初中数学之变式训练
初中数学“变式训练”的方法与思维

初中数学“变式训练”的方法与思维培养和发展学生的数学思维是新课程理念下的重要目标。
如何培养学生良好的数学思维呢?经过教学实践发现,合理利用变式训练能有效激活学生数学思维。
那么,什么是变式训练呢?所谓变式训练,就是保持原命题的本质不变,不断变换原命题的条件,或结论,或形式,或空间,或内容,或图形等,产生新的情境,引导学生从不同的角度,用不同的思维去探究问题,从而提高对事物认知能力。
也就是通过一个问题的变式,解决一类问题的变化,逐步养成深入反思数学问题的习惯,善于抓住数学问题的本质和规律,探索相关数学问题间的内涵联系以及外延关系,进而培养数学创新思维的能力。
当然变式不是盲目的变,应抓住问题的本质特征,遵循学生认知心理发展,根据实际需要进行变式。
1 多题一解,求同存异,通过变式让学生理解数学练习的内在联系许多数学练习看似不同,但它们的内在本质(或者说是解题的思路,方法是一样的),这就要求教师在教学中重视对这类题目的收集,比较,引导学生寻求通法通解,并让学生自己感悟它们之间的内在联系,形成数学思想方法。
例1:已知二次函数的图像经过A(-3,0)、B(1,0)、C(0,-3)三点,求这个二次函数的解析式。
变式1:已知二次函数的图像经过一次函数y=-x-3的图像与x轴、y轴的交点A、C,并且经过点B(1,0),求这个二次函数的解析式。
变式2:已知抛物线经过两点B(1,0)、C(0,-3)。
且对称轴是直线x=-1,求这条抛物线的解析式。
变式3:已知一次函数的图像经过点(1,0),且在y轴上的截距是-1,它与二次函数的图像相交于A(1,m)、B(n,4)两点,又知二次函数的对称轴是直线x=2,求这两个函数的解析式。
变式题的教学,先让学生议练,教师在知识的转折点上提出一些关键性的问题进行点拨,在思路上为学生扫除障碍。
对变式1,先让学生比较它与例题的已知条件有什么不同?再思考怎样转化为例题求解,然后讨论怎样求A、C两点的坐标。
初中数学变式训练

初中数学教学变式训练题1、一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20米孟关良为了追上快艇,必须奋力前划,他如果以每秒6米的速度划行多少秒才能追上快艇?变式1:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?(从先行20米改为先行了20秒)变式2:我们学校有一块300米的跑道在比赛跑步时经常会涉及到相遇问题和追及问题现有甲、乙两人比赛跑步,甲的速度是10米/秒,乙的速度是8米/秒,他们两人同地出发(1)两人同时相向而行经过几秒两人相遇。
(2)两人同时同向而行经过几秒两第一次相遇。
(3)乙先出发5秒,然后甲开始出发,问甲经过几秒两人第一次相遇。
变式3:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了10秒,教练要求他用45秒追上快艇,孟关良为了追上快艇,必须奋力前划,他以每秒6米的速度划行,划了5秒后他发现用这样的速度不能在规定的时间内追上,请问他的想法用45秒不能追上快艇对不对?如果他要追上请你算一算孟关良后来要用多少速度才能在规定的时间内追上快艇?2、16的算术平方根是。
变式1:16的平方根是。
变式2:的平方根是。
变式3:已知a的算术方根是2,则a= 。
3、“求证:顺次连结四边形各边中点所得的四边形是平行四边形.”变式1:顺次连结梯形各边中点所得的四边形是什么四边形?变式2:顺次连结矩形各边中点所得的四边形是什么四边形?变式3:顺次连结菱形各边中点所得的四边形是什么四边形?变式4:顺次连结正方形各边中点所得的四边形是什么四边形?变式5:顺次连结什么四边形中点可以得到平行四边形?变式6:顺次连结什么四边形中点可以得到矩形?4、例题:如图1,在平行四边形ABCD中,E、F分别是OB、OD的中点,四边形AECF是平行四边形吗?请说明理由。
图1变式训练:变式1:若将例题中的已知条件E、F分别是OB、OD的中点改为点E、F三等分对角线BD,其它条件不变,问上述结论成立吗?为什么?变式2:若将例题中的已知条件E、F分别是OB、OD的中点改为BE=DF,其它条件不变,结论成立吗?为什么?变式3:若将例题中的已知条件E、F分别是OB、OD的中点改为E、F为直线BD上两点且BE=DF,结论成立吗?为什么?5、如图14,已知,是一次函数的图象和反比例函数的图象的两个交点.求反比例函数和一次函数的解析式;变式一、求直线与轴的交点的坐标及△的面积;变式二、求方程的解(请直接写出答案);变式三、求不等式的解集(请直接写出案).6、已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是: ____________.