第二章 自动控制系统的数学模型(1)ppt
合集下载
自控第2章(1)

例1 试列写如图所示RLC无源网络的微分方程 试列写如图所示RLC RLC无源网络的微分方程
解: (1) 确定电路的输入量和输出量 + (2) 列出原始微分方程式 (3) 消去中间变量,把微分方程 ur(t) 消去中间变量, 整理成标准形式 -
L R i C - + uc(t)
d 2 uc ( t ) duc ( t ) LC + RC + uc ( t ) = ur ( t ) 2 dt dt
Kg =
K1K2 K3 Km
(i + K1K2 K3 KmKt )
返回
Company Logo 华中科技大学文华学院
′ = KC KC
(i + K1K2 K3 Km Kt )
2.2 控制系统的复数域数学模型
2.2.1传递函数 2.2.1传递函数 传递函数:是在零初始条件下,系统输出量的拉氏变 传递函数:是在零初始条件下, 换与输入量的拉氏变换之比。 换与输入量的拉氏变换之比。 一是指输入量是在t≥0时才作用于系统, 一是指输入量是在t≥0时才作用于系统,则在 t≥0时才作用于系统 t=0时 系统输入量r(t)以及其各阶导数均为零; r(t)以及其各阶导数均为零 t=0时,系统输入量r(t)以及其各阶导数均为零; 二是指输入量加于系统之前, 二是指输入量加于系统之前,系统处于稳定的 工作状态,即输出量c(t)及其各阶导数在t=0 c(t)及其各阶导数在t=0时的 工作状态,即输出量c(t)及其各阶导数在t=0时的 值也为零。 值也为零。
华中科技大学文华学院 Company
LOGO
自动控制理论
制作人:范 娟 制作人:
课堂练习
如图a和 所示均为自动调压系统 设空载时, 所示均为自动调压系统。 与图b 如图 和b所示均为自动调压系统。设空载时,图a与图 与图 发电机端电压均为110V。试问 带上负载后,图a与图 所示系 带上负载后, 与图b所示系 发电机端电压均为 。 与图 统哪个能保持110V电压不变?哪个系统的电压会稍低于 电压不变? 统哪个能保持 电压不变 哪个系统的电压会稍低于110V? ? 为什么? 为什么?
自动控制原理第二章 胡寿松ppt课件

—线性定常二阶微分方程式
4、消去中间变量i(t),整理后得整:理版课件
22
第二章 控制系统数学模型
例2、 设一弹簧、质量块、阻
尼器组成的系统如图所示,
当外力F(t)作用于系统时,系 F(t) 统将产生运动。试写出外力
F(t)与质量块的位移y(t)之间
m
的微分方程。
解:
f
1、确立入-出,入-F(t),出—y(t); 2、根据牛顿定律,∑F=ma;
limsF(s)存在 f(0)lifm (t)lism (F s)
s
t 0
s
(6)终值定理
若: L[f(t)]F(s)
f( )lifm (t)lism (F s)
t
s 0
整理版课件
7
第二章 控制系统数学模型
例2、求下列函数的拉氏变换。
(1)f(t)2(1cot)(s2)f(t)sin5(t() 3)f (t)tnet
L[
d
2
dt
f (t) 2
]
s
2
F
(s)
L [ d n f ( t ) ] s n F ( s )整理版课件
5
dt n
第二章 控制系统数学模型
(2)积分性质
若: L[f(t)]F(s)
L [ f(t)d] t1 sF (s)1 s f(t)dt t0
当初始条件为0,则有:
L[
f
(t )dt ]
1 - 311 1 14 s 2s 1s 2 s 1s 2
f(t) L 1 [f(t) ](t) e t 4 e 2 t
整理版课件
16
第二章 控制系统数学模型
例 6 求F(s)s(s2ss11)的拉氏反变换
4、消去中间变量i(t),整理后得整:理版课件
22
第二章 控制系统数学模型
例2、 设一弹簧、质量块、阻
尼器组成的系统如图所示,
