.通过画出简单的二次函数y=x2,y=-12x2等探索出二次函数y=ax2的性质及图象特征.4.使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.一、情境导入,初步认识问题1在八年级下册,我们学习的一次函数的图象是一条直线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?【教学说明】通过对问题1的思考,可激发学生的求知欲望,想尝试运用列表法画出一个二次函数的图象.问题2 你能画出二次函数y=x2的图象吗?【教学说明】学生分组画y=x2的图象,教师巡视,对于不正确的给予指导,尤其应关注学生的列表和连线,然后给予讲评,提醒注意的问题,并让学生发表不同的意见,达成共识.二、思考探究,获取新知问题1你能说说二次函数y=x2的图象有哪些特征吗?不妨试试看,并与同伴交流.【教学说明】教师应在学生的交流过程中,听取他们各自的看法,对于通过观察而归纳出的结论叙述较好的给予肯定,对不够完整的或叙述欠佳的学生给予鼓励,并予以诱导.在这一活动过程中,让学生们逐步积累对二次函数y=ax2的图象及其简单性质的感性认识.问题2请在同一坐标系中,画出下列函数的图象,并通过图象谈谈它们的特征及其差异.y=12x2与y=2x2.【教学说明】在这一活动过程中,教师可将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.教师巡视,适时点拨,最后在黑板上与全班同学一起进行归纳总结.问题3(1)在同一直面坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?(2)当a<0时,二次函数y=ax2的图象有什么特点?【教学说明】教师在处理问题时可让学生画图后回答,可让学生从开口方向、最值、增减性三个方面作答,最后教师以课件方式展示结论.【归纳结论】1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.二次函数y=ax2的图象及其性质,如下表所示:3.二次函数y=ax2的开口大小与a的关系:|a|越大,开口越小;|a|越小,开口越大.|a|值相同,开口形状相同.【教学说明】针对师生共同完成的归纳总结,教师应着重强调两点:(1)a 的符号决定着抛物线的开口方向,|a|的大小,影响抛物线的开口大小;(2)对于函数的增减性及最大(小)值,教师应引导学生通过图象进行分析,利用图象的直观性获得结论,切忌死记硬背,让同学感受到数形结合思想方法是函数问题中最重要的思想方法之一,增强他们的学习兴趣.三、运用新知,深化理解1.若抛物线y=ax2与y=4x2的形状及开口方向均相同,则a= .2.下列关于二次函数y=ax2(a≠0)的说法中,错误的是()A.它的图象的顶点是原点B.当a<0,在x=0时,y取得最大值C.a 越大,图象开口越小;a 越小,图象开口越大D.当a>0,在x>0时,y 随x 的增大而增大3.请在同一坐标系中画出函数y 1=x 和y 2=-x 2的图象,结合图象,指出当x 取何值时,y 1>y 2;当x 取何值时,y 1<y 2.4.一个二次函数,它的图象的顶点是原点,对称轴是y 轴,且经过点(-1,14). (1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)根据图象指出,当x>0时,若x 增大,y 怎样变化?当x<0时,若x 增大,y 怎样变化?(4)当x 取何值时,y 有最大(或最小)值,其值为多少?【教学说明】本环节易采用先让学生独立思考,再以小组交流的方式展开.其中题2、3、4均是集图象与性质于一体,鼓励学生用自己的语言叙述,逐步渗透用数学语言进行说理的能力,同时进一步体现数形结合的思想.【答案】1.42.C 【解析】当a>0时,a 值越大,开口越小,a 值越小,开口越大;当a<0时,a 值越大,开口越大,a 值越小,开口越小.所以C 项说法不对.3.列表如下:如图所示:根据图象可知,当x>0或x<-1时,y1>y2,当-1<x<0时,y2>y1.4.解:(1)设这个二次函数解析式为y=ax2,将(-1,14)代入得a=14,所以y=14x2.(2)略(3)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.(4)当x=0时,y有最小值,y最小值=0.四、师生互动,课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?