铝及铝合金焊接施工工艺标准

合集下载

EN 15614-2铝及铝合金焊接工艺评定试验标准(中文版)

EN 15614-2铝及铝合金焊接工艺评定试验标准(中文版)
ICS XXX 标准分类号
国际标准
ISO 15614-2-2005
金属材料焊接工艺规范及资格评定 焊接工艺性试验 第 2 部分 铝和铝合金的弧焊
Specification and Qualification of welding procedures for metallic materials-Welding procedure test-
__________________________
1) 待出版。
7
引言
凡自本标准发布之日起进行的焊接工艺性试验,均应符合本标准。 此前按照原标准、规程或者以前公布的本标准版本进行的焊接工艺性试验,并不 因本标准的公布而作废。
瑞士出版
2
前言
国际标准化组织(ISO)是国家标准机构(ISO 成员机构)的国际联盟。《国 际标准》通常由国际标准组织技术委员会制定。各成员机构有权派代表参加就某 主题成立的技术委员会。与国际标准化组织(ISO)有联系的政府和非政府国际 组织,也参与标准制定工作。在所有电工技术标准化问题上,国际标准化组织 (ISO)与国际电工委员会(IEC)均有密切合作。 《国际标准》根据 ISO/IEC 指令第二部分中规定的规则起草。
Part 2:Arc welding of aluminium and its alloys
第一版 2005-05-15
参考号 ISO 15614-2∶2005(E)
© ISO 20051源自© ISO 2005版权所有。 未经位于下述地址的国际标准组织(ISO)或者所在国国际标准组织(ISO)成
员机构书面许可,不得以任何形式 或以任何电子或机械手段,包括影印和缩微胶卷的方式,
6
前言
本标准(EN ISO 15614-2:2005)已由技术委员会 CEN/TC 121“焊接”制定, 该技术委员会秘书处工作由德国标准化组织(DIN)承担。 本《欧洲标准》一经出版或签署应享受国家标准的地位,最迟于 2005 年 10 月生 效。凡与本标准不一致的各国家标准最迟应于 2005 年 10 月废止。 本标准取代 EN 288-4:1992。 取代 EN288-4 EN ISO 15614 的总标题为《金属材料焊接工艺规范及资格评定:焊接工艺试验》, 包括以下几部分: -第一部分:钢的弧焊和气焊以及镍和镍合金的弧焊 -第二部分:铝和铝合金的弧焊 -第三部分:铸铁弧焊焊接工艺性试验 1) -第四部分:铸铝精整焊接 1) -第五部分:钛、锆以及钛合金和锆合金的弧焊 -第六部分:铜和铜合金的弧焊 l) -第七部分:堆焊1) -第八部分:管材到管板接缝的焊接 -第十部分:高压干焊 1) -第十一部分:电子和激光焊 -第十二部分:点焊、缝焊和凸焊 -第十三部分:电阻对接焊和闪焊 l) 根据《CEN/CENELEC 内部条例》,下列国家的国家标准组织必须实行本欧洲标 准: 奥地利、比利时、塞浦路斯、捷克共和国、丹麦、爱沙尼亚、芬兰、法国、 德国、希腊、匈牙利、冰岛、爱尔兰、意大利、拉脱维亚、立陶宛、卢森堡、马 尔他、荷兰、挪威、波兰、葡萄牙、斯洛伐克、斯洛文尼亚、西班牙、瑞典、瑞 士和英国。

