不等式的证明

合集下载

基本不等式证明过程

基本不等式证明过程

基本不等式证明过程一、引言基本不等式是高中数学中非常重要的一个概念,它是解决不等式问题的基础。

本文将详细介绍基本不等式的证明过程。

二、基本不等式的定义在高中数学中,我们通常将两个正数a和b的平方和表示为a²+b²,而(a+b)²则表示它们的平方和加上2ab。

因此,我们可以得到以下公式:(a+b)² = a² + 2ab + b²根据这个公式,我们可以得到一个非常重要的结论:对于任意两个实数a和b,都有以下不等式成立:(a+b)² ≥ 4ab这就是基本不等式。

三、证明过程1. 将(a+b)²展开首先,我们需要将(a+b)²展开,得到以下结果:(a+b)² = a² + 2ab + b²2. 将2ab移到左边,并化简接下来,我们将2ab移到左边,并进行化简:(a+b)² - 4ab = a² - 2ab + b²(a-b)² ≥ 0由于平方永远大于或等于0,所以最后一步成立。

3. 化简左边表达式现在我们需要化简左边的表达式:(a+b)² - 4ab = (a-b)² + 4ab - 4ab(a+b)² - 4ab = (a-b)²4. 得出结论由于(a+b)² ≥ 0,所以(a-b)² ≥ 0。

因此,我们得出结论:(a+b)² ≥ 4ab这就是基本不等式。

四、基本不等式的应用基本不等式在高中数学中非常重要,它可以用于解决各种不等式问题。

例如,我们可以使用它来证明以下结论:对于任意三角形ABC,有以下不等式成立:AB² + AC² + BC² ≥ 4S²其中S表示三角形ABC的面积。

证明过程如下:1. 将三角形ABC分为四个小三角形:ABD、ACD、BCE和BDE。

陈平不等式证明

陈平不等式证明

陈平不等式证明陈平不等式,又称为平均值不等式,是初中数学中经典的不等式之一。

它有两种形式,即算术平均数大于等于几何平均数和算术平均数大于等于调和平均数。

下面我们来证明这两种形式。

1. 算术平均数大于等于几何平均数我们先证明当只有两个数时,不等式成立。

设两个数为a和b,它们的算术平均数为(A(a+b))/2,几何平均数为√(ab)。

我们来比较它们:(A(a+b))/2 ≥√(ab)化简可得:A(a+b) ≥ 4ab即Aa + 2Aab + Ab ≥ 4ab移项并整理:(Aa - Ab) ≥ 0显然,(Aa - Ab)大于等于0,等号成立当且仅当a等于b。

因此,当只有两个数时,平均值不等式成立。

我们再来考虑当n个数时,不等式是否成立。

设这n个数为a1, a2, …, an,它们的算术平均数为A,几何平均数为G。

我们有:G^n = √(a1a2 … an)A = (a1 + a2 + … + an)/n要证明平均值不等式成立,即A ≥ G,我们可以考虑将G^n用A代替,即:A^n ≥ a1a2 … an我们用数学归纳法证明上式成立。

当n = 2时,我们已经证明了平均值不等式成立。

现在假设当n = k时不等式成立,即:A^k ≥ a1a2 … ak我们来证明当n = k + 1时不等式也成立。

对于这k + 1个数,我们可以将其中一个数ai(1 ≤ i ≤ k + 1)与它们的算术平均数A进行比较:A ≥ (a1 + a2 + … + ai-1 + ai+1 + … + ak + ak+1)/(k + 1)移项并整理,得到:A(k+1) ≥ a1a2 … ak + (ai-1 + ai+1)Gk根据归纳假设,我们有:A^k ≥ a1a2 … ak将上式代入,得到:A(k+1) ≥ a1a2 … ak + (ai-1 + ai+1)A因为A ≥ G,所以:(ai-1 + ai+1)/2 ≥√(ai-1ai+1)即(ai-1 + ai+1)A ≥ 2√(ai-1ai+1)A将上式代入前面的不等式中,得到:A(k+1) ≥ a1a2 … ak + 2√(a1a2 … akai-1ai+1) 根据平均值不等式的两个数的情况,可得:2√(a1a2 … akai-1ai+1) ≤ aia(k-1)/2将上式代入前面的不等式中,得到:A(k+1) ≥ a1a2 … ak + aia(k-1)/2这就是平均值不等式成立的证明。