【教学说明】问题1旨在提醒学生画图过程中列表时应以原点为中心,左右对称选取点,连线时应用光滑曲线连接;问题2是为了进一步突出数形结合思想在函数问题的解决过程中的重要性;而问题3是想了解学生哪部分没学好,难学,以便教师可以进行针对性辅导.1.布置作业:教材习题22.1第3、4、11题.2.完成创优作业中本课时练习的“课时作业”部分.本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.4.通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.5.在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.一、情境导入,初步认识问题1请同学们谈谈一次函数y=x与y=x+2的图象之间的关系;问题2同样地,你能猜想出二次函数y=x2与y=x2+1的图象之间有何关系吗?【教学说明】问题1既是复习旧知识,同时又为解决本节知识起到抛砖引玉的作用.学生的回答也许形式多样,教师适时诱导,并设疑,为后面的解惑作铺垫.二、思考探究,获取新知问题1在同一坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.请观察图象,谈谈它们有哪些相同点和不同点,并指明这两个图象的关系如何?【教学说明】在学生自主操作时,教师应指导它们在画平面直角坐标系时的单位长度要稍大一些,如选取0.8cm或1cm为一个单位长度为好,这样学生们所画出的图形才有可能清晰些.教师应巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.问题2(教材第33页练习)在同一直角坐标中,画出下列二次函数的图象y=12x2,y=12x2+2,y=12x2-2,观察三条抛物线的位置关系并分别指出它们的开口方向、对称轴和顶点.你能说出抛物线y=12x2+k的开口方向、对称轴和顶点吗?它与抛物线y=12x2有什么关系?【教学说明】设计问题2,一方面进一步增强学生的画图能力,另一方面加深学生的感性认识,从而形成对二次函数y=ax2+k的图象及其性质的初步认识.同伴间应相互交流,教师巡视指导,然后完成课本第33页练习.【归纳结论】1.二次函数y=ax2+k的图象可以由y=ax2的图象通过上、下平移得到.2.y=ax2与y=ax2+k的性质如下:三、运用新知,深化理解1.抛物线y=3x2可以看作是抛物线y=3x2-4向平移得到的.2.已知抛物线y=ax2+k与抛物线y=-2x2的形状相同,且图象到x轴的最近点的距离为3,求a、k的值,并指出抛物线y=ax2+k的开口方向,对称轴和顶点坐标.【教学说明】针对本节所学内容及学生掌握的情况,设计训练题1,2,目的是加深学生对新知识的理解,能灵活运用所学知识解决简单的问题.教师在这个过程中要予以诱导.【答案】略四、师生互动,课堂小结本环节师生共同回顾所学知识,如y=ax2+k的图象特征,函数的增减性等,并对可能出现的困难、疑问给予整理,进行辨析.完成创优作业中本课时练习的“课时作业”部分.本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.第2课时二次函数y=a(x-h)2的图象和性质1.能画出二次函数y=a(x-h)2的图象;2.了解抛物线y=ax2与抛物线y=a(x-h)2的联系;3.掌握二次函数y=a(x-h)2的图象特征及其简单性质.4.通过动手操作、观察比较、分析思考、规律总结等活动过程完成对二次函数y=a(x-h)2的图象及其性质的认知.5.在学生学习活动过程中,使他们进一步体会数形结合的思想方法,培养创造性思维能力和动手实践能力,增强学习兴趣、激发学习欲望.【教学重点】1.掌握二次函数y=a(x-h)2的图象及性质;2.二次函数y=ax2与y=a(x-h)2图象之间的联系.【教学难点】利用二次函数y=a(x-h)2的性质解决实际问题.一、情境导入,初步认识我们知道,二次函数y=ax2-2的图象可以由函数y=ax2的图象向下平移得到,那么函数y=12(x-2)2的图象是否可以由函数y=12x2的图象经过平移而得到呢?二、思考探究,获取新知问题在同一坐标系中画出二次函数y=-12(x+1)2,y=-12(x-1)2的图象,指出它们的开口方向、对称轴和顶点坐标;并结合图象,说说抛物线y=-12x2, y=-12(x+1)2,y=-12(x-1)2的关系.【教学说明】在教学过程中,学生独立思考后,合作完成.教师巡视指导,针对学生在画图、探究过程中可能出现的错误给予指正,对好的给予表扬,并展示其图象,在合作交流过程中探索出抛物线y=-12(x+1)2,y=-12(x-1)2与y=-12x2的联系.