铝合金激光焊接标准

铝合金激光焊接标准

铝合金激光焊接标准一、概述本标准规定了铝合金激光焊接的基本要求、工艺参数、质量检验和安全操作等方面的内容。

本标准适用于铝合金激光焊接的生产和应用。

二、基本要求1.铝合金激光焊接应采用高精度、高稳定性的激光焊接设备,确保焊接过程的稳定性和焊缝质量的可靠性。

2.铝合金激光焊接材料应符合相关标准要求,并经过严格的质量控制。

3.铝合金激光焊接工艺应经过充分的试验验证,确保工艺参数的合理性和可行性。

4.铝合金激光焊接操作人员应经过专业的培训和考核,具备相应的技能和知识。

三、工艺参数1.激光功率:根据焊接材料厚度、焊接速度等因素确定合适的激光功率。

2.焊接速度:根据激光功率、材料厚度等因素确定合适的焊接速度。

3.焦点位置:根据材料厚度、激光功率等因素确定合适的焦点位置。

4.保护气体:采用高纯度的氩气或其他保护气体,以防止氧化和污染。

5.冷却方式:采用水冷或风冷等方式对激光焊接头进行冷却,以延长其使用寿命和提高焊接稳定性。

四、质量检验1.外观检查:检查焊缝表面是否平整、光滑,有无气孔、裂纹等缺陷。

2.气密性检验:采用压力试验等方法对焊缝进行气密性检验,以确保其密封性能符合要求。

3.无损检测:采用X射线、超声波等方法对焊缝进行无损检测,以发现内部缺陷。

4.力学性能检验:对焊接试样进行拉伸、冲击等力学性能检验,以确保其满足使用要求。

五、安全操作1.激光焊接设备应设置专门的防护装置和安全警示标志,确保操作人员安全。

2.操作人员应穿戴防护服、防护眼镜等安全防护用品,防止激光伤害和高温烫伤。

3.在操作过程中,应注意观察周围环境,避免人员和物品受到损伤。

4.在焊接过程中,应注意防止飞溅物和有害气体的污染和危害。

5.在使用激光焊接设备时,应注意遵守相关安全规定和操作规程,确保设备运行安全可靠。

六、其他要求1.在铝合金激光焊接过程中,应注意控制变形和残余应力,以避免影响焊缝质量和工件精度。

2.在焊后处理时,应根据工件的材料类型和结构特点等因素选择合适的处理方法,如热处理、矫直等,以确保工件的质量和使用性能。

铝合金材料的焊接工艺流程

铝合金材料的焊接工艺流程

铝合金材料的焊接工艺流程
铝合金材料的焊接工艺流程通常包括以下几个步骤:
1. 准备工作:首先检查待焊接的铝合金材料表面是否清洁,如有油脂或氧化物等杂质应予清除。

同时根据焊接材料的要求选择合适的焊接电极和填充材料。

2. 设备设置:根据焊接工艺要求,调节焊接设备的电流、电压、焊接速度等参数。

3. 预热处理:对于厚度较大的铝合金材料,通常需要进行预热处理,以提高焊接质量和增加焊接接头的强度。

4. 定位和夹持:将待焊接的铝合金材料定位在焊接台上,并使用夹具将其夹紧,以确保焊接过程中的稳定性。

5. 焊接操作:根据焊接要求,采用合适的焊接方式,如TIG(氩弧焊)或MIG (气体保护焊)等,进行焊接操作。

其中,TIG焊接常用于较高质量的焊接,而MIG焊接适用于较大规模和较高生产效率的焊接。

6. 检验和修整:焊接完成后,需要对焊缝进行外观和质量检查,如有需要,可以进行修整和后处理工作,如打磨、抛光等。

7. 温度处理:对于某些需要提高焊接接头的强度和硬度的铝合金材料,可以进行温度处理,如退火、淬火等。

8. 检验和验收:通过非损检测等手段对焊接接头进行全面检测,以确保焊接质量符合相关标准和要求。

请注意,以上步骤只是一般的铝合金材料焊接工艺流程,具体的焊接工艺流程还需要根据具体情况进行调整和适应。

另外,在实际操作中,操作人员需要具备一定的焊接技能和经验,以确保焊接质量和安全性。

铝及铝合金零件的焊接工艺

铝及铝合金零件的焊接工艺

铝及铝合金零件的焊接工艺铝及铝合金材料密度低,强度高,热电导率高,耐腐蚀能力强,具有良好的物理特性和力学性能,因而广泛应用于工业产品的焊接结构上。

长期以来,由于焊接方法及焊接工艺参数的选取不当,造成铝合金零件焊接后因应力过于集中产生严重变形,或因为焊缝气孔、夹渣、未焊透等缺陷,导致焊缝金属裂纹或材质疏松,严重影响了产品质量及性能。

