高中求数列通项公式九法
求数列通项公式方法归纳(十种方法)

求数列通项公式方法归纳(十种方法)求数列通项公式方法归纳一、公式法【例1】已知数列{an}满足,,求数列{an}的通项公式。
,则,故数列{是2222222aan323以1为首项,以为公差的等差数列,由等差数列的通项公式,得,2222231所以数列{an}的通项公式为。
22解:两边除以,得an二、累加法【例2】已知数列{an}满足,,求数列{an}的通项公式。
解:由得则212所以数列{an}的通项公式为。
【例3】在数列{an}中,,求通项公式an.解:原递推式可化为:1111n2,13 1n1314,……,1逐项相加得:1n. 故1n【例4】已知数列{an}满足,,求数列{an}的通项公式。
解:由得则所以【例5】已知数列{an}满足,,求数列{an}的通项公式。
解:两边除以,得则an3n2313,an3n13,故an3nan323 nn1313 na23 2a13a13313 233313 23311 因此an3 n23nn2n312n,则12.【例6】在数列中,且,求通项an.2【小练】:已知{an}满足1求{an}的通项公式。
*,已知{an}的首项,n()求通项公式。
an已知{an}中,,,求。
2三、累乘法类型型【例7】已知数列{an}满足,,求数列{an}的通项公式。
解:因为,,所以,则ana3a2a2a1,故n212所以数列{an}的通项公式为2【例8】已知数列{an}满足,,求{an}的通项公式。
解:因为所以用②式-①式得则①②故所以ana3a2n!2a2.③由,取得,则,又知,则,代入③得n!2。
3所以,{an}的通项公式为n!2.【例9】在数列中,,,求通项an.解:由条件等式an得,a2a111,得1n.练习:1、已知:13,{a}()求数列n的通项。
2、已知{an}中,an且求数列通项公式。
四、待定系数法型n【例10】已知数列{an}满足,,求数列的通项公式。
n解:设④将代入④式,得,等式两边消去2an,得代入④式得,两边除以5,得则⑤nnn由及⑤式得,则11nn,则数列{an是以n为首项,以2为公比的等比数列,则,故。
(重要)高中数学数列十种求通项和七种求和方法,练习及问题详解

高中数列知识点总结1. 等差数列的定义与性质定义:1n n a a d +-=〔d 为常数〕,()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和:()()11122n n a a n n n S nad +-==+性质:〔1〕假如m n p q +=+,如此m n p q a a a a +=+;〔2〕{}n a 为等差数列2n S an bn ⇔=+〔a b ,为常数,是关于n 的常数项为0的二次函数〕2. 等比数列的定义与性质定义:1n na q a +=〔q 为常数,0q ≠〕,11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩〔要注意公比q 〕性质:{}n a 是等比数列〔1〕假如m n p q +=+,如此mn p q a a a a =·· 3.求数列通项公式的常用方法一、公式法例1 数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式.解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,如此113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-.二、累加法 )(1n f a a n n =--例2 数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式.解:由121n n a a n +=++得121n n a a n +-=+如此所以数列{}n a 的通项公式为2n a n =.例3数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 如此111213333n n n n n a a +++-=+三、累乘法)(1n f a a n n=- 例4 数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,如此12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5 〔2004年全国I 第15题,原题是填空题〕数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式. 解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-=如此1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 四、待定系数法〔重点〕例6 数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式.解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-例7 数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得整理得(52)24323n nx y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,如此52x y =⎧⎨=⎩,代入⑥式得115223(522)n nn n a a +++⨯+=+⨯+⑦例8 数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,如此等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z+=⎧⎪++=⎨⎪+++=⎩,如此31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨五、对数变换法例9 数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++错误! 六、迭代法例10 数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 七、数学归纳法 例11 11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.〔其他方法呢?