(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面积关系是:____________.并证明你的结论(3)运用:已知三角形ABC,AB=5cm,AC=3cm,分别以AB、BC、CA为边作正方形(如图3),则图中阴影部分的面积和最大值是. ____________7、正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上.分别连接BD、BF、FD,得到△BFD.(1)在图①~图③中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:正方形CEFG的边长 1 3 4△BFD的面积(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图③证明你的猜想.8、如图(1),四边形ABCD内部有一点P,使得S△APD +S△BPC=S△PAB+S△PCD填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。
浅谈初中数学教学中的变式训练

浅谈初中数学教学中的变式训练松江区茸一中学沈菊华素质教育是以培养具有创造性思维和创造能力的人才为目标而进行的创新教育为归宿的教育。
在课堂教学中落实素质教育,就要贯穿“学生为主体,训练为主线,能力为主攻”的原则。
现代数学课程标准指出:数学教学不仅仅要使学生获得数学基础知识,基本技能,更要获得数学思想和观念,形成良好的数学思维品质,要通过各种途径,让学生体会数学思考和创造的过程,增强学习的兴趣和自信心,不断提高自主学习的能力。
所以加强在教学中注重变式训练,可以促使学生的思维向多层次、多方向发散,帮助学生在问题的解答过程中去寻找解类似问题的思路、方法,有意识地展现教学过程中教师与学生数学思维活动的过程,充分调动学生学习的积极性、主动地参与教学的全过程,培养学生独立分析和解决问题的能力,以及大胆创新、勇于探索的精神,从而真正把学生能力的培养落到实处。
所谓数学变式训练,即是指在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使其条件或形式发生变化,而本质特征却不变。
数学教学,使学生理解知识仅仅是一个方面,更主要的是要培养学生的思维能力,掌握数学的思想和方法。
.变式其实就是创新。
当然变式不是盲目的变,应抓住问题的本质特征,遵循学生认知心理发展,根据实际需要进行变式。
实施变式训练应抓住思维训练这条主线,恰当的变更问题情境或改变思维角度,培养学生的应变能力,引导学生从不同途径寻求解决问题的方法。
通过多问、多思、多用等激发学生思维的积极性和深刻性。
下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
一、在形成数学概念的过程中,利用变式启发学生积极参与观察、分析、归纳,培养学生正确概括的思维能力。
从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。
在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。
以“变”促教,引领高效教学———例析初中数学变式训练的实施策略

教学篇教学反思•高效课堂以“变”促教,引领高效教学———例析初中数学变式训练的实施策略王福平(甘肃省白银市靖远县第五中学,甘肃白银)摘要:数学作为基础性学科之一在学生的学习生活中占有重要地位,对学生未来的发展起到极其重要的作用。
然而,在实际学习中,许多学生都对数学头疼不已,因此需要教师转变教学的方式方法,激发学生学习的动力。
“变式训练”是数学教学的重要形式,举一反三,“变”的是表象,“不变”的是本质,教师在变式训练中引导学生发现不变的本质,从而能够真正掌握学习的规律,达到触类旁通的效果,教学事半功倍。
因此,如何在教学中开展变式训练,达到以“变”促教的目的是教师需要重点研究的问题。
关键词:初中数学;变式训练;实施策略数学本就千变万化,这也成为部分学生畏惧数学的原因之一。
在实际学习中部分学生进行数学题目的解答时只是简单地套用公式,常常题目一变学生便束手无策,缺乏变通的能力,长此以往数学学习动机必然下降,导致成绩的不理想。
因此,需要教师在平时教学中就注意引导学生进行变式训练,利用好经典的例题加以变动,既能加深学生对知识的掌握又能增强课堂趣味、提高学生的学习兴趣,教师要在“变”中激发学生学习数学的动力,培养学生的数学思维。
一、数值变换数值变换是变式训练中最基本的形式,即在不改变题目形式的情况下进行数值的变换。
但是数值的变换绝不仅仅是改变数字的大小,需要考虑变了之后的教学效果,以数字的改变加深学生对知识的理解,达到巩固提升的效果。