【归纳结论】函数y=ax2与y=a(x-h)2的图象及其性质如下表:三、运用新知,深化理解【设计说明】针对本节知识,设计了以下几道题,及时了解学生运用新知解决问题的能力,查漏补缺.1.抛物线y=3(x-3)2的开口方向是向,对称轴是,顶点是.2.若抛物线y=a(x-h)2的顶点是(-3,0),它是由抛物线y=-2x2通过平移而得到的,则a= ,h= .【教学说明】这两道题可采用抢答的形式来处理,可适当让学生说明其解题思路或依据.【答案】1.上x=3 (3,0)2.-2-3四、师生互动,课堂小结1.抛物线y=ax2与y=ax2+c和抛物线y=ax2与y=a(x-h)2有哪些共同点,又有哪些不同点?同伴间可相互交流.2.将抛物线y=ax2上下平移与左右平移所得到的表达式在形式上有何区别?3.课本第35页练习.【设计及教学说明】对所给两个问题的思考,让学生亲历知识的自主建构,不断完善自己的知识结构.完成创优作业中本课时练习的“课时作业”部分.本课时教学仍在于着重培养学生的比较和判断能力,通过比较找出异同点,从而进一步归纳性质,并通过练习使学生从“练”中“悟”,形成函数意识.第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出二次函数y=a(x-h)2+k(a≠0)的图象;2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移规律;3.依据具体问题情境建立二次函数y=a(x-h)2+k模型来解决实际问题.4.通过“活动探究——观察思考——运用迁移”等三个环节来获取新知识,掌握新技能,解决新问题.5.进一步培养学生观察能力、抽象概括能力,渗透数形结合、从特殊到一般的思想方法,了解从特殊到一般的辩证关系.【教学重点】二次函数y=a(x-h)2+k(a≠0)的图象及其性质.【教学难点】1.二次函数y=a(x-h)+k与y=ax2(a≠0)的图象之间的平移关系;2.通过对图象的观察,分析规律,归纳性质.一、情境导入,初步认识问题将抛物线y=-12x2向下平移1个单位,所得到的抛物线表达式是什么?若再将它向左平移1个单位呢?【教学说明】学生通过对前两节课所学习的上、下平移和左、右平移规律的回顾与思考,在尝试解决问题的过程中,可增强他们的学习兴趣,激发求知欲望,也为新知识的学习做好铺垫.学生们可相互交流,教师对其结论可暂不作评价.二、思考探究,获取新知问题1 画出二次函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点坐标.问题2 请在问题1中所在的平面直角坐标系内,画出抛物线y=-12x2,及抛物线y=-12(x+1)2,y=-12x2-1,观察所得到的四个抛物线,你能发现什么?问题3请依据问题2中你的发现,说说抛物线y=a(x-h)2+k是由抛物线y=ax2(a ≠0)通过怎样的平移而得到的?并说说它的对称轴和顶点坐标.【教学说明】教师可给予15~20分钟的时间让学生自主探究,画出图象,并让学生们交流,获得感性认识.教师巡视,鼓励每个学生积极参与进来,针对个别同学,应适时予以点拨.如果条件允许,对学生的成果可通过多媒体展示.【归纳结论】1.一般地,抛物线y=a(x-h)2+k与抛物线y=ax2的形状相同(因为a值相同),而位置不同.将抛物线y=ax2上下平移,可得到抛物线y=ax2+k(k >0时,向上平移k个单位;k<0时,向下平移-k个单位),再将抛物线y=ax2+k 左右平移后,可得到抛物线y=a(x-h)2+k(h>0时,向右平移;h<0时,向左平移).2.抛物线y=a(x-h)2+k的性质:(1)a>0时,开口向上;a<0时,开口向下;(2)对称轴是直线x=h;(3)顶点坐标是(h,k).【教学说明】1.通过探究,师生共同交流,达成共识后,教师在黑板上与学生一道进行归纳,了解并掌握本课时知识.2.此时教师可对问题情境中的问题1作出评价,让学生体验成功的快乐.3.归纳结论完成后,教师引导学生做第37页练习,可让学生采取举手抢答的形式进行.三、典例精析,掌握新知例(教材第36页例4)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数是y=a(x-1)2+3(0≤x≤3).由这段抛物线经过点(3,0)可得0=a(3-1)2+3,解得a=-34.因此y=-34(x-1)2+3(0≤x≤3).当x=0时,y=2.25,也就是说,水管应长2.25m.【教学说明】教师讲解此例时,可向学生提问:(1)坐标系的原点为什么建立在池中心点?