〕 解:由1228(1)(21)(23)n n n a a n n ++=+++与189a =,得 由此可猜想22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论. 〔1〕当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. 〔2〕假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,如此当1n k =+时, 由此可知,当1n k =+时等式也成立.根据〔1〕,〔2〕可知,等式对任何*n N ∈都成立. 八、换元法例12 数列{}n a满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =如此21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 如此123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-, 九、不动点法例13 数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,如此1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为十、倒数法11212nn n a a a a +==+,,求n a 4. 求数列前n 项和的常用方法一、公式法利用如下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法〔等差乘等比〕[例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假如将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… [例8] 求数列{n<n+1><2n+1>}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+ 〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n<6> nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假如103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构与特征进展分析,找出数列的通项与其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项与特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.数列练习一、选择题}{n a 的公比为正数,且3a ·9a =225a ,2a =1,如此1a =A.21B. 22C.2 D.22.为等差数列,,如此等于{}n a 的前n 项和为n S .假如4a 是37a a 与的等比中项, 832S =,如此10S 等于A. 18B. 24C. 60D. 90 . 4设n S 是等差数列{}n a 的前n 项和,23a =,611a =,如此7S 等于A .13B .35C .49D . 63 5.{}n a 为等差数列,且7a -24a =-1,3a =0,如此公差d = 〔A 〕-2 〔B 〕-12 〔C 〕12〔D 〕2 {n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和 A. 90 B. 100 C. 145 D. 1907.等差数列{}n a 的前n 项和为n S ,2110m m ma a a -++-=,2138m S -=,如此m = 〔A 〕38 〔B 〕20 〔C 〕10 〔D 〕9 .{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,如此{}n a 的前n 项和n S =A .2744n n +B .2533n n +C .2324n n+D .2n n +{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和是 A. 90 B. 100 C. 145 D. 190 . 二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,如此44S a =.2.设等差数列{}n a 的前n 项和为n S ,如此4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,如此4T , , ,1612T T 成等比数列.}{n a 中,6,7253+==a a a ,如此____________6=a .4.等比数列{n a }的公比0q >, 2a =1,216n n n a a a +++=,如此{n a }的前4项和4S = .数列练习参考答案一、选择题1.[答案]B[解析]设公比为q ,由得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以2q =故2122a a q ===,选B 2.[解析]∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B.[答案]B3.答案:C[解析]由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得 1278a d +=如此12,3d a ==-,所以1019010602S a d =+=,.应当选C 4.解:172677()7()7(311)49.222a a a a S +++====应当选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯=所以1777()7(113)49.22a a S ++===应当选C. 5.[解析]a 7-2a 4=a 3+4d -2<a 3+d>=2d =-1 ⇒ d =-12[答案]B 6.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =1007.[答案]C[解析]因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m m a a a -++-=,得:2m a -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即〔2m -1〕×2=38,解得m =10,应当选.C.8.