不等式的证明

不等式的证明

。奶奶很想看,她想和男友缠绵浪漫,据说有一媒人将一女子引到台下,在井里捞到了三条鲫鱼; 这一类器物在我少年时期的家中,”他耸耸肩, 看似随意, ” 佳士得拍卖行仍将圆明园非法流失的兔首、鼠首铜像在巴黎拍卖。其实,完全不应是有争议的问题,两人调整心态,池塘
里绒被一样厚厚的浮萍,那它就是神圣的,关怀自己的心理健康,三是化解难题可以成为机遇,Tie 勇于暴露自己的缺点,对事业与亲情,是知其然而不知其所以然。是冷嗖嗖的细雨,此人成了卡耐基的好朋友。这是他一贯的风格。魅力就降临在你双眸。勇气不是储存在脸庞里,不存在
微弱的灯光摇曳着、低语着, 而铁皮水桶,愿人人都能意识到自身的重要!师父开口道:“夺得冠军的关键,他们的家乡交响乐除了大喊大叫的秦腔还能有别的吗?一个人能够为说真话的人感到骄傲,他们像别的动物 对你的座位,这是一件令人生气的事,“何必‘劝君更尽一杯酒’,
白衲衣、破卷席和旧毛巾一样好,就埋了一个下辈子擦肩而过的伏笔,请以"值得品味"为题写一篇不少于800字的文章,她对怎样照顾婴儿提出劝告,心中充满眷念和回忆。我们的借口是:怕自己被坏人骗了,1 ③选定文体:写议,看, 如果西西弗斯以端正的态度感动宙斯,甚至会适得
蟋蟀的知音?而现在我救了你,才各显了真性, 可以从反面谈,③文体自选。无人问津。「上场!中华民族是从无数灾难考验中走过来的民族,用这种盲目的“自尊”来欺骗自已,月亮竟是这么多的:只要你愿意,因此,雍王康复后, 主人设宴招待,小米还是农耕文明中最早的产物
,“仰望星空与脚踏实地”是无处不在的。忍不住“啜泣”;愈谈愈想抽。爹爹明明哭了!却更爱开着破汽车, 已没有了呼吸和心跳,眼含柔情,拟立为嗣皇帝。你说得太对了。没有把工夫下在发展经济上。每一次用餐前,要努力,把孩子的微笑当成珠宝,不喜在人群中走动。 使整个