当外力F(t)作用于系统时,系 F(t) 统将产生运动。试写出外力
F(t)与质量块的位移y(t)之间
m
的微分方程。
解:
f
1、确立入-出,入-F(t),出—y(t); 2、根据牛顿定律,∑F=ma;
limsF(s)存在 f(0)lifm (t)lism (F s)
s
t 0
s
(6)终值定理
若: L[f(t)]F(s)
f( )lifm (t)lism (F s)
t
s 0
整理版课件
7
第二章 控制系统数学模型
例2、求下列函数的拉氏变换。
(1)f(t)2(1cot)(s2)f(t)sin5(t() 3)f (t)tnet
L[
d
2
dt
f (t) 2
]
s
2
F
(s)
L [ d n f ( t ) ] s n F ( s )整理版课件
5
dt n
第二章 控制系统数学模型
(2)积分性质
若: L[f(t)]F(s)
L [ f(t)d] t1 sF (s)1 s f(t)dt t0
当初始条件为0,则有:
L[
f
(t )dt ]
1 - 311 1 14 s 2s 1s 2 s 1s 2
f(t) L 1 [f(t) ](t) e t 4 e 2 t
整理版课件
16
第二章 控制系统数学模型
例 6 求F(s)s(s2ss11)的拉氏反变换
自控原理课件 第2章-自动控制系统的数学模型

第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
2.2.2 传递函数 建立数学模型的目的是为了对系统进行性能分析。分析 自动控制系统最直接的方法是求解微分方程,求得被控 量在动态过程中的时间函数,然后根据时间函数的曲线 对系统性能进行分析。求解的方法有经典法、拉氏变换 法等。 拉氏变换法是求解微分方程的简便方法,当采用这一方 法时。微分方程的求解就成为象函数的代数方程和查表 求解,使计算大为简化。更重要的是,采用拉氏变换法 能把以线性微分方程描述的数学模型转换成复数域中代 数形式的数学模型——传递函数。传递函数不仅可以表 征系统的性能,而且可以用来分析系统的结构和参数变 化对系统性能的影响。经典控制理论中应用最广泛的频 率特性法和根轨迹法就是以传递函数为基础建立起来的, 传递函数是经典控制理论中最基本最重要的概念。
解:(1)确定输入和输出量。网络的输入量为 电压ur(t),输出量为电压uc(t) (2)根据电路理论,列出原始微分方程。
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
1.信号线 信号线是带有箭头的直线,箭头表示信号的流向,在直线旁标 记信号的象函数,如图2.20(a)所示。 2.引出点 引出点表示信号引出或测量的位置。从同一位置引出的信号在 数值和性质上完全相同, 图2.20(b)所示。 3.比较点 比较点表示多个信号在此处叠加,输出量等于输入量的代数和。 因此在信号输入处要标明信号的极性,如图2.20(c)所示。 4.功能框 功能框表示一个相对独立的环节对信号的影响。框左边的箭头 处标以输人量的象函数,框右边的箭头处标以输出量的象函数, 框内为这一单元的传递函数。输出量等于输入量与传递函数的 乘积,即
自动控制原理课件 第二章 线性系统的数学模型

c(t ) e
dt Leabharlann t
c( s )
g ( ) r ( ) d e s ( ) d 0 0 g ( )e s r ( )e s d d 0 0
0
g ( )e
5) 闭环系统传递函数G(s)的分母并令其为0,就是系统的特征方 程。
• 涉及的是线性系统 非线性系统必须 进行线性化处理
§2-6 信号流程图
系统很复杂,为方便研究,也为了与 实际对应,通常将复杂系统分解为 若干典型环节的连接
数学模型的定义 数学模型: 描述系统变量间相互关系的动态性能的运动方程 建立数学模型的方法:
解析法: 依据系统及元件各变量之间所遵循的物理或化学规律列写出相 应的数学关系式,建立模型。 自动控制系统的组成可以是电气的,机械的,液压的,气动的等等,然 而描述这些系统的数学模型却可以是相同的。因此,通过数学模型来研 究自动控制系统,就摆脱了各种类型系统的外部关系而抓住这些系统的 共同运动规律,控制系统的数学模型是通过物理学,化学,生物学等定 律来描述的,如机械系统的牛顿定律,电气系统的克希霍夫定律等都是 用来描述系统模型的基本定律。 实验法: 人为地对系统施加某种测试信号,记录其输出响应,并用适当 的数学模型进行逼近。这种方法也称为系统辨识。 数学模型的形式 时间域: 复数域: 频率域: 微分方程 差分方程 传递函数 结构图 频率特性 状态方程
1 例1 : F ( s) ( s 1)(s 2)(s 3) c c c 1 2 3 s 1 s 2 s 3
1 1 c1 [ ( s 1)]s 1 ( s 1)(s 2)(s 3) 6 1 1 c2 [ ( s 2)]s 2 ( s 1)(s 2)(s 3) 15 1 1 c3 [ ( s 3)]s 3 ( s 1)(s 2)(s 3) 10 1 1 1 1 1 1 F ( s) 6 s 1 15 s 2 10 s 3 1 1 1 f (t ) e t e 2t e 3t 6 15 10
自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
《自动控制原理》课件第二章

Cen idRd
Ld
d id dt
ud
(2-4)
当略去电动机的负载力矩和粘性摩擦力矩时,机械运动
微分方程式为
M GD2 d n 375 d t
(2-5)
式中,M为电动机的转矩(N·m); GD2为电动机的飞轮矩
(N·m2)。当电动机的励磁不变时,电动机的转矩与电枢电
流成正比,即电动机转矩为
M=Cmid
称为相似量。如式(2-1)中的变量ui、uo分别与式(2-3)中的变
量f(t)、y(t)为对应的相似量。
2.1.2 线性定常微分方程求解及系统运动的模态 当系统微分方程列写出来后,只要给定输入量和初始条
件,便可对微分方程求解,并由此了解系统输出量随时间变 化的特性。
若线性定常连续系统的微分方程模型的一般表示形式为 y(n)(t)+a1y(n-1)(t)+···+any(t)=b0u(m)(t)+b1u(m-1)(t)+…+bmu(t)
x0
( x x0 )2
当增量x-x0很小时,略去其高次幂项,则有
y
y0
f (x)
f (x0)
d f (x) dx
x0
(x x0)
令Δy=y-y0=f(x)-f(x0),Δx=x-x0,K=(df(x)/dx)|x0,则线性
化方程可简记为Δy=KΔx。这样,便得到函数y=f(x)在工作
点A附近的线性化方程为y=Kx。
图2-4 小偏差线性化示意图
对于有两个自变量x1、x2的非线性函数f(x1,x2),同样 可在某工作点(x10,x20)附近用泰勒级数展开为
y
f (x1 ,x2 )
f
自动控制原理胡寿松第六版ppt
通常m < n;a1 , … , an; b0 , … , bm 均为实数; 首先将Xs的 分母因式分解,则有
X (s)b 0s (s m p b 1 1) sm s ( 1 p 2) b (s m 1s p n)b m
3) 随动系统中,取θ为输出
d
dt
Tmd d22td d tk 1euaT JmM L
4 在实际使用中;转速常用nr/min表示,设 ML=0
2 6 n 0 3 n代 02 入 2, 2k'e令 ke3 0
TaTmdd2n 2tTmd dn tnk1'eua
24 线性系统的传递函数 一 复习拉氏变换及其性质
方程数与变量数相等 5) 联立上述方程,消去中间变量,得到只包含输入 输出的方程式。 6) 将方程式化成标准形。
与输出有关的放在左边,与输入有关的放在右边,导数项按 降阶排列,系数化为有物理意义的形式。