例1:计算12+(-9)×(-2)÷2变式:计算12+(-9)×2÷(-2)例2:已知一个等腰三角形的两条边长分别为3和6,求第三边的长度。
变式:已知一个等腰三角形的两条边长分别为3和5,求第三边的长度。
以上两个变式训练都是通过简单的数值变换达到知识巩固的目的。
其中例1是有理数的混合运算,其中重点在于负数的运算,通过改变符号改变了数的正负,让学生深入掌握负数的运算法则。
初中数学人教版七年级下册教材变式题组

初中数学人教版七年级下册教材变式题组(一)满分(100分,时间:90分钟)一、 选择题1、P45.4、若点P 在第二象限,到x 轴距离2个单位长度,到y 轴距离4个单位长度,则点P 的坐标为( )(A ) (2,-4) (B )(4,-2) (C )(-2,4) (D )(-4,2)2、P61.3、同一平面内的四条直线若a ⊥b,b ⊥c,c ⊥d ,则下列式子成立的是( )(A )a ∥d (B)b ⊥d (C)a ⊥d (D)b ∥c3、P15例、下列命题是真命题的是( )(A )下线a ⊥b,c ⊥b,则a ⊥c(B )直线外一点到这条直线的垂线段,叫做点到直线的距离。
(C )三角形的外角大于三角形的任意一内角(D )若直线a ∥b,b ∥c,则a ∥c4、P23.6、直线AB ∥CD ,∠A=70°,∠C=40°,则∠E=( )(A )30° (B )40° (C )60° (D )70°5、在三角形、四边形、正五边形、正六边形中,不能单独镶嵌平面的是( )A .三角形B .四边形C .正五边形D .正六边形6、(P98,1)把方程132=-y x 用含x 的代数式表示y 的形式为( ) A .233-=x y B .123-=x y C .323-=x y D .233x y -= 7、(P116)把二元一次方程的每组解可看成是平面直角坐标系内一点的坐标。
如方程53=+y x 的解:x=2,y=-1则其坐标为(2,-1),试判断下列各点的坐标是方程53=+y x 的解的是( )A.(1,-2)B.(-1,2)C.(0,5)D.(2,0)8、若关于x 的不等式m x m ->-1)1(的解集是1-<x ,则m 的取值范围是( )A.1>mB.1<mC.1≠mD.1-<m9、关于x 的不等式03>-a x 只有3个负整数解,则a 的取值范围是( )A. 912<≤-aB.912≤<-aC.34-≤<-aD. 34-<≤-a10、下列调查中,调查方式选择正确的是( )(A )为了解生产的50枚炮弹的杀伤半径,选择全面调查。
初中数学变式习题的设计

数学变式习题的设计习题是训练学生的思维材料,是教师将自己的思想、方法以及分析问题和解决问题的技能技巧施达于学生的载体。
要想不被千变万化的表象所迷惑,抓住本质的东西,变式教学是一种有效的办法。
通常可以利用习题变式训练学生的思维,使学生在多变的问题中受到磨练,举一反三,加深理解。
如将练习中的条件或结论做等价性变换,变更练习的形式或内容,形成新的练习变式,可有助于学生对问题理解的逐步深化。
下面本人结合理论学习和数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
一、利用变式来改变题目的条件或结论,培养学生转化、推理、归纳、探索的思维能力。
(一)、一题多问,通过变式培养学生的创新意识和探究、概括能力牛顿说过:“没有大胆的猜想就做不出伟大的发现。
”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。
例题1.如图(1)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.求证:△ABD∽△AEC此题是很简单的证明题,将图形变式,添加切线BF,则可变为:[变式训练]1. 如图(2)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.过B作⊙O的切线交CE延长线与F点.求证:CE:BC=BF:CF本题需证△BEF∽△CBF,若将条件进一步发展,延长AD交BF于N,则有:2. 如图(3)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.过B作⊙O的切线交CE延长线于F点,交AE延长线于N点.求证:BN·DE=BD·EN本题需证BE平分∠FBC和△ABD∽△CDE,并借助中间比推证,若再将F为BF、CE交点改为F是由C点作切线BN垂线的垂足,则又变为:3. 如图(4)已知△ABC中,∠BAC的平分线与边BC和外接圆分别相交于点D和E.过B作⊙O的切线交AE延长线于N点,作EF⊥BN.求证:BN·DE=BD·EN本题关键是证BE 平分∠FBC (1) (2) (3) (4)这一组变式训练将问题的条件适当发展,或增添新的条件,不断推出新的结论,能引导学生层层递进,积极探索,深化认识。