[答案]A 解析设数列{}n a 的公差为d ,如此根据题意得(22)22(25)d d +=⋅+,解得12d =或0d =〔舍去〕,所以数列{}n a 的前n 项和2(1)1722244n n n n nS n -=+⨯=+ 9.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100二、填空题1.[命题意图]此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分表现了通项公式和前n 项和的知识联系.[解析]对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--2.答案:81248,T T T T [命题意图]此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过条件进展类比推理的方法和能力3.[解析]:设等差数列}{n a 的公差为d ,如此由得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.[命题立意]:此题考查等差数列的通项公式以与根本计算.4.[答案]152[解析]由216n n n a a a +++=得:116-+=+n n n q q q ,即062=-+q q ,0q >,解得:q =2,又2a =1,所以,112a =,21)21(2144--=S =152三、大题{}n a 的各项均为正数,且212326231,9.a a a a a +==1〕.求数列{}n a 的通项公式.2〕.设31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.{an}满足a2=0,a6+a8=-10〔I 〕求数列{an}的通项公式;〔II 〕求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和.2*.正项等差数列{}n a 的前n 项和为n S ,假如312S =,且1232,,1a a a +成等比数列. 〔Ⅰ〕求{}n a 的通项公式;〔Ⅱ〕记3nn n a b =的前n 项和为n T ,求n T . 3. 数列{a n }满足a 1=1,a 2=3,a n+2=3a n+1-2a n 〔n ∈N +〕〔1〕证明:数列{a n+1-a n }是等比数列;〔2〕求数列{a n }的通项公式{}n a 的各项满足:k a 311-=)(R k ∈,1143n n n a a --=-.<1> 判断数列}74{nn a -是否成等比数列;〔2〕求数列{}n a 的通项公式{}n a 和正项等比数列{}n b ,111==b a ,1073=+a a ,3b =4a〔1〕求数列{}n a 、{}n b 的通项公式〔2〕假如n n n b a c •=,求数列{}n c 的前n 项和n T。
求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
数列求通项的方法总结

数列求通项的方法总结数列求通项的方法总结按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。
为大家总结数列求通项的方法,一起来看看吧!一、累差法递推式为:an+1=an+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……an-an-1=f(n-1)将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+ …+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,an+1=an+2,求an解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……an-an-1=2n-1将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故an=2n-1二、累商法递推式为:an+1=f(n)an(f(n)要可求积)思路:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)∵f(n)可求积∴an=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an解:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)即an=2n当n=1时,an也适合上式∴an=2n三,构造法1、递推关系式为an+1=pan+q (p,q为常数)思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)故可将递推式化为an+1+x=p(an+x)构造数列{bn},bn=an+q/(p-1)bn+1=pbn即bn+1/bn=p,{bn}为等比数列.故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an例3、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an 解:设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3 故可将递推式化为an+3=2(an-1+3)构造数列{bn},bn=an+3bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3bn=bn-1·3,bn=an+3bn=4×3n-1an+3=4×3n-1,an=4×3n-1-12、递推式为an+1=pan+qn(p,q为常数)思路:在an+1=pan+qn两边同时除以qn+1得an+1/qn+1=p/qan/qn+i/q构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q故可利用上类型的解法得到bn=f(n)再将代入上式即可得an例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an解:在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得2n+1an+1=(2/3)×2nan+1构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1故可利用上类型解法解得bn=3-2×(2/3)n2nan=3-2×(2/3)nan=3×(1/2)n-2×(1/3)n3、递推式为:an+2=pan+1+qan(p,q为常数)思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan) 也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)这样就转化为前面讲过的类型了.