2 2.2 机械平移系统举例
三个基本的无源元件:质量m,弹簧k,阻尼器f 对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv
2微分定理
Lddx(tt)sX(s)x(0)
Ld2 dx2 (tt)s2X(s)sx (0)x (0)
若 x ( 0 ) x ( 0 ) 0 ,则
Lddx(tt) sX(s)
d2x(t)
L
dt2
s2X(s)
…
dnx(t)
L
dtn
snX(s)
3积分定律
Lx (t)d t1X (s)1x ( 1 )(0 )
系统处于平衡状态。
K m y(t)
3按牛顿第二定律列写原始方程;即
d2y FF(t)F k(t)F f(t)md2t
X (s)b 0s (s m p b 1 1) sm s ( 1 p 2) b (s m 1s p n)b m
3) 随动系统中,取θ为输出
d
dt
Tmd d22td d tk 1euaT JmM L
4 在实际使用中;转速常用nr/min表示,设 ML=0
2 6 n 0 3 n代 02 入 2, 2k'e令 ke3 0
TaTmdd2n 2tTmd dn tnk1'eua
24 线性系统的传递函数 一 复习拉氏变换及其性质
方程数与变量数相等 5) 联立上述方程,消去中间变量,得到只包含输入 输出的方程式。 6) 将方程式化成标准形。
与输出有关的放在左边,与输入有关的放在右边,导数项按 降阶排列,系数化为有物理意义的形式。
2 2.2 机械平移系统举例
三个基本的无源元件:质量m,弹簧k,阻尼器f 对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv
2微分定理
Lddx(tt)sX(s)x(0)
Ld2 dx2 (tt)s2X(s)sx (0)x (0)
若 x ( 0 ) x ( 0 ) 0 ,则
Lddx(tt) sX(s)
d2x(t)
L
dt2
s2X(s)
…
dnx(t)
L
dtn
snX(s)
3积分定律
Lx (t)d t1X (s)1x ( 1 )(0 )
系统处于平衡状态。
K m y(t)
3按牛顿第二定律列写原始方程;即
d2y FF(t)F k(t)F f(t)md2t
自动控制理论邹伯敏PPT第二章
等其它模型均由它而导出 状态变量描述 状态方程是这种描述的最基本形式
建立系统数学模型的方法
实验法:人为施加某种测试信号,记录基本输出响应。
解析法:根据系统及元件各变量之间所遵循的基本物理
定律,列写处每一个元件的输入-输出关系式。
2019/11/2
第二章 控制系统的数学模型
2
自动控制理论
第一节 列写系统微分方程的一般方法
即
Gs C Rssb a00ssm n b a1 1ssm n 1 1
bm 1sbm an1san
Gs就是系统的传递函数。
( 2-30)
其中 C, sLCt;RsLRt它们之间的传
方框图表示。
2019/11/2
第二章 控制系统的数学模型
15
自动控制理论
由式(2-17)减式(2-15),式(2-17)减式(2-15)后得
iBRNdd t u1 E GC 1
( 2-19) ( 2-20)
式(2-19)、(2-20)均为增量方程,它们描述了发电机在平衡点 A处受到△u1作用后的运动过程。对增量方程式而言,磁化曲线的坐 标原点不是在O点,而是移到A点。因而发电机的初始条件仍为零。 式中N为励磁绕组的匝数。
n0
1 Ce
EG
(n0为电动机的空载转速)
(2-9 )
测速发电机
输入量是电动机的转速n,输出量是测速发电机的电压Ufn ,假设 测速发电机的磁场恒定不变,则Ufn与n成线性关系即有
2019/11/2
第二章 控制系统的数学模型
11
自动控制理论
而
ufn an
(2-10)
ue ug-ufn
(2-11)
建立系统数学模型的方法