(2)自变量的取值范围为什么是0≤x≤3?(3)设函数解析式有什么诀窍?四、运用新知,深化理解【设计说明】针对本节所学知识,通过几道小题进行演练,巩固所学新知识,并依据学生的完成情况,教师可适时予以查漏补缺.1.抛物线y=-3(x+2)2-4的顶点坐标是,当x 时,函数值y随x的增大而增大.2.若抛物线的对称轴为x=-1,与x轴的一个交点坐标为(1,0),则这条抛物线与x轴的另一个交点是.3.已知二次函数的图象顶点坐标为(-4,3),且经过坐标原点,则这个二次函数的表达式是.4.已知二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到抛物线y=-12(x+1)2+3.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k图象的开口方向,对称轴和顶点坐标.5.将抛物线y=2(x-1)2+3作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向.【教学说明】第1,2题较为简单,可采用抢答形式来处理,第3小题应引导学生设出所求的二次函数表达式为y=a(x-h)2+k的形式,第4、5题为选做题,教师可根据教学实际选择做或不做.五、师生互动,课堂小结1.抛物线y=a(x-h)2+k(a≠0)的特征有哪些?2.如果解抛物线的顶点坐标(或对称轴或最低点等),要想确定该抛物线表达式,如何设出这个表达式更有利于求解呢?【设计及教学说明】问题1侧重于所学知识回顾,而问题2侧重于应用,为后继学习做好铺垫.教学时,教师应予以评讲.1.布置作业:教材习题22.1第5题.2.完成创优作业中本课时练习的“课时作业”部分.前面的几个课时是从最基本的二次函数图象入手开始探索,已初步对二次函数的性质进行了归纳,因此本课时的内容算是对前面内容的小结.所以教学时教师应大胆放手让学生自主归纳与探究,教师给予引导和提示并让学生适时进行练习,以巩固所学,在这一过程中应注意渗透数形结合的思想方法.22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.4.通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.5.经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.一、情境导入,初步认识问题1请说出抛物线y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的开口方向、对称轴和顶点坐标.问题2你知道二次函数y=12x2-6x+21的图象的开口方向,对称轴和顶点坐标吗?【教学说明】问题1设计的目的既是对前面所学知识进行简单的回顾,又为本节知识的学习展示着方法和思路,学生处理起来较为简单,可采用抢答形式来处理.问题2设计的目的在于制造认知冲突,激发学生的求知欲望,学生在处理问题2时可能有些困难,教师适时诱导,引入新课.。
人教版九年级上册数学课件 第二十二章 二次函数 第1课时 二次函数y=ax2+k的图象和性质 (2)

y= 3x-3, 析式为 y= 3 x-3.联立直线 DC 与抛物线的解析式可得y=13x2-3, 解得
x1=0, y1=-3,
yx22==63,3,
所以 M1(3
3 ,6);
②如图,若点 M2 在点 B 下方,设 M2C 交 x 轴于点 E,易得∠OEC=45 °-15°=30°,易得 OE=3 3 .
15.(10分)(云南中考)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称 轴是y轴,并且与x轴有两个交点.
(1)求k的值; (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P 的坐标. 解:(1)∵抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,∴k2+k-6=0, 解得k1=-3,k2=2,又∵抛物线y=x2+(k2+k-6)x+3k与x轴有两个交点, ∴3k<0,∴k=-3 (2)∵点P在抛物线y=x2-9上,且P到y轴的距离是2,∴点P的横坐标为2或 -2,当x=2时,y=-5,当x=-2时,y=-5.∴P(2,-5)或P(-2,-5)
(1)求m的值; (2)求函数y=ax2+b(a≠0)的解析式; (3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐 标;若不存在,请说明理由.