1铝合金材料特点铝是银白色的轻金属,具有良好的塑性、较高的导电性和导热性,同时还具有抗氧化和抗腐蚀的能力。

铝极易氧化产生三氧化二铝薄膜,在焊缝中容易产生夹杂物,从而破坏金属的连续性和均匀性,降低其机械性能和耐腐蚀性能。

常见铝合金母材和焊丝的化学成分及机械性能。

广毅荣铜铝批发.2铝合金材料的焊接难点(1)极易氧化。

在空气中,铝容易同氧化合,生成致密的三氧化二铝薄膜(厚度约0.1-0.2μm),熔点高(约2050℃),远远超过铝及铝合金的熔点(约600℃左右)。

氧化铝的密度3.95-4.10g/cm3,约为铝的1.4倍,氧化铝薄膜的表面易吸附水分,焊接时,它阻碍基本金属的熔合,极易形成气孔、夹渣、未熔合等缺陷,引起焊缝性能下降。

(2)易产生气孔。

铝和铝合金焊接时产生气孔的主要原因是氢,由于液态铝可溶解大量的氢,而固态铝几乎不溶解氢,因此当熔池温度快速冷却与凝固时,氢来不及逸出,容易在焊缝中聚集形成气孔。

氢气孔目前难于完全避免,氢的来源很多,有电弧焊气氛中的氢,铝板、焊丝表面吸附空气中的水分等。

实践证明,即使氩气按GB/T4842标准要求,纯度达到99.99%以上,但当水分含量达到20ppm 时,也会出现大量的致密气孔,当空气相对湿度超过80%时,焊缝就会明显出现气孔。

(3)焊缝变形和形成裂纹倾向大。

铝的线膨胀系数和结晶收缩率约比钢大两倍,易产生较大的焊接变形的内应力,对刚性较大的结构将促使热裂纹的产生。

(4)铝的导热系数大(纯铝0.538卡/Cm.s.℃)。

约为钢的4倍,因此,焊接铝和铝合金时,比焊钢要消耗更多的热量。

焊接标准(铝和钢)

焊接标准(铝和钢)

第一铝材焊接的标准焊接方法:几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。

气焊和焊条电弧焊方法,设备简单、操作方便。

气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。

焊条电弧焊可用于铝合金铸件的补焊。

惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。

铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。

铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。

熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气) 焊前准备1、焊前清理:铝及铝合金焊接时,焊前应严格清除工件焊口及焊丝表面的氧化膜和油污;1)化学清洗:化学清洗效率高,质量稳定,适用于清理焊丝及尺寸不大、成批生产的工件。

可用浸洗法和擦洗法两种。

可用丙酮、汽油、煤油等有机溶剂表面去油,用40℃~70℃的5%~10%NaOH溶液碱洗3 min~7 min(纯铝时间稍长但不超过20 min),流动清水冲洗,接着用室温至60℃的30%HNO3溶液酸洗1 min~3 min,流动清水冲洗,风干或低温干燥。