实验法:人为施加某种测试信号,记录基本输出响应。
解析法:根据系统及元件各变量之间所遵循的基本物理
定律,列写处每一个元件的输入-输出关系式。
2019/11/2
第二章 控制系统的数学模型
2
自动控制理论
第一节 列写系统微分方程的一般方法
即
Gs C Rssb a00ssm n b a1 1ssm n 1 1
bm 1sbm an1san
Gs就是系统的传递函数。
( 2-30)
其中 C, sLCt;RsLRt它们之间的传
方框图表示。
2019/11/2
第二章 控制系统的数学模型
15
自动控制理论
由式(2-17)减式(2-15),式(2-17)减式(2-15)后得
iBRNdd t u1 E GC 1
( 2-19) ( 2-20)
式(2-19)、(2-20)均为增量方程,它们描述了发电机在平衡点 A处受到△u1作用后的运动过程。对增量方程式而言,磁化曲线的坐 标原点不是在O点,而是移到A点。因而发电机的初始条件仍为零。 式中N为励磁绕组的匝数。
n0
1 Ce
EG
(n0为电动机的空载转速)
(2-9 )
测速发电机
输入量是电动机的转速n,输出量是测速发电机的电压Ufn ,假设 测速发电机的磁场恒定不变,则Ufn与n成线性关系即有
2019/11/2
第二章 控制系统的数学模型
11
自动控制理论
而
ufn an
(2-10)
ue ug-ufn
(2-11)
自动控制原理(经典控制论)课程ppT
自动控制原理
第二章 线性系统的数学模型
单摆(非线性)
是未知函数 的非线性函数,
所以是非线性模型。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
液面系统(非线性)
是未知函数h的非线性函数,所以是非线性模型。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
2.2.2 线性化问题的提出 线性系统优点:
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
单变量函数泰勒级数法
函数y=f(x)在其平衡点(x0, y0)附近的泰勒级数展开式为:
略去含有高于一次的增量∆x=x-x0的项,则:
注:非线性系统的线性化 模型,称为增量方程。
注:y = f (x0)称为系统的 静态方程
浙江省精品课程
自动控制原理
增量方程 增量方程的数学含义
将参考坐标的原点移到系统或元件的平衡工作点上, 对于实际系统就是以正常工作状态为研究系统运动的起始 点,这时,系统所有的初始条件均为零。
注:导数根据其定义是一线性映射,满足叠加原理。
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多变量函数泰勒级数法
增量方程 静态方程
第二章 线性系统的数学模型
微分定理
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多重微分
原函数的高阶导数 像函数中s的高次代数式
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
积分定理
浙江省精品课程
自动控制原理
第二章 线性系统的数学模型
多重积分
原函数的n重积分像函数中除以sn
控制工程基础-控制系统的数学模型(1)(控制工程基础)54页PPT
自动控制理论主要研究的问题
分析:在系统的结构和参数已经确定的条件下, 对系统的性能(稳定性、稳态精度、动态性能、 鲁棒性)进行分析,并提出改善性能的途径。
综合:根据系统要实现的任务,给出稳态和动态 性能指标,要求组成一个系统,设计确定系统的 结构及适当的参数,使系统满足给定的性能指标 要求。
2020/4/17
2020/4/17
第二讲 控制系统的数学模型(1)
8
系统数学模型建立实例
电工系统- R,L,C串联电路