解:(1)将(0,-3)代入y=x+m,可得m=-3
(2)将 y=0 代入 y=x-3 得 x=3,所以点 B 的坐标为(3,0).
将(0,-3),(3,0)代入
人教版
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.3 二次函数y=a(x-h)2+k的图象和性质 第1课时 二次函数y=ax2+k的图象和性质
1.(3分)抛物线y=x2+1的图象大致是( C )
人教版九上数学教学课件 第二十二章 二次函数 第3课时 二次函数y=a(x-h)2+k的图象和性质

答:这个喷水池的直径 AB 是 20 m。
Thank you!
y
hO k
x
y=ax2
y=a(x-h)2+k
例4 要修建一个圆形喷水池,在池中心竖直安装一根水管, 在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池 中心的水平距离为1m处达到最高,高度为3m,水柱落地处离 池中心3m,水管应多长.
解:如图,以水管与地面交点为原点,原点
3
与水柱落地处所在直线为x轴,水管所在直
随堂测试
基础巩固 1.抛物线y=(x+2)2-1可以由抛物线y=x2平移得到,下列平 移方法中正确的是( B ) A.先向左平移2个单位长度,再向上平移1个单位长度 B.先向左平移2个单位长度,再向下平移1个单位长度 C.先向右平移2个单位长度,再向上平移1个单位长度 D.先向右平移2个单位长度,再向下平移1个单位长度
3 4 m 处达到最高,高度为 6 m,之后落在水池边缘,求这个喷水池的直径 AB 的值.
解:设 y 轴右侧抛物线的解析式为 y=a(x-4)2+6,将(0,10 )代入得 3
16a+6=10 ,解得 a=-1 ,∴抛物线的解析式为 y=-1 (x-4)2+6,令 y
3
6
6
=0 得-1 6
(x-4)2+6=0,x1=10,x2=-2(舍) ∴AB=10-(-10)=20(m).
R·九年级上册
第二十二章 二次函数
22.1 二次函数的图像和性质 22.1.3 二次函数y=a(x-h)2+k的图象和性质
第3课时 二次函数y=a(x-h)2+k的图象和性质
新课导入
问题:说说抛物线y=ax2的平移规律.
y=ax2
y=ax2+k
2020 最新中考数学复习 第12讲第1课时 二次函数的图象与性质

第12讲 二次函数第1课时 二次函数的图象与性质知识点1 二次函数的概念1.关于x 的函数y =(m +1)x 2+(m -1)x +m ,当m =0时,它是二次函数;当m =-1时,它是一次函数.知识点2 二次函数的图象与性质2.已知h 与t 的函数关系式为h =12gt 2(g 为常数,t 为时间),则函数图象为(A )3.抛物线y =12x 2,y =x 2,y =-x 2的共同性质是:①都是开口向上;②都以(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数有(B )A .1个B .2个C .3个D .4个4.如图,抛物线顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是(C )A .x >3B .x <3C .x >1D .x <15.二次函数y =x 2-2x -3的最小值是-4.知识点3 二次函数图象的平移6.抛物线y =(x +2)2-3由抛物线y =x 2先向左平移2个单位长度,再向下平移3个单位长度得到.7.将抛物线y =2(x -1)2+2向左平移3个单位长度,再向下平移4个单位长度,那么得到的抛物线的表达式为y =2(x +2)2-2.知识点4 确定二次函数的解析式8.已知二次函数的图象如图,则其解析式为(B)A.y=x2-2x+3B.y=x2-2x-3C.y=x2+2x-3D.y=x2+2x+39.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=-x2+4x-3.知识点5二次函数与方程、不等式10.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是(A)A.m<2 B.m>2C.0<m≤2 D.m<-211.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是(A)A.-1<x<3B.x>3C.x<-1D.x>3或x<-1重难点1二次函数的图象和性质(2017·枣庄)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(D)A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【思路点拨】(1)将a=1代入原函数解析式,令x=-1求出y值,由此得出A选项不符合题意;(2)将a=2代入原函数解析式,令y=0,根据根的判别式Δ=8>0,可得出当a=-2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;(3)利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;(4)利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.