2)机械清理:在工件尺寸较大、生产周期较长、多层焊或化学清洗后又沾污时,常采用机械清理。

先用丙酮、汽油等有机溶剂擦试表面以除油,随后直接用直径为0.15 mm~0.2 mm的铜丝刷或不锈钢丝刷子刷,刷到露出金属光泽为止。

一般不宜用砂轮或普通砂纸打磨,以免砂粒留在金属表面,焊接时进入熔池产生夹渣等缺陷。

另外也可用刮刀、锉刀等清理待焊表面。

清理后如存放时间过长(如超过24 h)应当重新处理。

2、垫板:铝合金在高温时强度很低,液态铝的流动性能好,在焊接时焊缝金属容易产生下塌现象。

为了保证焊透而又不致塌陷,焊接时常采用垫板来托住熔池及附近金属。

垫板可采用石墨板、不锈钢板、碳素钢板、铜板或铜棒等。

垫板表面开一个圆弧形槽,以保证焊缝反面成型。

铝合金焊接工艺

铝合金焊接工艺

铝合金焊接工艺铝合金焊接工艺铝合金具有重量轻、比强度高、耐腐蚀性好、无磁性、成形性好及低温性能好等特点,因此被广泛地应用于各种焊接结构产品中。

采用铝合金代替钢板材料焊接,结构重量可减轻50%以上。

然而,铝合金焊接也有几大难点:接头软化严重、表面易产生难熔的氧化膜、容易产生气孔和热裂纹、线膨胀系数大、热导率大。

因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。

焊接要求1.生产储存环境和辅助材料使用的要求1.1 生产储存环境温度、湿度的要求铝合金的生产和储存环境必须防尘、防水、干燥。

环境温度通常应控制在5℃以上,湿度控制在70%以下。

焊接环境的湿度不能太高,湿度过高会使焊缝中气孔的产生几率明显增加,影响焊接质量。

应设置挡风板以避免室内穿堂风的影响。

1.2 焊丝及送气软管的使用要求焊材的使用应注意储存。

铝焊丝要与钢焊材分开储存。

焊接完成后,要在焊机中取出焊丝进行密封处理,防止污染。

送气软管最好使用特富龙软管(Teflon)。

1.3 工装的选用铝合金焊接最好选用点接触形式的工装,以减小工装与工件的接触面积。

如果工装对工件是面接触,会带走工件的热量,加速了熔池的凝固,不利于焊缝气孔的排除。

2.焊丝及保护气体的选用2.1 焊丝的选用铝及铝合金焊丝的选用应使对接接头的抗拉强度、塑性达到规定要求。

焊丝的选用主要按照下列原则:纯铝焊丝的纯度一般不低于母材,铝合金焊丝的化学成分一般与母材相应或相近,铝合金焊丝中的耐蚀元素的含量一般不低于母材。

异种铝材焊接时应按耐蚀较高、强度高的母材选择焊丝。

不要求耐蚀性的高强度铝合金可采用异种成分的焊丝,如铝硅合金焊丝SAlSi一1等(注意强度可能低于母材)。

针对5083母材的焊接,建议选择5087/AlMg4.5MnZr焊丝,因为该焊丝具有良好的抗裂性、抗气孔性和强度性能。

在选择焊丝规格时,应优先选择大直径规格的焊丝。

相同重量的焊丝,大规格焊丝的表面积要小很多,因此表面污染较少,氧化区域也较小,焊接质量更容易达到要求。

铝及铝合金管水平固定焊接工艺

铝及铝合金管水平固定焊接工艺摘要:手工交流氩弧焊在铝及铝合金管道焊接中应用较为广泛,解决实际焊接中的容易产生铝的氧化、气孔、热裂纹、塌陷、接头强度不等、焊接接头的耐蚀性性能差等方面因素。

本文着重介绍了手工交流氩弧焊的焊接铝及铝合金管工艺,以及在水平固定管对接焊接中施焊操作技术应用。

关键词:交流氩弧焊;铝及铝合金管;水平固定在国家大众创业万众创新制造强国中,铝及铝合金管的焊接技术在航空航天、汽车、电工、化工、交通运输、国防等应用越来越广泛,化学工业管道的焊接、民用天燃气管道安装和维修也越来越多,尤其是铝合金管在焊接中有难度的焊接操作。

由于铝及铝合金管具有独特的物理、化学性能,焊接容易产生铝的氧化、气孔、热裂纹、塌陷、接头强度不等、焊接接头的耐蚀性性能差等方面因素。

在焊接操作中存在焊缝成形较差、容易焊穿、表面有气孔、有局部裂纹、铝合金管内壁氧化等现象,对焊接质量有很大的影响。

如何克服铝及铝合金管焊接中存在难度和在焊接中容易产生的焊接缺陷,5A06(LF6)铝及铝合金管从三个方面:一方面是从焊接工艺方面铝的氧化、气孔、热裂纹、塌陷、接头强度不等、焊接接头的耐蚀性性能;二方面是从焊接设备选用;三方面是从实际操作时易出现的焊接缺陷解决方法等问题进行浅议。

1.在焊接工艺方面克服铝的氧化、气孔、热裂纹、塌陷、接头强度不等焊接缺陷。

(1)铝的氧化防止铝的氧化就是在焊前必须清除氧化膜;清除氧化膜方法有①机械清理法先用有机溶剂(丙酮或酒精)擦拭表面以除油,然后用细铜丝刷或不锈钢丝刷刷净(金属丝直径不宜大于0.15 mm),刷到露出金属光泽为止。

另外也可以用刮刀清理。

一般不宜用砂轮打磨,因为砂粒留在金属表面,焊接时会产生缺陷。

②化学清洗法化学清洗效率高,质量稳定,化学清洗法见表3。

表3 5A06铝合金管化学清洗法(2)气孔焊接时,应严格清理,加强保护,选择交流氩弧焊焊接工艺,以防止气孔产生。

(3)热裂纹为了防止热裂纹,焊前应进行预热和选择合适的焊丝成分ER5356。

铝及铝合金的焊接工艺

铝及铝合金的焊接工艺铝及铝合金的焊接特点(1) 铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3 )熔点高、非常稳定,不易去除。

阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。

铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。

焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。

在焊接过程加强保护,防止其氧化。

钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。

在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。

(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。

铝的热导率则是奥氏体不锈钢的十几倍。

在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。

(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。

铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。

铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。

生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。

在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。

在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。

根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi 條(硅含量4.5%~6%)焊丝会有更好的抗裂性。

(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。

高温铝强度很低,支撑熔池困难,容易焊穿。

铝及铝合金摩擦焊接加工工艺

铝及铝合金摩擦焊接加工工艺
铝及铝合金摩擦焊接加工工艺,是通过摩擦搅拌的方法使两个待焊接的铝及铝合金表面产生摩擦热,并通过控制摩擦的速度、压力、时间等参数,使两个表面的原子发生相互扩散、溶解,形成合金,从而实现焊接的过程。

铝及铝合金摩擦焊接加工工艺适用于各种铝及铝合金材料的焊接,可用于铝合金压力容器、汽车、飞机、火车等轻量化领域,也可用于船舶、轨道交通、建筑等领域。

铝及铝合金摩擦焊接加工工艺的关键在于控制摩擦的速度、压力、时间等参数,以实现待焊接表面的原子发生相互扩散、溶解,形成合金。

具体操作步骤包括:
准备待焊接的铝及铝合金材料,确保表面清洁、干燥、无油污;
将待焊接的铝及铝合金材料固定在夹具上;
将夹具固定在摩擦焊接机上,并调整摩擦焊接机的参数,使其符合待焊接材料的要求;
将待焊接的铝及铝合金材料放置在摩擦焊接机上,并开始进行摩擦焊接;
观察焊接过程,调整摩擦焊接机的参数,以获得更好的焊接效果;
停止摩擦焊接,取下待焊接的铝及铝合金材料。