机械系统-机械平移系统
机电系统-恒定磁场他激直流电动机
2020/4/17
第二讲 控制系统的数学模型(1)
9
机械平移系统示意图
由弹簧-质量-阻尼器组成的
机械平移系统,外力f(t)为 输入信号,位移y(t)为输出
信号,列写其运动方程式。
k-弹簧的弹性系数; m-运动部件的质量; -阻尼器的粘性摩擦系数。
2020/4/17
第二讲 控制系统的数学模型(1)
10
机械平移系统的基本关系
假设弹簧和阻尼器运动部分的质量忽略不计,运动部件
的质量是集中参数。则运动部件产生的惯性力为:
f1
m
d2y dt 2
设弹簧的变形在弹性范围内,则弹性力为:
第二讲 控制系统的数学模型(1)
14
相似系统(2)
相似系统的动态特性也相似,因此可以通过研究电路系 统的动态特性研究机械系统的动态特性。
由于电工电子电路具有易于实现和变换结构等优点,因 此常采用电工电子电路来模拟其它实际系统,这种方法 称为电子模拟技术。
在建立系统的数学模型后,通过数字计算机求解系统的 微分方程(或状态方程)来研究实际系统的动态特性, 称为计算机仿真技术。
分析:在系统的结构和参数已经确定的条件下, 对系统的性能(稳定性、稳态精度、动态性能、 鲁棒性)进行分析,并提出改善性能的途径。
综合:根据系统要实现的任务,给出稳态和动态 性能指标,要求组成一个系统,设计确定系统的 结构及适当的参数,使系统满足给定的性能指标 要求。
2020/4/17
2020/4/17
第二讲 控制系统的数学模型(1)
8
系统数学模型建立实例
电工系统- R,L,C串联电路
机械系统-机械平移系统
机电系统-恒定磁场他激直流电动机
2020/4/17
第二讲 控制系统的数学模型(1)
9
机械平移系统示意图
由弹簧-质量-阻尼器组成的
机械平移系统,外力f(t)为 输入信号,位移y(t)为输出
信号,列写其运动方程式。
k-弹簧的弹性系数; m-运动部件的质量; -阻尼器的粘性摩擦系数。
2020/4/17
第二讲 控制系统的数学模型(1)
10
机械平移系统的基本关系
假设弹簧和阻尼器运动部分的质量忽略不计,运动部件
的质量是集中参数。则运动部件产生的惯性力为:
f1
m
d2y dt 2
设弹簧的变形在弹性范围内,则弹性力为:
第二讲 控制系统的数学模型(1)
14
相似系统(2)
相似系统的动态特性也相似,因此可以通过研究电路系 统的动态特性研究机械系统的动态特性。
由于电工电子电路具有易于实现和变换结构等优点,因 此常采用电工电子电路来模拟其它实际系统,这种方法 称为电子模拟技术。
在建立系统的数学模型后,通过数字计算机求解系统的 微分方程(或状态方程)来研究实际系统的动态特性, 称为计算机仿真技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建模方法: 分析法(理论建模) 实验法(系统辨识)
着重介绍
分析法适用于对系统中各元件的物理、化学等性质比较清楚 的情况。根据系统的实际结构参数,从系统各元件所依据的 物理、化学等规律出发建立系统的数学模型 如果不了解系统的运动规律,则应使用实验法建立数学模型, 即:在系统或元件的输入端加入一定形式的输入信号,再根据 测量的输出响应建立其数学模型
(an s n an 1s n1 a1s a0 )Y ( s) (bm s m bm1s m1 b1s b0 ) X ( s)
Y ( s) bm s m bm1s m1 b1s b0 M (S ) G( S ) n n 1 X (s) an s an1s a1s a0 N (S )
第二章 自动控制系统的数学模型
4. 非线性系统的线性化(小偏差线性化)
原则上讲,实际物理系统都是非线性系统 两个基本假设: (1)系统中的变量在某一工作点附近作微小变化; (2)非线性特性在该工作点可导.
定义:将非线性微分方程转化为线性微分方程的 方法称为小偏差线性化.