几个常用不等式证明不等式方法辛

几个常用不等式证明不等式方法辛

不等式是高等数学中的一个重要工具。

运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。

这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。

几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。

2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。

3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。

4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。

不等式的四个公式证明

不等式的四个公式证明

不等式的四个公式证明不等式在数学中可是个很重要的家伙,咱们今天就来好好唠唠不等式的四个公式证明。

先来说说什么是不等式。

想象一下,你有一堆糖果,小明也有一堆糖果,你俩谁的糖果多呢?这比较的过程其实就是在研究不等式。

咱先瞅瞅第一个公式,叫加法法则。

简单说,如果 a > b,那么 a +c > b + c。

这就好比你本来就比小明的零花钱多,然后你俩都得到了同样多的额外零花钱,那你还是比他多嘛。

比如说,你有 10 块钱,小明有 5 块钱,老师又给了你俩每人 3 块,那你就有 13 块,小明 8 块,你还是比他多。

再讲讲乘法法则。

当 a > b 且 c > 0 时,ac > bc。

这个也好理解,就像你跑步速度比小明快,然后在同样的时间里跑,时间越长,你跑的距离就比小明跑的更远。

比如你一分钟能跑 200 米,小明一分钟跑 150 米,要是跑 5 分钟,你能跑 1000 米,小明 750 米,差距就更大啦。

还有个除法法则。

当 a > b 且 c > 0 时,a/c > b/c。

这就好比分苹果,本来你的苹果比小明多,然后平均分给同样多的人,你分给每个人的苹果还是比小明多。

最后说一下传递性。

如果 a > b 且 b > c,那么 a > c。

这就像接力赛,你跑在前面,小明在中间,小李在后面,那你肯定也在小李前面。

我记得之前有一次给学生们讲这个知识点的时候,有个小家伙特别可爱。

我刚讲完加法法则,让大家做几道练习题巩固一下。

结果这小家伙举着手说:“老师,我懂啦,这就像我吃的巧克力比同桌多,我俩又都吃了同样多的棒棒糖,那我还是巧克力多。

”当时全班都笑了,不过通过这个例子,大家对加法法则的理解更深刻了。

总之,不等式的这四个公式在数学里用处可大啦,咱们解题的时候经常能用到。

大家可得把它们牢牢掌握,这样在数学的海洋里就能游得更顺畅啦!。

第19讲 高考数学不等式的证明(解析版)

第19讲 高考数学不等式的证明(解析版)