例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an解:设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3 可取x=1,y= -1/3构造数列{bn},bn=an+1-an故数列{bn}是公比为-1/3的`等比数列即bn=b1(-1/3)n-1b1=a2-a1=2-1=1bn=(-1/3)n-1an+1-an=(-1/3)n-1故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](nN*)例题1、利用sn和n的关系求an思路:当n=1时,an=sn当n≥2 时, an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.解:当n=1时,an=sn=2当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2 时, an=2n-12、利用sn和an的关系求an思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{an}中,已知sn=3+2an,求an解:即an=sn-sn-1=3+2an-(3+2an-1)an=2an-1∴{an}是以2为公比的等比数列∴an=a1·2n-1= -3×2n-12、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例8、(2002全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想an=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即ak=k+1则 ak+1=a2k-kak+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有an=n+1成立即an=n+1。
求数列的通项公式的十种方法

求数列通项公式的十种方法一.SA 法⎩⎨⎧≥-==-)2(1)(n11n S S S S n nn 注意具体可分为两种方法 1.改写相减,消去S n2.S n -S n-1直接替换掉a n ,求出S n ,再求出a n例 1. 已知各项均为正数的数列{n a }的前n 项和为n S 满足1S >1且6n S =(1)(2)n n a a ++ n ∈N * 求{n a }的通项公式。
的通项公式和,求数列项和为的前,数列项和为的前:已知数列例}{}{2}{22}{12n n n n n n n b a b T n b n n S n a -=+=的通项公式求各项均为正数,满足:已知数列例}{,21}{2n n nn n a S a a a =+的通项公式并求数列试确定常数最大值为的且项和的前:已知数列练习}{,.8),(21}{12n n n n a k S N k kn n S n a *∈+-=nn n n n a S a n n S 求)已知(求)已知(:练习,2232,732122-⋅=-+-=二.累加累乘法(也可用迭代法求解)用“累加”形如二用“累乘”形如一)()(),()(11n f a a n f a a n n n n +==++的通项公式求满足:已知数列例}{,1,21}{1211n n n n a nn a a a a ++==+的通项公式求项和前中,:已知数列例}{,32,1}{21n n n a a n S n a a +==的通项公式求,满足:已知数列练习n n n n a n a n n a a a ),1(23133}{111≥+-==+的通项公式求数列满足:已知数列练习}{a ,a a ,5a }{a 2n 2)1(311nn nn n ++==三.差商法实质是已知数列的前n 项和或前n 项积,求数列的通项公式的通项公式求数列满足:已知数列例}{),(4444}{113221n n n n a N n na a a a a *-∈=+++}{,2,1}{223211n n n a n a a a a n N n a a 求时都有且对所有中,:已知数列例=⋅⋅≥∈=*四.构造法”“)(1n f pa a n n +=+ ,只能用此法。
数列求通项公式方法(大全)

求数列通项公式方法一、公式法(定义法)根据等差数列、等比数列的定义求通项( 、 ) 1、数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式;2、已知数列}{n a 满足211,211=-=+n n a a a ,求数列{}n a 的通项公式;3、已知数列}{n a 满足,21=a 且1152(5)n n n n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;4、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
d a a n n =--1q b b n n =-1二、累加法适用于: )(1n f a a n n +=+,如221++=+n a a n n 、nn n a a 21+=+等若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑1、 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式;2、 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式;3、已知数列{}n a 满足nn a a a n n -+==+2111,21,求数列{}n a 的通项公式;三、累乘法适用于: n n a n f a )(1=+,即 若1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 1、已知数列{}n a 满足n n n a n a ⨯⋅+=+5)1(21,31=a ,求数列{}n a 的通项公式。