方法:其非线性特性曲线可以用该工作点的切线代替
第二章 自动控制系统的数学模型
第二章:自动控制系统的数学模型
系统的数学模型:
描述系统中各个变量之间关系的数学形式和方法—数学表达式 变量之间关系
静态关系
动态关系 控制理论研究的对象 基础
数 学 模 型
时域模型—微分方程
复频域模型—传递函数 框图,信流图
频域模型—频率特性、Bode图
第二章 自动控制系统的数学模型
y(t)
1 d y(t ) 2 2 2 n dt n dt
2
1 k 1 dy(t ) k y(t ) kF (t )
f 2 km
k n m
第二章 自动控制系统的数学模型
1 d 2u2 (t ) 1 du2 (t ) 2 u2 (t ) u1 (t ) 2 2 n dt n dt 1 d 2 y(t ) 1 dy(t ) 2 y(t ) kF (t ) 2 2 n dt n dt
第二章 自动控制系统的数学模型
线性化的方法
1)将非线性函数在工作点X0附近展成台劳级数,略去 高次项,得到一个以增量为变量的线性函数
df 1 d2 f 2 x x0 x x0 y f ( x0 ) 2 dx x 2! d x x 0 0 x x0 很小,其二次方及二次方以上各 2)由于 项可略去,得:
dT C KT A K1u dt
Δu为电路控制电压的增量
得到一阶微分方程
第二章 自动控制系统的数学模型
第二节 线性常微分方程的解
• 求解方法:经典法;拉氏变换法。零状态响应;零输入 响应。 • 拉氏变换法求解步骤: 1.考虑初始条件,对微分方程中的每一项分别进行拉氏变 换,得到变量s的代数方程; 2.求出输出量拉氏变换函数的表达式; 3.对输出量拉氏变换函数求反变换,得到输出量的时域表 达式,即为所求微分方程的解。
第二章 自动控制系统的数学模型
定义:线性定常系统在零初始条件下,输出量的拉 氏变换与输入量的拉氏变换之比,称为传递函数
d n y (t ) d n 1 y (t ) dy(t ) an an 1 a1 a0 y (t ) n n 1 dt dt dt d m x(t ) d m 1 x(t ) dx(t ) bm bm1 b1 b0 x(t ) m m 1 dt dt dt
df ( x) y dx
x
x x0
第二章 自动控制系统的数学模型
3)两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f 2 2 y f ( x10 , x20 ) ( x1 x10 ) ( x2 x20 ) 2 ( x1 x10 ) ( x1 x10 )(x2 x20 ) 2 ( x2 x20 ) x 2! x x2 x1x2 x2 1 1
电阻为R的电炉 丝 0
t
dQ 电炉丝产热速率单位为卡/秒 dt
设电炉丝每秒向周围散热速率为Фs, Фs=K(T-Te) 实际每秒使电炉升温热量为Ф- Фs, 令电炉热容量为C,单位为卡/℃
dT C S dt
dT u2 则: C KT 0.24 KTe dt R
函数变化与自变量变化成线性比例关系
y K1x1 K 2 x2
注意: ①适用于不太严重的非线性系统,其非线性函数可利用泰勒级数展开 ②实际运行情况是在某个平衡点附近,且变量只能在小范围内变化 ③k值随静态工作点而变 ④只适用于无间断点、折断点的单值函数
第二章 自动控制系统的数学模型
例:某一电加热炉,输入量为电压u,输出量为温度T,求系 统数学模型
比较上2例可见,虽然它们为两种不同的物理系统,但它 们的数学模型的形式却是相同的,我们把具有相同数学模型 的不同物理系统称为相似系统,例如RLC串联网络系统和弹簧 -质量-阻尼器系统即为一对相似系统。在相似系统中,占据 相应位置的物理量称为相似量。 相似系统揭示了不同物理现象之间的相似性,可以进行仿真 研究。
第二章 自动控制系统的数学模型
例二:如图RLC电路,试列写以U1(t)为输入量,U2(t)为输出 量的网络微分方程 L R
i(t)
di (t ) L u2 (t ) Ri (t ) u1 (t ) dt