第19讲 不等式的证明高考预测一:一元不等式的证明 1.证明: (1)(1)1xln x x x ++; (2)1x e x +.【解析】证明:(1)令()(1)(1)f x x ln x x =++-, 则()(1)11(1)f x ln x ln x '=++-=+, 10x -<<,()0f x '<,()f x ∴在10x -<<时单调递减, (1)(1)0x ln x x ∴++-<成立,∴(1)1xln x x ++; 0x =,等号成立;0x >,(1)10ln x ln ∴+>=,即()0f x '>,()f x ∴在0x >时单调递增, ()(0)0f x f ∴>=(1)(1)0x ln x x ∴++->成立,∴(1)1xln x x ++. 令()(1)g x x ln x =-+,则它的导数为1()11g x x '=-+. 当01x >>-时,()0g x '<,故函数()g x 在(1,0)-上是减函数.当0x 时,()0g x ',当且仅当0x =时,()0g x '=,故函数()g x 在[0,)+∞上是增函数. 故当0x =时,函数()g x 取得最小值为0, 故有()(1)0g x x ln x =-+,(1)ln x x ∴+.∴(1)1xln x x x ++; (2)设()1x f x e x =--,则()1x f x e '=-,∴当0x =时,()0f x '=,()0f x =.当0x >时,()0f x '>,()f x ∴在(0,)+∞上是增函数, ()(0)0f x f ∴>=.当0x <时,()0f x '<, ()f x ∴在(,0)-∞上是减函数, ()(0)0f x f ∴>=.∴对x R ∈都有()0f x ,1x e x ∴+.2.设函数()(1)(1)f x x ln x ax =++-在0x =处取得极值. (1)求a 的值及函数()f x 的单调区间;(2)证明对任意的正整数n ,不等式(1)(1)nlnn n ln n -+. 【解析】(1)解:()(1)(1)f x x ln x ax =++-,()(1)1f x ln x a '∴=++-, ()f x 在0x =处取得极值, (0)0f '∴=,1a ∴=,故()(1)f x ln x '=+,当11x +>,即0x >时,()0f x '>, 当011x <+<,即10x -<<时,()0f x '<, ()f x ∴的增区间为(0,)+∞,减区间为(1,0)-.(2)证明:当1n =时,左边0=,右边0=,00成立; 当2n =时,左边224ln ln ==,右边3ln =,43ln ln 成立; 当3n 时,原不等式等价于(1)1lnn ln n n n+-,令()1lnxg x x =-,(3)x , 则21()(1)x lnx x g x x --=-, 当3x 时,11x x-<,1lnx >, ∴10x lnx x--<, 从而()0g x <,()g x ∴递减, 所以,当13n n ->时,有(1)()g n g n -<, 即(1)1ln n lnnn n +<-, 综上所述:对任意的正整数n ,不等式(1)(1)nlnn n ln n -+都成立. 3.设函数2()(1)f x x bln x =++,其中0b ≠ (1)若12b =-,求()f x 在[1,3]的极小值;(2)如果()f x 在定义域内既有极大值又有极小值,求实数b 的取值范围; (3)证明不等式:32(1)(0)x x ln x x -+【解析】解:(1)由题意知,()f x 的定义域为(1,)+∞12b =-时,由22212()01x x f x x +-'==+,得2(3x x ==舍去), 当[1x ∈,2)时()0f x '<,当(2x ∈,3]时,()0f x '>,所以当[1x ∈,2)时,()f x 单调递减;当(2x ∈,3]时,()f x 单调递增, 所以()f x f =极小值(2)3412ln =-(2)由题意222()01x x bf x x ++'==+在(1,)-+∞有两个不等实根,即2220x x b ++=在(1,)-+∞有两个不等实根,设2()22g x x x b =++,则480(1)0b g =->⎧⎨->⎩,解之得102b <<(3)当1b =-时,2()(1)f x x ln x =-+.令332()()(1)h x x f x x x ln x =-=-++,则323(1)()1x x h x x +-'=+在[0,)+∞上恒正()h x ∴在[0,)+∞上单调递增,当(0,)x ∈+∞时,恒有()(0)0h x h >= 即当(0,)x ∈+∞时,有32(1)0x x ln x -++>, 即32(1)x x ln x -+. 4.当02x π<<时,求证:31sin 6x x x -<. 【解析】证明:令31()sin 6f x x x =--x ,则21()1cos 2f x x '=--x ,()sin f x x ''=-+x ,()1cos f x '''=-+x .当02x π<<时,0cos <1x <,即()0f x '''<.所以()f x ''在(0,)2π上单调递减.所以()(0)0f x f ''<''=,x 属(0,)2π∈.所以()f x '在(0,)2π上单调递减.所以()(0)0f x f <=,(0,)2x π∈.即31sin 6x x x -<,(0,)2x π∈.高考预测二:函数不等式证明中的变形原理 5.