初中数学“变式训练”的方法与思维

初中数学“变式训练”的方法与思维初中数学的变式训练旨在培养学生分析和解决问题的能力,提高数学思维的灵活性。
变式训练要求学生通过对不同形式的问题进行变换和转化,掌握不同解题方法和技巧,从而提高解题的速度和准确性。
下面我将介绍一些变式训练的具体方法和思维。
1.规律和特点:变式训练中,学生需要通过分析已知的问题,寻找问题中的规律和特点。
例如,其中一类问题的解法经常采用同一种方法,或者其中一种运算法则在不同题目中都得到了运用。
通过发现问题的规律和特点,学生可以避免重复的计算和推理,提高解题的效率。
2.转换和等价变形:变式训练要求学生将已知的问题转换成其他形式或等价的形式,从而探索不同的解题方法和思路。
例如,将一个复杂的问题分解成若干简单的小问题,或者将两个具有关联的问题合并成一个问题。
转换和等价变形可以帮助学生从不同的角度去思考和理解问题,提高解题的灵活性。
3.探索和猜测:变式训练鼓励学生主动去探索和猜测,不拘泥于固定的解题方法和步骤。
通过试错和反思,学生可以逐步积累解题经验,并培养自主思考和创造性思维。
4.形象化和图像化:变式训练中,学生可以通过构建模型、绘制图像等方式将抽象的问题形象化,从而更加清晰地理解问题的本质和解题方法。
形象化和图像化可以帮助学生走出数学符号和运算,将问题转化成一个具体的实物或几何图形,提高解题的可视化和直观性。
总之,在初中数学的变式训练中,学生需要培养的核心思维是灵活性思维。
灵活性思维是指学生能够根据问题的特点和要求,灵活地选择合适的解题方法和策略。
这需要学生具备扎实的基础知识和技能,同时还需要培养学生发散思维和创新思维的能力。
只有掌握了灵活性思维,学生才能在不同形式的问题中游刃有余地解题,提高数学解题的能力和水平。
在变式训练的过程中,老师和家长可以采用以下方法来指导学生:1.引导学生分析和总结问题的规律和特点。
通过针对性的练习,帮助学生理解同一类问题的解题方法和技巧,培养他们归纳和概括的能力。
初中数学变式题应用浅析

初中数学变式题应用浅析【摘要】初中数学变式题是初中数学中的重要内容,通过学习变式题可以帮助学生建立数学思维和解决问题的能力。
本文对变式题进行了深入分析,包括变式题的定义与特点、其在初中数学中的重要性、解题技巧、应用举例以及练习方法等方面展开探讨。
通过对变式题的应用举例和解题技巧的介绍,读者可以更好地理解和掌握这一知识点。
本文提出了一些关于初中数学变式题的练习方法,帮助学生在日常学习中加深对变式题的理解和掌握。
通过对初中数学变式题的浅析,不仅可以提高学生的数学成绩,还可以培养他们的逻辑思维能力和问题解决能力。
初中数学变式题的学习是数学教育中不可或缺的一部分,希望读者通过本文的阅读能够对此有所启发。
【关键词】初中数学、变式题、定义、特点、重要性、解题技巧、应用举例、练习方法、浅析1. 引言1.1 初中数学变式题应用浅析变式题是初中数学中一个重要的题型,通过这类题目的训练可以帮助学生加深对数学知识的理解和掌握。
变式题主要考察学生对数学知识的灵活运用能力,需要学生根据规律和特点不断进行变换和推导,从而解决问题。
变式题在初中数学中具有重要的地位,它不仅可以锻炼学生的逻辑思维能力和数学推理能力,还可以培养学生的解决问题的能力。
通过解变式题,学生可以深入理解数学知识,并掌握数学规律,提高数学思维能力。
在解变式题时,学生需要掌握一些解题技巧,如合理利用公式、规律等进行推理和演算,同时需要灵活运用各种解题方法,如递推法、排除法等。
通过不断练习和实践,学生可以提高解题的效率和准确度。
变式题的应用举例有很多,比如常见的等比数列、等差数列、分数运算等。
通过这些应用举例,可以帮助学生更好地理解变式题的应用场景,加深对数学知识的理解。
变式题在初中数学中的重要性不言而喻,通过对变式题的学习和应用,可以帮助学生提高数学思维能力和解决问题的能力,为将来的学习打下坚实的基础。
希望同学们能够重视变式题的学习,不断提升自己的数学水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【模拟试题】一、选择题1. “x 的2倍与3的差不大于8”列出的不等式是( )A. 2x -3≤8B. 2x -3≥8C. 2x -3<8D. 2x -3>8 2.下列不等式一定成立的是( )A. 5a >4aB. x +2<x +3C. -a >-2aD.a a 24> 3. 如果x <-3,那么下列不等式成立的是( )A. x 2>-3xB. x 2≥-3xC. x 2<-3xD. x 2≤-3x 4. 不等式-3x +6>0的正整数有( )A. 1个B. 2个C. 3个D. 无数多个 5. 若m 满足|m |>m ,则m 一定是( )A. 正数B. 负数C. 