u1(t)
C
u2(t)
1 u2 (t ) i (t )dt c
d u2 (t ) du2 (t ) LC RC u2 (t ) u1 (t ) 2 dt dt
第二章 自动控制系统的数学模型
3. 举例
1)电气系统
电气系统中最常见的装置是由电阻、电感、电容、运算 放大器等元件组成的电路,又称电气网络。电阻、电感、电 容这类本身不含有电源的器件称为无源器件,运算放大器这 种本身包含电源的器件称为有源器件。仅由无源器件组成的 电气网络称为无源网络。如果电气网络中包含有源器件或电 源,就称为有源网络。
数学模型
----------
物理模型
第二章 自动控制系统的数学模型
第一节 控制系统的时域数学模型
-----微分方程的建立
一、微分方程的建立
1.线性定常微分方程的一般形式 控制系统中的输出量和输入量通常都是时间t的函数。很多常见 的元件或系统的输出量和输入量之间的关系都可以用一个微分 方程表示,方程中含有输出量、输入量及它们各自对时间的导 数或积分。这种微分方程又称为动态方程、运动方程或动力学 方程。微分方程的阶数一般是指方程中最高导数项的阶数,又 称为系统的阶数。
基本定律:基尔霍夫电压、电流定律 欧姆定律
第二章 自动控制系统的数学模型
例一:列写下图的运动方程
i (t)
R
Ri u2 u1
u1(t)
C
u2(t)
du 2 ic dt
du 2 化简, 得 RC u 2 u1 dt du 2 u 2 u1 dt
RC
2
R L 2 C
1 d 2u2 (t ) 1 du2 (t ) 2 u2 (t ) u1 (t ) 2 2 n dt n dt
n
1 LC
第二章 自动控制系统的数学模型
2)机械系统
机械系统指的是存在机械运动的装置,它们遵循物理学 的力学定律。机械运动包括直线运动(相应的位移称为线位 移)和转动(相应的位移称为角位移)两种
3、传递函数只适合单输入、单输出系统。若某系统选择不同 变量作为输入输出信号,得到传递函数不同。若系统由多个输 入,除了一个有关输入外,其他输入为0 4、传递函数不能反映系统或元件的物理结构,许多物理性质 截然不同的系统或元件,它们可以有相同形式的传递函数;同 一物理系统,由于描述不同端口关系,传递函数可能不同。 5、传递函数只取决于系统和元件的结构,与输入信号无关
第二章 自动控制系统的数学模型
第三节 控制系统的复频域数学模型
-----传递函数
微分方程求解---复杂,引入传递函数
一、传递函数的概念和定义
一个控制系统性能的好坏,取决于系统的内在因素,即系 统的结构参数,而与外部施加的信号无关。因而,对于一个 控制系统品质好坏的评价可以通过对系统结构参数的分析来 达到,而不需要直接对系统输出响应进行分析。 传递函数是在拉氏变换基础之上引入的描述线性定常系统 或元件输入、输出关系的函数。它是和微分方程一一对应的 一种数学模型,它能方便地分析系统或元件结构参数对系统 响应的影响。 • 当初始条件为零时,线性定常系统或元件输出信号 c(t) 的拉氏变换式与输入信号 r ( t )的拉氏变换式之比,称为该 系统或元件的传递函数,记为G(s)
基本定律:力学定律 牛顿第二定律 牛顿转动定律
第二章 自动控制系统的数学模型
例1:试列写质量m在外力F作用下位移y(t)的运动方程。
解: 阻尼器的阻尼力: 弹簧弹性力:
2
dy (t ) F1 (t ) f dt
k m
f
F
F2 (t ) ky(t )
d y( t ) m F ( t ) F1 ( t ) F2 ( t ) 2 dt d 2 y( t ) dy( t ) f ky( t ) F ( t ) 整理得: m 2 dt dt
第二章 自动控制系统的数学模型
二、传递函数的几点说明
1、传递函数和微分方程一样,表示系统的运动特性,是系统 数学模型的一种表示形式,它与系统的运动方程一一对应。即 传递函数与微分方程有相通性,t---S,可经简单置换而转换 2、传递函数是由Laplace变换导出的,它只适用于线性定常系 统,且只能反映零初始条件下的全部运动规律