需要注意的是,铝及铝合金摩擦焊接加工工艺对设备和材料有一定的要求,需要选择适当的摩擦焊接机,并确保待焊接材料的表面清洁干燥,无油污。

同时,在进行摩擦焊接时,需要根据待焊接材料的要求,调整摩擦焊接机的参数,以获得更好的焊接效果。

铝合金TIG和MIG焊接工艺简介

场景适用性
由于TIG焊接工艺对高熔点材料具有较好的适应性,因此适用于精密仪器、航空航天、船舶制造等对焊缝质量要 求较高的领域。而MIG焊接工艺适用于一般工业制造、建筑、汽车制造等领域的大规模生产。
05 铝合金TIG和MIG焊接工 艺实践
焊接前的准备
清理工作
确保铝合金工件表面干净,无油污、锈迹和其他杂质,以便焊接 时能够形成良好的熔合。
操作要求高
TIG焊接需要较高的操作 技能和经验,焊接速度较 慢,成本相对较高。
TIG焊接的应用场景
航空航天领域
由于对焊接质量要求极高,TIG焊接广泛应用于航 空航天领域的铝合金结构焊接。
汽车工业
汽车工业中铝合金结构较多,TIG焊接常用于车身 结构、车架等部位的焊接。
压力容器
在压力容器制造中,TIG焊接可以用于保证容器的 高质量和安全性。
03 铝合金MIG焊接工艺
MIG焊接原理
Hale Waihona Puke MIG焊接是金属惰性气体焊接的一种,通过电弧熔化铝合金 母材和填充焊丝,利用惰性气体(如氩气)保护熔池,使熔 融金属与空气隔离,防止氧化。
焊接过程中,焊丝通过送丝机构连续或定长送入焊接熔池, 随着电弧的移动,熔化的焊丝与母材熔合在一起形成焊缝。
MIG焊接特点
焊丝选择
根据铝合金的种类和厚度选择合适的焊丝,确保焊缝的强度和耐腐 蚀性能。
设备检查
检查TIG或MIG焊接设备是否正常工作,包括电源、送丝机构、气 瓶等,确保设备处于良好状态。
焊接过程控制
焊接参数调整
01
根据铝合金的厚度和焊接要求,调整焊接电流、电压、速度等
参数,确保焊接质量。
焊接操作
02
在焊接过程中,保持焊枪稳定,控制焊丝的送进速度和角度,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铝及铝合金焊接施工工艺标准 1 适用范围 本工艺标准适用于铝及铝合金的手工钨极氩弧焊和熔化极氩弧焊的焊接。 2 施工准备 2.1 铝及铝合金的焊接除应执行本工艺标准外,还应符合国家颁布的有关标准、法律法规及规定。 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是不注日期的引用文件其最新版本适用于本标准 《铝及铝合金轧制板材》 GB/T-3880-1997 《铝及铝合金热挤压管》第一部分:无缝圆管 GB/T4437.1-2000 《铝及铝合金拉(轧)制无缝管》 GB/T6893-2000 《铝及铝合金焊丝》 GB/T10858 《铝及铝合金焊接管》 GB/T10571 《铝制焊接容器》 JB/T4734-2002 2.2 材料 2.2.1 一般规定 工程中使用的母材和焊丝应具备出厂质量合格证或质量复验合格报告,并优先选用已列入国家标准或行业标准的母材和焊丝,母材和焊丝应妥善保管,防止损伤、污染和腐蚀。当选用国外材料时,其使用范围应符合相应标准的规定,并应有该材料的质量证明书。 2.2.2 母材 2.2.2.1 工程选用的母材应符合现行的国家标准规定。 2.2.2.2 当对母材有特殊要求时,应在设计图样或相应的技术条件上标明。 2.2.2.3 施工单位对设备、容器和管道的材料的代用,必须事先取得原设计单位的设计修改证明文件,并对改动部位作详细记载。 2.2.2.4 损伤和锈蚀严重的母材不得在工程中使用。 2.2.3 焊接材料 2.2.3.1 母材焊接所选用的焊丝应符合现行的国家标准《铝及铝合金焊丝》GB/T10858的规定。 2.2.3.2 选用焊丝时应综合考虑母材的化学成分、力学性能及使用条件因素,并应符合下列规定。 (1)焊接纯铝时应选用纯度与母材相同或比母材高的焊丝。 (2)焊接铝锰合金时应选用含锰量与母材相近的焊丝或铝硅合金焊丝。 (3)焊接铝镁合金时应选用含镁量与母材相同或比母材高的焊丝。 (4)异种铝及铝合金的焊接应选用与抗拉强度较高的母材相应的焊丝 2.2.3.3 焊接时所使用的氩气应符合现行的国家标准《纯氩》GB4842的规定。 2.2.3.4 手工钨极氩弧焊电极应选用铈钨极,也可选用钍钨极,施焊前应根据焊接电流的大小正确选用钨极直径。 表2.2.3.4 钨极的最大许用电流宜符合下表规定 钨极直径mm φ3 φ4 φ5 φ6 φ7 最大许用电流A 140~160 220~240 260~280 350~370 380~420

2.3 作业人员 2.3.1 铝及铝合金施工应具有符合国家质量技术监督或国家压力容器、压力管道监察机构有关法规要求的质量管理体系。 2.3.2 主要作业人员:焊工,管道工,无损探伤工 2.3.3 从事铝及铝合金焊接的焊工必须持有国家质量技术监督检验检疫总局颁发的锅炉压力容器压力管道特殊作业操作资格证,及按有关标准要求考试合格的焊工担任。 2.3.4 铝及铝合金的无损探伤检测应由持有国家有关部门颁发的无损检测人员资格证书的人员担任。 2.4 主要工机具 2.4.1 手工钨极氩弧焊采用交流氩弧焊机。 2.4.2 熔化极氩弧焊机采用半自动熔化极氩弧焊机。 2.4.3 角向磨光机及配套的铣刀片、不锈钢丝刷、锉刀、刮刀等机械工具。 2.4.4 水冷式氩弧焊枪。 3 施工工艺 3.1 焊接工艺评定 铝及铝合金材料的焊接工艺评定应当按JB/T4734-2002《铝制焊接容器》附录B的要求评定,或者按设计要求的标准进行评定。 3.2 焊工培训及考试 3.2.1 从事铝及铝合金材料焊接的焊工应进行培训和考试,考试包括基本知识和焊接操作技能两部分,基本知识考试合格后才能参加操作技能的考试,考试内容应与焊工所从事的工作范围相适应。 3.2.2 铝及铝合金焊接的焊工考试可以按JB/T4734-2000《铝制焊接容器》附录A铝容器焊工考试规则的要求进行。 衬铝容器的焊工考试分别按铝及钢各自的考试规则进行,即铝的焊工考试按JB/T4734附录A进行,钢的焊工考试按国家质量监督检验检疫总局颁发的《锅炉压力容器压力管道焊工考试与管理规则》进行。 3.3 焊接工艺流程