非负数D. 任意有理数 6. 在数轴上与原点的距离小于8的点对应的x 满足( )A. -8<x <8B. x <-8或x >8C. x <8D. x >87. 若不等式组⎩⎨⎧>≤11x mx 无解,则m 的取值范围是( )A. m <11B. m >11C. m ≤11D. m ≥118. 要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A. m >23,n >-31B. m >3,n >-3C. m <23,n <-31D. m <23,n >-31二、填空题9. 不等式6-2x >0的解集是________.10. 当x ________时,代数式523--x 的值是非正数.11. 当m ________时,不等式(2-m )x <8的解集为x >m -28.12. 若x =23+a ,y =32+a ,且x >2>y ,则a 的取值范围是________. 13. 已知三角形的两边为3和4,则第三边a 的取值范围是________.14. 不等式组⎩⎨⎧-<+<212m x m x 的解集是x <m -2,则m 的取值应为________. 15. 已知一次函数y =(m +4)x -3+n (其中x 是自变量),当m 、n 为________时,函数图象与y 轴的交点在x 轴下方.16. 某种商品的价格第一年上升了10%,第二年下降了(m -5)%(m >5)后,仍不低于原价,则m 的值应为________.三、解答题17. 解不等式(组)(1)-2(x -3)>1 (2)⎪⎩⎪⎨⎧-<-+≤-3314)3(265x x x x18. 画出函数y =3x +12的图象,并回答下列问题: (1)当x 为什么值时,y >0?(2)如果这个函数y 的值满足-6≤y ≤6,求相应的x 的取值范围.19. 已知方程组⎩⎨⎧=+-=+2212y x m y x 的解x 、y 满足x +y >0,求m 的取值范围.120. 某批发商欲将一批海产品由A 地运往B 地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米/时、100千米/时.的冷藏费.(1)设该批发商待运的海产品有x (吨),汽车货运公司和铁路货运公司所要收取的费用分别为y 1(元)和y 2(元),试求y 1和y 2与x 的函数关系式;(2)若该批发商待运的海产品不少于30吨,为节省运费,他应选择哪个货运公司承担运输业务?21. 某童装厂,现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L 、M 两种型号的童装共50套.已知做一套L 型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元,做一套M 型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,设生产L 型号的童装套数为x (套),用这些布料生产两种型号的童装所获得利润为y (元).(1)写出y (元)关于x (套)的代数式,并求出x 的取值范围.(2)该厂生产这批童装中,当L 型号的童装为多少套时,能使该厂的利润最大?最大利润是多少?玩数学------------变式训练一1、(2008山东模拟)如图所示,等腰Rt △ABC 中,P 是斜边BC 的中点,以P 为顶点的直角边分别与边AB 、AC 交于点E 、F ,连结EF .当∠EPF 绕顶点P 旋转时(点E 不与A 、B 重合),△PEF 也始终是等腰直角三角形,请说明理由.2、一位同学拿了两块45三角尺MNK △,ACB △做了一个探究活动:将MNK △ 的直角顶点M 放在ABC △的斜边AB 的中点处,设4AC BC ==.BK图(1)N图(2)BN图(3)(1)如图(1),两三角尺的重叠部分为ACM△,则重叠部分的面积为,周长为.(2)将图(1)中的MNK△绕顶点M逆时针旋转45,得到图26(2),此时重叠部分的面积为,周长为.(3)如果将MNK△绕M旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为。
(4)在图(3)情况下,若1AD ,求出重叠部分图形的周长。
3..已知:如图,正方形ABCD中,直角三角形的顶点G在BD上,与AB、BC交点分别是E、F,求证GE=GF4. 如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数2k+4k+1y=x的图象上,若点A的坐标为(-2,-3),则k的值为【】A.1B. -5C. 4D. 1或-55、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明); (2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。