【变式训练1】(2016·兰州)点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是(D)A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【变式训练2】(2017·泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x -1 0 1 3y -3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x<1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个,方法指导解决二次函数图象和性质相关题,首先需明确二次函数图象的开口方向、对称轴、顶点坐标等与解析式中相关字母的关系,若确定解析式,也可通过将解析式配方,得出函数的对称轴,顶点坐标,函数图象与坐标轴的交点等,从而画出函数大致图象,再利用数形结合思想解题.方法指导比较抛物线上点的纵坐标大小的基本方法有以下三种:(1)利用抛物线上对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性进行比较; (2)当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小;(3)利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小,开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”比较大小.重难点2 同一坐标系中的函数图象共存问题(2016·毕节)一次函数y =ax +c(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一个坐标系中的图象可能是(D )【变式训练3】 函数y =kx与y =-kx 2+k(k ≠0)在同一直角坐标系中的图象可能是(B )方法指导解决函数图象共存问题主要有以下三种方法:(1)排除法:根据已知条件中得出的结论直接排除某选项,如:本例由已知条件可知两个函数的常数项都是c ,说明两个函数图象与y 轴交于同一个点,所以排除A 选项;(2)同一法:一般可以先假定其中一种函数的图象(如:一次函数,反比例函数),再根据函数图象得到该函数解析式中字母的范围,去判断另一个函数图象是否正确.如:本例B 选项,若一次函数图象正确,则a<0,c<0,这与抛物线开口向上相矛盾.故B 选项错误.重难点3 二次函数图象与字母系数的关系(2016·随州)二次函数y =ax 2+bx +c(a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a +b =0;(2)9a +c>3b ;(3)8a +7b +2c>0;(4)若点A(-3,y 1),点B(-12,y 2)、点C(72,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a(x +1)(x -5)=-3的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2.其中正确的结论有(B )A.2个B.3个C.4个D.5个【思路点拨】(1)利用对称轴公式判别;(2)观察形式发现当x=-3时,y=9a-3b+c<0,可得9a+c<3b;(3)根据对称轴为x=2,得b=-4a,则8a+7b+2c=-20a+2c,由a<0,c>0,可得-20a+2c>0;(4)抛物线的开口向下,距离对称轴越远,纵坐标越小;(5)方程a(x+1)(x-5)=-3的两根x1和x2为直线y=-3与抛物线y=a(x +1)(x-5)的两个交点的横坐标,这两个交点在抛物线y=a(x+1)(x-5)与x轴两交点的两侧,因此x1<-1<5<x2.【变式训练4】(2017·荆门)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(D)A.a<0,b<0,c>0B.-b2a=1C.a+b+c<0D.关于x的方程ax2+bx+c=-1有两个不相等的实数根变式训练4图变式训练5图【变式训练5】(2017·广安)如图所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3,其中正确的有(B)A.1个B.2个C.3个D.4个方法指导解答二次函数的图象信息问题,通常先抓住抛物线的对称轴和顶点坐标,再依据图象与字母系数之间的关系求解.常考的一些式子的判断方法如下:(1)判断2a+b与0的关系,需比较对称轴与1的大小;判断2a-b与0的关系,需比较对称轴与-1的大小;(2)判断a+b+c与0的关系,需看x=1时的纵坐标,即比较x=1时函数值与0的大小;判断a-b+c与0的关系,需看x=-1时的纵坐标,即比较x=-1时函数值与0的大小;(3)判断4a+2b+c与0的关系,需看x=2时的纵坐标,即比较x=2时函数值与0的大小;判断4a-2b+c与0的关系,需看x=-2时的纵坐标,即比较x=-2时函数值与0的大小.1.(人教九上教材P37练习的变式题)(2017·长沙)抛物线y=2(x-3)2+4的顶点坐标是(A)A.(3,4) B.(-3,4)C.(3,-4) D.(2,4)。
九年级数学下册 12 二次函数yax h2的图象与性质(第3课时)教案 (新版)湘教版 教案

第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想. 【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象. 例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(某某某某中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h 决定向左右平移;从中领会数形结合的数学思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。