健全质量管理体系 焊接工艺评定 焊工培训及考试 焊接工艺指导书

施工前准备

材料入库及验证 焊接设备及焊枪调试及检查

焊接工具配备 焊缝组对质量检查并验收

施焊 严格执行工艺纪律及过程控制 焊后外观检查 无损探伤 母材焊材质量证明书

外观检查 3.4 施工过程 3.4.1 施工单位在焊接施工前应根据焊接工艺评定报告编制焊接工艺规程(或焊接工艺指导书、焊接工艺卡)。 3.4.2 焊接场所应保持清洁,并有防风防雨雪措施,相对湿度一般不应大于80%,环境温度应不低于5℃。 3.4.3 使用的氩弧焊机必须有适合焊接的电特性和足够的电流容量,且具有参数稳定,调节灵活和安全可靠的使用性能。 3.4.4 铝材可采用机械或等离子弧切割下料,坡口加工应采用机械方法,加工后的坡口表面应平整且无毛刺和飞边,坡口型式和尺寸应根据接头型式、母材厚度、焊接位置、焊接方法、有无垫板及使用条件等,并参照焊接工艺评定结果确定。 3.4.5 施工中可根据结构形式、焊接位置及施工条件,在焊接背面加临时垫板,若焊缝背面加永久性保留垫板,应征得原设计单位同意。垫板可使用不锈钢、碳钢或铜等对焊缝质量无不良影响的材料。 3.4.6 施焊前应将焊丝、焊件坡口及其附近表面的油污和氧化膜清除(若使用垫板其表面亦按同样要求清除),清除顺序及方法如下。 3.4.6.1 用丙酮或四氯化碳等有机溶剂除去表面油污,坡口两侧的清除范围应不小于50mm。 3.4.6.2 清除油污后,焊丝应采用化学法,坡口宜采用机械法(也可采用化学法)清除表面氧化膜。 机械法:坡口及其附近表面可用铣刀铣、锉削、刮削或直接用直径为0.2mm左右的不锈钢丝刷清除至露出金属光泽,两侧的清除范围距坡口边缘应不小于30mm,使用的不锈钢丝刷应定期进行脱脂处理。 化学法:用约70℃,5%~10%的NaOH溶液浸泡30~60分钟后,接着用约15%的HNO3(常温)浸泡2min左右后,用温水洗净,再进行100℃左右的烘干,使其完全干燥。 3.4.6.3 清理好的焊件和焊丝在焊前严禁沾污,并在8h内施焊,否则应重新进行清理。 3.4.7 焊丝选用 3.4.7.1 焊丝(包括填充丝)应使用焊接接头的抗拉强度不低于母材标准下限值或规定值,耐蚀性能和塑性不低于母材或与母材相当,能满足使用要求而且具有良好的焊接工艺性能。 焊丝一般采用GB/T10858中的相应牌号,也可采用与母材牌号相当的铝线材作焊丝,线材可按GB/T3197《焊条用铝及铝合金线材》。 3.4.7.2 在施焊母材(容器、管道)要求耐蚀性的情况下,当母材为同牌号纯铝时,焊丝纯度不得低于母材,当母材为同牌号铝合金时,焊丝所含镁、锰等耐蚀合金元素的含量范围不得低于母材。当异种牌号的铝材焊接时应按耐蚀性能高的母材选用焊丝。 3.4.7.3 不宜将SalMg-2、SalMg-3、SalMg-5以及含镁量高于3%的焊丝用于接触65℃以上腐蚀介质的铝制容器和管道。 3.4.7.4 铝及铝合金焊丝选用见下表 表3.4.7.4 铝及铝合金焊丝选用 序号 同种母材牌号 焊 丝 序号 异种母材 焊 丝 1 1060 SAL-3 1 纯铝+铝锰合金 SAIMn 2 1050A SAL-3 2 纯铝、铝锰合金+5052、5A02 SAlMg-1、SAlMg-5 3 1200 SAL-1 3 纯铝+铝锰合金+5A03 SAlMg-2 4 3003 SAIMn 4 纯铝+铝锰合金+5083、5086 SAlMg-3 5 3004 SAIMn 5 纯铝+铝锰合金+5A06、5A05 SAlMg-5 6 5052 SAlMg-1 7 5A02 SAlMg-1 8 5A03 SAlMg-2 9 5083 SAlMg-3 10 5A05 SAlMg-5 11 6061 SAlMg-1、SAlMg-5 SAlSi-1