6、如图,D 为线段AB 的中点,在AB 上取异于D 的点C ,分别以AC 、BC 为斜边在AB 同侧作等腰直角三角形ACE 与BCF ,连结DE 、DF 、EF , 求证:△DEF 为等腰直角三角形。
7.已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
BABC OM N变式训练二【例1】如图,已知△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 于E ,求证: BD=2CE .2、(本题12分)在△ABC 中,∠A =90°,点D 在线段BC 上,∠EDB =12∠C ,BE ⊥DE ,垂足为E ,DE 与AB 相交于点F . (1)当AB =AC 时,(如图13),① ∠EBF =_______°;② 探究线段BE 与FD 的数量关系,并加以证明; (2)当AB =kAC 时(如图14),求BEFD的值(用含k 的式子表示).变式训练三 1.已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
图13图14ABCD EFFE DCB A2. 如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O下列结论:①∠DOC=90° , ②OC=OE,③tan∠OCD =43,④ODC BEOFS S∆=四边形中,正确的有【】A.1个B.2个C.3个D.4个变式训练三将军饮马问题:古希腊一位将军要从A地出发到河边MN去饮马,然后再回到驻地B。
问怎样选择饮马地点,才能使路程最短?例1:在正方形ABCD中,点E在BC边上,BE=2,CE=1,点P在BD上,求PE+PC的最小值。
例2 如图,桌上有一圆柱形玻璃杯,高12cm,底面周长18cm,在杯内壁离杯口3cm的A 处有一滴蜜糖,一条小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3cm的B 处时(即A,B在底面的射影的连线经过底面的圆心O),突然发现了蜜糖,问小虫怎样爬到蜜糖最近?它至少要爬多少路才能到达蜜糖所在的位置?3、如图,已知∠A=∠B ,AA 1,PP 1,BB 1均垂直于A 1B 1,AA 1=17,PP 1=16,BB 1=20,A 1B 1=12,则AP+PB 等于( )A 、12B 、13C 、14D 、15【例10】 07年三帆中学期中试题)如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2D M =,N 是AC 上的一动点,求DN MN +的最小值与最大值.NMD CB AN MD CB A【解析】 找点D 关于AC 的对称点,由正方形的性质可知,B 就是点D 关于AC 的对称点, 连接BN 、BM ,由DN MN BN MN BM +=+≥可知,当且仅当B 、N 、M 三点共线时,DN MN +的值最小,10. 当点N 在AC 上移动时,有三个特殊的位置我们要考察:BM 与AC 的交点,即DN MN +取最小值时;当点N 位于点A时,8DN MN AD AM +=+=+当点N 位于点C 时,8614DN MN CD CM +=+=+=.故DN MN +的最大值为8+变式训练是四1.已知如图,点M 在锐角AOB ∠的内部,在OB 边上求作一点P ,使点P 到点M 的距离与点P 到OA 的边的距离和最小.OA O【解析】 见右上图.2、在锐角三角形ABC 中,BC =24,∠ABC =45°,BD 平分∠ABC ,M 、N 发别是BD 、BC 上的动点,则CM +MN 的最小值是 。
变式训练五1、已知: BF 为∠ABC 的角平分线, CF 为外角∠ACG 的角平分线,求证: ∠F=21∠A2、如图:∠ABC 与∠ACG 的平分线交于F1;∠F1BC 与∠F1CG 的平分线交于F2;如此下去, ∠F2BC 与∠F2CG 的平分线交于F3;…探究∠Fn 与∠A 的关系(n 为自然数)3、如图,△ABC 的外角∠ACD 的平分线CP与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP= .ABCD MN变式训练六1、如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,∠BOC与∠A的关系是,如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,∠BOC与∠A的关系,如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A的关系。