数列通项超全高中数学数列通项解法专题总结
数列通项总结一、累加法(逐差相减法)1、d a a n n +=+1(d 为常数),等差数列2、)(1n f a a n n +=+,变形为)(1n f a a n n =-+,前提)1()1(-++n f f 可求⎪⎪⎭⎪⎪⎬⎫=--=--=----)1()2()1(12211f a a n f a a n f a a n n n n 这1-n 个等式累加得:)1()2()1(1-+++=-n f f f a a n 例1:已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
例2:已知数列1}{1=a a n 中,且k k k a a )1(122-+=-,k k k a a 3212+=+, 3,2,1=k (1)求53,a a (2)求}{n a 的通项公式. 二、累积法(逐商相乘法)1、n n qa a =+1(q 为常数),等比数列2、n n a n f a )(1=+,变形为)(1n f a a nn =+,前提)1()2()1(-⨯⨯⨯n f f f 可求 ⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=-=-=---)1()2()1(12211f a a n f a a n f a a n n n n这1-n 个等式累乘得: )1()2()1(1-⨯⨯⨯=n f f f a a n例1:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
例2:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。
三、公式法1(2)n n n a S S n -=-≥,)1(11≥-=++n S S a n n n例1:已知各项均为正数的数列{n a }的前n 项和为n S 满足1S >1且6n S =(1)(2)n n a a ++ n ∈N * 求{n a }的通项公式。
解:由11a S ==111(1)(2)6a a ++解得1a =1或1a =2,由已知11a S =>1,因此1a =2又由11n n n a S S ++=-=1111(1)(2)(1)(2)66n n n n a a a a ++++-++得11()(3)n n n n a a a a +-+--=0 ∵n a >0 ∴13n n a a --=从而{n a }是首项为2,公差为3的等差数列,故{n a }的通项为n a =2+3(n-1)=3n-1. 例2:已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a . 四、待定系数法1、q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
求数列通项公式的13种方法
求数列通项公式的13种方法在数学中,数列是一组按照一定规律依次排列的数字集合。
求数列的通项公式是对该数列的每一项都能找到一个通用的公式来描述。
这篇文档将介绍13种求解数列通项公式的方法。
1. 模式观察法通过观察数列中数字的变化模式,尝试找出递推关系,并通过推测整理出数列的通项公式。
2. 公式转化法通过对数列进行一系列数学运算,如加减乘除、取幂次等,将数列转化成已知的常见数列,再推导出通项公式。
3. 递推法通过已知的前几项数值,推导出当前项和下一项之间的关系,进而获得数列的通项公式。
4. 二项展开法借助二项展开公式,将数列展开成多项式形式,从而得到数列的通项公式。
5. 求解差分方程法将数列转化为差分方程,通过求解差分方程得到数列的通项公式。
6. 系数法利用多项式系数之间的关系,通过观察系数之间的规律,推导出数列的通项公式。
7. 利用等差数列和等比数列性质对于满足等差数列或等比数列性质的部分数列,可以直接应用等差数列或等比数列的通项公式。
8. 利用级数展开对于部分数列,可以将其展开成级数形式,从而得到数列的通项公式。
9. 奇偶性分析法通过分析数列中数字的奇偶性规律,推导出数列的通项公式。
10. 利用生成函数通过构造数列的生成函数,将数列转化成幂级数形式,再求解得到数列的通项公式。
11. 递归关系法对于一些特殊的数列,可以通过递归关系推导出数列的通项公式。
12. 利用数学归纳法利用数学归纳法证明数列的通项公式的正确性。
13. 利用数值计算方法拟合通过计算机软件等数值计算方法,根据数列的前几项数值进行拟合,得到数列的通项公式。
以上是13种常用的求解数列通项公式的方法。
根据具体的数列情况和求解需要,选择合适的方法进行计算和推导。
> 注意:此文档中的内容仅供参考。
在确定数列的通项公式时,请务必进行独立决策,不要直接引用未经验证的内容。
---以上是对「求数列通项公式的13种方法」的介绍文档。
求数列通项公式的十种方法(完整资料).doc
(3)则 ,
即当n=k+1时结论也成立.
由(1)、(2)可知,对于一切正整数 ,都有 .(最后一句总结很重要)
2.定义法(已知数列为等差或者等比)
直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目。
例2.已知等差数列 满足 , ,求 的通项公式。
1、当递推公式为 (其中 均为常数,且 )时,通常解法是把原递推公式转化为 ,其中 ,再利用换元法转化为等比数列求解。
例题:已知数列 满足 ,求 的通项公式。
解:由
得
又
所以 是首项为 ,公比为 的等比数列
所以
因此数列 的通项公式为 .
2、当递推公式为 时,通常解法是把原递推公式转化为 ,其中 的值由方程 给出。(了解即可,不必掌握)
例题:已知数列{ }中, =1, = ,求数列的通项公式。
解:由
得
所以数列 是首项为 = , 的等比数列
所以 = , 即 =
4、当递推公式为 ( 为常数,且 )时,通常两边同时取倒数,把原递推公式转化为 。①若 ,则 是以 为首项,以 为公差的等差数列,则 ,即 。②若 ,则可转化为 (其中 )形式求解。
例4.数列 满足 ,且 ( ),则数列{ }的前10项和为
解:由题意得:
5.累乘法
当递推公式为 时,通常解法是把原递推公式转化为 ,利用累乘法(逐商相乘法)求解。
例5.已知数列 满足 ,求 的通项公式。
解:由条件知 ,
在上式中分别令 ,得 个等式累乘之,
即 , 即
又
6.构造法(拼凑法)-共5种题型,第2、3种方法不必掌握
解:设等差数列 的公差为 .