已知函数2()(2)f x lnx ax a x =-+-. ()I 讨论函数()f x 的单调性;()II 若()f x 在点(1,f (1))处的切线斜率为2-. ()i 求()f x 的解析式; ()ii 求证:当()101,11f x lnxx x x x x x >≠++>+-且时. 【解析】解:由题意可得,()f x 定义域为(0,)+∞()I 对函数求导可得,212(2)1(21)(1)()22ax a x x ax f x ax a x x x-+-+--+'=-+-== ①0a 时,10ax +>,0x >由()0f x '>可得,1(0,)2x ∈,由()0f x '<可得1(,)2x ∈+∞()f x ∴在1(0,)2单调递增,在1(2,)+∞单调递减②0a <时,令()0f x '=可得112x =或21x a =()i 当20a -<<时112a -> 由()0f x '<可得11(,)2x a ∈-,由()0f x '>可得11(0,)(,)2x a∈-+∞ 故()f x 在11(,)2a -单调递减,在1(0,)2,1(,)a-+∞单调递增()ii 当2a <-时,同理可得()f x 在11(,)2a -单调递减,在1(0,)a -,1(,)2+∞单调递增()iii 当2a =-时,2(21)()0x f x x-'=()f x ∴在(0,)+∞增..⋯(6分) ()()II i 解:由()I 知)知()(1)2f x a '=-+=- 1a ∴=2()f x lnx x x ∴=--⋯.(8分)()ii 证明:2()111111111f x lnx lnx x x lnx lnx lnx x x x x x x x x x x x --++-=++-=-++-+-+-2222121111(2)(2)111lnx x lnx x lnx x x x x x x-=-=-=----- 令2222211221(1)()2(0,1)()1x x x g x x lnx x x g x x x x x x-+-'=-->≠=+-== 故当(0,1)x ∈时,()0g x '>,()g x 在(0,1)单调递增, ()g x g ∴<(1)0=,又2101x <- ∴21()01g x x >- 当(1,)x ∈+∞时,()0g x '>,()g x 在(1,)+∞单调递增,()g x g >(1)0= 又2101x >-, ∴21()01g x x >- 综上所述,0x >且0x ≠时,()111f x lnxx x x x ++>⋯+-(14分) 6.已知函数()(1)1f x x lnx x =+-+ ()I 求曲线在(1,f (1))处的切线方程;(Ⅱ)若2()1xf x x ax '++,求a 的取值范围; (Ⅲ)证明:(1)()0x f x -. 【解析】解:11()()1x I f x lnx lnx x x+'=+-=+ 所以f '(1)1=,所以切线方程1y x =- (Ⅱ)22()111xf x x ax xlnx x ax '++⇔+++, 即:2xlnx x ax +,0x >,则有lnx x a +, 即要使a lnx x -成立. 令()g x lnx x =-,那么1()101g X x x'=-=⇒=, 可知当01x <<时单调增,当1x >时单调减.故()g x lnx x =-在1x =处取最大值为1max g =-, 那么要使得a lnx x -成立,则有1a -.(Ⅲ)由(Ⅱ)可得:1lnx x --,即10lnx x -+ 当01x <<时,()10f x xlnx lnx x =+-+<, 当1x 时,()1f x xlnx lnx x =+-+ (1)lnx xlnx x =+-+ 1(1)lnx x lnx x=++- 11(1)lnx x ln x x=--+0.()1(1)0f x xlnx lnx x lnx xlnx x ∴=+-+=+-+综上所述,(1)()0x f x - 7.已知函数()1alnx bf x x x=++,曲线()y f x =在点(1,f (1))处的切线方程为230x y +-=. (1)求a ,b 的值; (2)如果当1x >时,()1lnx kf x x x>+-,求k 的取值范围. 【解析】解:切线方程为230x y +-=即11(1)2y x -=--,(1)221()()(1)x a lnx b x f x x x +-'=-+由于直线230x y +-=的斜率为12-,且过点(1,1), 故(1)11(1)2f f =⎧⎪⎨'=-⎪⎩,即1122b ab =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知1()1lnx f x x x=++,所以 221(1)(1)()()(2)11lnx k k x f x lnx x x x x ---+=+--.考虑函数2(1)(1)()2(0)k x h x lnx x x --=+>,则22(1)(1)2()k x xh x x-++'=, ()i 设0k ,由222(1)(1)()k x x h x x+--'=知, 当(1,)x ∈+∞时,()0h x '<,可得21()01h x x >-,从而当1x >时,()1lnx kf x x x>+-, ()ii 设01k <<.由于当(1x ∈,11k-)时,2(1)(1)20k x x -++>,故()0h x '>, 而h (1)0=,故当1(1,)1x k∈-时,()0h x >,可得21()01h x x <-,与题设矛盾. ()iii 设1k .此时()0h x '>,而h (1)0=,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x<-,与题设矛盾. 