3.4.8 焊缝组对要求 3.4.8.1 管道焊件组对时,应做到内壁平齐,其错边量b应符合下列规定: 当壁厚S≤5mm时,b≤0.5mm 当壁厚S>5mm时,b≤0.1S且b≤2mm 3.4.8.2 设备容器焊件组对时,其错边量b应符合下列规定: 纵焊缝:当壁厚S≤5mm时,b≤0.5mm 当壁厚S>5mm时,b≤0.1S且b≤2mm 环焊缝:b≤0.2S且b≤5mm 3.4.8.3 不等厚度对接焊件组对时,薄件端面应位于厚件端面之内,当表面错边量超过3mm或单面焊焊缝根部超过2mm时应按下图的规定加工厚板边缘。

L≥4(S1-S2)或α≤14° 图3.4.8.3

3.4.8.4 定位焊 (1)定位焊缝应符合下列规定: 焊件组对可使铝材定位板在坡口外点焊定位,也可在坡口内点固。焊接定位焊缝时,选用的焊丝应与母材相匹配。

L S2 S1 α 定位焊缝应有适当的长度、间距和高度,以保证其有足够的强度而不致在焊接过程中开裂。 定位焊缝如发现缺陷应及时处理,对作为正式焊缝一部分的根部定位焊缝,还应将其表面的黑粉、氧化膜清除,并将两端修整成缓坡形,拆除定位板时不应损伤母材,拆除后应将残留焊肉打磨至与母材表面齐平。 3.5 焊接过程及应注意的问题 3.5.1 手工钨级氩弧焊应采用交流电源,熔化极氩弧焊应采用直流电源,焊丝接正极,焊机使用前,应检查其接地是否完好,冷却水路和气路是否畅通,其各项功能是否能正常工作。 3.5.2 为了减少焊接变形,应采用合理的施焊方法和顺序,或进行刚性固定,并预先考虑收缩余量。 3.5.3 正式焊接前,可在试板上进行堆焊试验,调整好各工艺参数,并确认无气孔后再进行正式焊接。 3.5.4 在保证焊缝熔透和熔合良好的条件下,应在焊接工艺规程允许范围内尽量采用大电流、快焊速施焊,焊丝的横向摆动幅度不宜超过其直径的三倍。 3.5.5 无特殊要求时焊件焊前不进行予热,多层焊时层面温度应尽可能低,不宜高于100℃。 3.5.6 焊接过程中焊丝端部不应离开氩气保护区,焊丝送进时与焊缝表面的夹角宜在15℃左右,焊枪与焊缝表面的夹角宜保持在80°~90°之间。对于厚度≥4mm的立焊和横焊位置的焊缝,当条件允许时底层焊接可采用双面同步氩弧焊工艺。 3.5.7 焊接过程中,焊层内的氧化膜、过高焊肉及其它焊接缺陷必须清除,对需要清根的双面焊或进行封底焊的焊缝应采用机械法清理焊根。 3.5.8 纵焊缝两端应装上铝制的引弧板和熄弧板,纵环焊缝清除弧坑后接续焊时,也宜在引弧板上引燃电弧,待电弧燃烧稳定后再进行焊接。 3.5.9 当喷嘴上有明显阻碍氩气气流流通的飞溅物附着时,必须将飞溅物清除或更换喷嘴,当钨极出现污染、形状不规则等现象时,必须修整或更换。 3.6 焊接工艺参数 各种焊接方法工艺参数的选择见下表: 表3.6(1) 手工钨极氩弧焊焊接工艺参数

相关文档
最新文档