求数列通项公式的11种方法[学习]
求数列通项公式的11种方法[学习]求数列通项公式的11种方法[学习]数列通项公式是数学中常见的一种概念,它可以帮助我们更好地理解数列的特征,并用于计算数列的和、积、最大值以及最小值等问题。
学习求数列通项公式的11种方法,可以帮助我们更好地理解数列的概念,并能够更加准确地计算数列的和、积、最大值以及最小值等问题。
下面就来介绍一下求数列通项公式的11种方法:1. 泰勒公式:泰勒公式是一种常用的求数列通项公式的方法,它可以利用数列前n项的值,通过对不同项进行求导和积分,来求出数列的通项公式。
2. 通项定理:通项定理是一种简单易懂的求数列通项公式的方法,它可以利用数列中初始项和公差,通过观察数列的每一项,找出数列的规律,然后求出数列的通项公式。
3. 求极限法:求极限法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过极限的概念,来求出数列的通项公式。
4. 差分法:差分法是一种常用的求数列通项公式的方法,它可以利用数列中前n项的值,通过计算数列每项与前一项的差值,找出数列的规律,然后求出数列的通项公式。
5. 分类法:分类法是一种简单易懂的求数列通项公式的方法,它可以根据数列的特点,将数列分类,然后再根据各类数列的特点,求出数列的通项公式。
6. 幂级数法:幂级数法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过将数列转化为幂级数,然后求出数列的通项公式。
7. 矩阵法:矩阵法是一种有效的求数列通项公式的方法,它可以利用数列中前n项的值,通过矩阵运算,求出数列的通项公式。
8. 特征值法:特征值法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过计算数列的特征值,求出数列的通项公式。
9. 最优化法:最优化法是一种有效的求数列通项公式的方法,它可以利用数列中前n项的值,通过构造相应的优化模型,来求出数列的通项公式。
10. 启发式法:启发式法是一种创新性的求数列通项公式的方法,它可以利用数列中前n项的值,通过启发式算法,来求出数列的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中求数列通项公式九法
各种数列问题在很多情形下,就是对数列通项公式的求解,特别是在综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
本文总结了九种求解数列通项的方法,供大家参考。
一、已知Sn求an
例1、已知:数列{an}的各项均为正数,它的前n项和Sn满足Sn= ,且a2、a4、a9成等比数列,求数列{an}的通项公式。
解:当n=1时,a1=S1= ,得a1=1或2;
当n≥2时,an=Sn-Sn-1=
∴6an=an2-an-12+3an-3an-1,∴0=an2-an-12-3an-3an-1
∴0=(an+an-1)(an-an-1-3)。
∵an>0,∴an-an-1-3=0;
所以数列{an}为等差数列。
当a1=1、d=2时,an=1+3(n-1)=3n-2,满足a2·a9=a42;
当a1=2、d=3时,an=2+3(n-1)=3n-1,不满足a2·a9=a42,舍去。
所以an=3n-2。
二、题型:an+1-an=f(n);方法:利用叠加法求an
例2、已知:数列{an},a1=0,an+1=an+ ,求数列{an}的通项公式。
解:∵an+1=an+ ∴an+1-an=
∴an=(an-an-1)+(an-1-an-2)+……+(a2-a1)+a1
=++……+ + +0=1-
故数列{an}的通项公式为an=1-。
三、题型:=f(n);方法:叠乘法求an
例3、已知数列{an}满足:a1=1,an>0,(n+1)an+12-nan2+an+1an=0,求an。
解:∵(n+1)an+12-nan2+an+1an=0,
∴[(n+1)an+1-nan](an+1+an)=0
∵an>0,∴an+an+1>0,
∴(n+1)an+1=nan,即