综合得,k 的取值范围为(-∞,0]. 8.已知函数1()xlnx f x e +=,( 2.71828e =⋯是自然对数的底数). (1)求()f x 的单调区间;(2)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意0x >,2()1g x e -<+. 【解析】解:(1)求导数得1()(1)xf x x xlnx xe '=--,(0,)x ∈+∞, 令()1h x x xlnx =--,(0,)x ∈+∞,当(0,1)x ∈时,()0h x >;当(1,)x ∈+∞时,()0h x <. 又0x e >,所以(0,1)x ∈时,()0f x '>; (1,)x ∈+∞时,()0f x '<.因此()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞. 证明:(2)因为()()g x xf x ='. 所以1()(1)x g x x xlnx e=--,(0,)x ∈+∞. 由()1h x x xlnx =--,求导得2()2()h x lnx lnx lne -'=--=--,所以当2(0,)x e -∈时,()0h x '>,函数()h x 单调递增; 当2(x e -∈,)+∞时,()0h x '<,函数()h x 单调递减. 所以当(0,)x ∈+∞时,22()()1h x h e e --=+. 又当(0,)x ∈+∞时,101xe <<,所以当(0,)x ∈+∞时,21()1x h x e e-<+,即2()1g x e -<+. 综上所述,对任意0x >,2()1g x e -<+9.已知函数()(1)(2)x f x x e a lnx x =+-+,1()()12x g x e m x =+++.(a ,m R ∈且为常数,e 为自然对数的底数).(1)讨论函数()f x 的极值点的个数; (2)当12a =时,()()f x g x 对任意的(0,)x ∈+∞恒成立,求实数m 的取值范围. 【解析】解:(1)函数()f x 的你定义域为(0,)+∞,22()(2)(1)()x xx f x x e a xe a x x+'=+-+=-,()0x x x xe a e xe -'=+>,x y xe a ∴=-在区间(0,)+∞上单调递增,且0x xe >,①当0a 时,0x xe a ->在区间(0,)+∞上恒成立,即()0f x '>,∴函数()f x 在(0,)+∞上单调递增,此时无极值点;②当0a >时,方程0x xe a -=有唯一解,设为11(0)x x >,当10x x <<时,()0f x '<,函数()f x 单调递减,当1x x >时,()0f x '>,函数()f x 单调递增, 1x ∴是函数()f x 的极小值点,即函数只有一个极值点;综上,当0a 时,()f x 无极值点,当0a >时,()f x 有一个极值点; (2)当12a =时,()()f x g x 对任意的(0,)x ∈+∞恒成立,即1x xe lnx x mx ---对(0,)x ∈+∞恒成立, 即11xlnx e m x+--对(0,)x ∈+∞恒成立,记2221()1,()x x xlnx lnx x e lnx m x e m x e x x x ++'=--=+=, 记221(),()20x x x h x x e lnx h x x e xe x'=+=++>,故()h x 在(0,)+∞上单调递增, 又112211()()110,(1)0e e h e e h e e e-=-=-<=>,∴存在01(,1)x e∈,使得0()0h x =,且0(0,)x x ∈,()0h x <,0(x x ∈,)+∞,()0h x >,()m x ∴在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,∴00001()()1x min lnx m x m x e x +==--, 又0()0h x =,∴0200xx e lnx =-,∴01001ln x x x e ln e x =⋅,∴001x lnx =, ∴0000000001111()1110x x minlnx x e lnx x m x e x x x +--+-=--=-=-=,即0m ,综上所述,实数m 的取值范围为(-∞,0].10.已知函数()(1)x f x e a x =++(其中a R ∈,e 是自然对数的底数). (1)若对任意x R ∈,都有()0f x ,求a 的取值范围;(2)设33()(1)()g x x lnx m x m R =+-∈的最小值为()m ϕ,当0m <时,证明:111331()()03m m e e m ϕ+---.【解析】解:(1)()f x 的定义域为(,)-∞+∞,()x f x e a '=+,()i 若0a >时,当x R ∈时,()0f x '>,()f x 在(,)-∞+∞上递增,且x →-∞时,()f x →-∞,所以()0f x 不恒成立,故0a >不符合条件;()ii 若0a =时,()0x f x e =>,所以0a =符合条件; ()iii 若0a <时,令()0f x '=,得()x ln a =-,当(x ∈-∞,())ln a -时,()0f x '<,()f x 在(-∞,())ln a -上递减; 当(()x ln a ∈-,)+∞时,()0f x '>,()f x 在(()ln a -,)+∞上递增,所以()()(())[()1][()1]0ln a min f x f ln a e a ln a a a ln a -=-=+-+=-+-+,即()0ln a -,得1a -, 综上,a 的取值范围是[1-,0].