∴an=a1· · ·……·=1× × × ×……××= 。
故数列{an}的通项公式为an= 。
四、方法:配凑法求an
1、题型:an+1=pan+f(n),p是常数,f(n)是关于n的函数。
方法:当f(n)是常值函数时,利用{an-k}求an。
当f(n)是一次或二次函数时,把k换成相应的一次或二次函数求an。
例4、已知数列{an},a1= ,an+1=2an-1,求通项公式。
解析:∵an+1=2an-1,设an+1+k=2(an+k)
则an+1=2an+k∴k=-1
an+1-1=2(an-1),且a1-1= -1=
故{an-1}是以为首项、公比为2的等比数列。
an-1= ×2n-1=2n-2,∴an=2n-2+1
2、题型:an+1=pan+qn,p、q是常数。
方法:利用{ }和叠加法求an。
例5、已知数列{an},a1=2且满足an+1-2an=6·3n,求其通项公式。
解:∵an+1-2an=6·3n ∴- =3·()n
令bn= ,用叠加法得:an=6·3n-2n+3
3、题型:an+1=pan+qan-1,p、q是常数。
方法:利用{an+1-x1an=x2(an-x1an-1)}(其中x1、x2是方程x2-px-q=0的两个实数根),求an。
例6、已知数列{an},a1=a2=1,an+1=2an+3an-1,求通项公式。
解:原式等价于an+1-3an=(-1)·(an-3an-1)
{an+1-3an}是首项为a2-3a1=-2、公比为-1的等比数例。
an+1-3an=-2·(-1)n-1=2·(-1)n,两边同时除以3n+1,得- = ·(- )n。
叠加法得= + ·(- )n-1,
∴an= ·3n- ·(-1)n
五、不动点法:利用{}(其中x1是相应不动点方程的根)求an
例7、已知数列{an}中,a1=1,an+1= ,求通项an。
分析:不动点方程x= 的根为x=0。
解:∵an+1=∴= ,∴- =n
∴= +(- )+(- )+……+(-)+(-)
=1+1+2+……+(n-1)=1+=
∴an=
例8、已知数列{an}中,a1=1,an+1=,求通项an。
分析:不动点方程x=的根为x1=-2、x2=2。
解:∵an+1-2=-2=┄┄┄┄①
∵an+1+2=+2=┄┄┄┄┄②
①/②得:=。
令bn=,∴bn+1=bn2,
∴bn=b2n-1=b2n-2=……b21 =(- )2 =()2
∴an=
六、利用{ an}求an
例9、已知数列{an},an>0,a1=1,= ,求其通项公式。
解:∵= ∴an+1-4an-3 an+1· an=0
∴(an+1+ an)(an+1-4 an)=0
∵an>0
∴an+1+ an>0∴an+1=4 an
即an是以a1=1为首项、公比为q=4的等比数列。
∴an=4n-1∴an=16n-1
七、利用函数方程思想求an
例10、已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n,求数列{an}的通项公式。
解析:∵f(x)=2x-2x-1
∴f(log2an)=2log a -2-log a =an-
∵f(log2an)=-2n∴an- =-2n
∴an=-n± n2+1
∵an>0∴an=-n+ n2+1。
八、周期数列
例11、已知数列{an}满足a1=0、an+1= (n∈N*),则a20=______,
S20=______。
解:∵a1=0,a2=- 3,a3= 3,a4=0,a5=- 3,a6= 3
∴T=3,a20=a2=- 3,∴S20=- 3
九、综合应用以上各种方法
例12、数列{an}满足a1= 、a2=2,且当n≥2时,Sn+1-3Sn+2Sn-1+1=0,求通项an。
解:当n≥2时,Sn+1-3Sn+2Sn-1+1=0
∴(Sn+1-Sn)-2(Sn-Sn-1)=-1
即an+1-2an=-1故an+1-1=2(an-1)。
所以{an+1-1}是以a2-1=1为首项、q=2为公比的等比数列。
∴an+1-1=1·2n-1∴an+1=2n-1+1
故an=2n-2+1。
当n=1时,a1= 也适合此式,故an=2n-2+1。