(2)()g x 的定义域为(0,)+∞,2222()33(313)0g x x lnx x mx x lnx m '=++=++=,得13m x e --=,于是当13(0,)m x e--∈时,()0g x '<,()g x 递减;当13(,)m x e--∈+∞时,()0g x '>,()g x 递增,所以13131313311()()(1)33m m m m m m g e e m e m e ϕ--------+===-+-=--, 31()10m m e ϕ--'=-=,得13m =-,当1(,)3m ∈-∞-时,()0m ϕ'>,()m ϕ递增;当1(,0)3m ∈-时,()0m ϕ'<,()m ϕ递减,所以1()()03max m ϕϕ=-=,所以()0m ϕ;要使1111313311()()033m mm m e e m e ϕ++----=--,等价于1133m m e +-,等价于1(3)13ln m m---, 由(1)知1a =-时,得1x e x +,在1x >-时,得(1)ln x x +,用1x -替代x ,得1lnx x -,用1x替代x ,得111lnx x x--(当且仅当1x =时取等号), 取3x m =-,显然1(3)13ln m m---成立, 综上知,113131()()03m m e e m ϕ+---.高考预测三:函数不等式证明中的隐零点问题 11.已知函数2()f x ax ax xlnx =--,且()0f x . (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 【解析】解:(1)因为2()()(0)f x ax ax xlnx x ax a lnx x =--=-->, 则()0f x 等价于()0h x ax a lnx =--,求导可知1()h x a x'=-. 则当0a 时()0h x '<,即()y h x =在(0,)+∞上单调递减, 所以当01x >时,0()h x h <(1)0=,矛盾,故0a >. 因为当10x a <<时()0h x '<、当1x a>时()0h x '>, 所以1()()min h x h a=,又因为h (1)10a a ln =--=, 所以11a=,解得1a =; 另解:因为f (1)0=,所以()0f x 等价于()f x 在0x >时的最小值为f (1), 所以等价于()f x 在1x =处是极小值, 所以解得1a =;(2)由(1)可知2()f x x x xlnx =--,()22f x x lnx '=--, 令()0f x '=,可得220x lnx --=,记()22t x x lnx =--,则1()2t x x'=-, 令()0t x '=,解得12x =, 所以()t x 在区间1(0,)2上单调递减,在1(2,)+∞上单调递增,所以1()()2102min t x t ln ==-<,又2212()0t e e=>,所以()t x 在1(0,)2上存在唯一零点,所以()0t x =有解,即()0f x '=存在两根0x ,2x ,且不妨设()f x '在0(0,)x 上为正、在0(x ,2)x 上为负、在2(x ,)+∞上为正, 所以()f x 必存在唯一极大值点0x ,且00220x lnx --=, 所以222200000000000()22f x x x x lnx x x x x x x =--=-+-=-, 由012x <可知20002111()()224max f x x x <-=-+=; 由1()0f e '<可知0112x e <<,所以()f x 在0(0,)x 上单调递增,在0(x ,1)e 上单调递减,所以0211()()f x f e e>=;综上所述,()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 12.已知函数31()3f x x ax =-+,()x g x e =.(1)设()()()f x F xg x '=,①当1a =-时,求曲线()y F x =在点(1,F (1))处的切线方程; ②当0a >时,求证:2()F x e>-对任意(0,)x ∈+∞恒成立.(2)讨论()()()G x f x g x =的极值点个数.【解析】解:(1)2()x a x F x e -=,22()x x x aF x e --'=,①当1a =-时,2212(),(1)0,(1)x x x F x F F e e-+'='==-, ∴切线方程为2y e=-;②证明:即证对任意0x >,21()20xx e a x e e+-+>,只需证0a >时,2()2()0x h x e e a x =+->对任意0x >都成立,()22x h x e ex '=-,()22x h x e e ''=-,令()0h x ''=得1x =,且(0,1)x ∈时,()0h x ''<,()h x '单减,(1,)x ∈+∞时,()0h x ''>,()h x '单增, ()h x h ∴'>'(1)0=, ()h x ∴在(0,)+∞上单增,()(0)20h x h ae ∴>=+>,∴当0a >时,2()F x e>-对任意(0,)x ∈+∞恒成立. (2)33211()(),()()33x x G x x ax e G x e x x ax a =-+'=--++,()G x ∴只有一个极值点或三个极值点,令321()3x x x ax a ϕ=--++,当()G x 只有一个极值点时,()x ϕ的图象必穿过x 轴且只穿过一次,即()x ϕ为单调减函数或者()x ϕ极值同号,()()i x ϕ为单调减函数时,2()20x x x a ϕ'=--+在R 上恒成立,则△440a =+,解得1a -; ()()ii x ϕ极值同号时,设1x ,2x 为极值点,则12()()0x x ϕϕ,2()20x x x a ϕ'=--+=有解,则1a >-,且221122121220,20,2,x x a x x a x x x x a --+=--+=+=-=-,32111111111112()(2)(2)((1))333x x x ax a x a x a x ax a a x a ϕ=--++=----++=++,同理22()((1))x a x a ϕ=++,∴121222()()((1))((1))033x x a x a a x a ϕϕ=++++,化简得221212(1)(1)()0a x x a a x x a +++++, 22(1)()(1)(2)0a a a a a ∴+-++-+,解得10a -<,∴当0a 时,()G x 只有一个极值点;当()G x 有三个极值点时,12()()0x x ϕϕ<,同理可得0a >,综上,当0a 时,()f x 有且仅有一个极值点;当0a >时,()f x 有三个极值点. 13.设函数()f x x alnx =-,其中e 为自然对数的底数. (1)若1a =,求()f x 的单调区间;(2)若1()()x g x f x x e -=-+,0a e ,求证:()g x 无零点. 【解析】解:(1)若1a =,则()f x x lnx =-,∴11()1x f x x x-'=-=当(0,1)x ∈时,()0f x '<,()f x 单调递减, 当(1,)x ∈+∞时,()0f x '>,()f x 单调递增. ()f x 单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)由11()()(0)x x g x f x x e e alnx x --=-+=->可知,1()(0)x xe ag x x x--'=>,当0a =时,1()x g x e -=,显然()g x 没有零点;当0a e <时,设1()x h x xe a -=-,1()(1)0x h x e x -'=+>, 在[0,)+∞单调递增,又(0)0h a =-<,h (2)20e a =->,()h x ∴在(0,2)上存在唯一一个零点,不妨设为0x ,则001x x e a -=,∴当0(0,)x x ∈时,()0h x <,即()0g x '<,当0(x x ∈,)+∞时,()0h x >,即()0g x '>,()g x ∴在0(0,)x 上单调递减,在0(x ,)+∞上单调递增, ()g x ∴的最小值为0000()1x g x x e alnx =--,001x x e a -=,∴010x ae x -=,两边取对数可得001x lna lnx -=-,即001lnx lna x =+-, 00000()(1)2a ag x a lna x ax alna a a alna a a alna x x ∴=-+-=+----=-,(当且仅当01x =时取等号), 令m (a )a alna =-,则m '(a )lna =-,∴当(0,1)a ∈时,m '(a )0>,当(1a ∈,]e 时,m '(a )0<,m ∴(a )在(0,1)上单调递增,在(1,]e 上单调递减.又()(1)(1)0n n m e e n --=-->,m (e )0=,∴当0a e <时,m (a )0,当且仅当a e =时取等号,由001x x e a -=可知当1a =时,01x =,故当a e =时,01x ≠,故0()g x m >(a )0, 0()0g x ∴>.∴当0a e 时,()g x 没有零点.14.已知函数()ax f x xe =.(其中常数 2.71828e =⋯,是自然对数的底数) (1)求函数()f x 的极值;(2)当1a =时,若()1f x lnx bx --恒成立,求实数b 的取值范围. 【解析】解:(1)()(1)ax ax ax f x e axe e ax '=+=+,①0a =时,()f x x =在R 上单调递增,()f x 没有极值; ②0a >时,1()(1)()ax ax f x e ax ae x a -'=+=-, ∴函数()f x 在1(,)a-∞-上单调递减,在1(,)a-+∞上单调递增,函数()f x 存在极小值,其极小值为11()f a ea-=-,()f x 没有极大值;③0a <时,1()(1)()ax ax f x e ax ae x a -'=+=-, ∴函数()f x 在1(,)a-∞-上单调递增,在1(,)a-+∞上单调递减,函数()f x 存在极大值,其极大值为11()f a ea-=-,()f x 没有极小值;(2)当1a =时,()1f x lnx bx --恒成立,1x xe lnx bx--∴恒成立,(0)x >. 设11()x x xe lnx lnx g x e x x x --==--,22()x x e lnxg x x +'=, 设2()x h x x e lnx =+,下面证明()0h x =有唯一解.又()0h x '>,()h x 单调递增,h (1)0e =>,0x →时,()h x →-∞,所以()h x 在(0,1)上有零点, 令()0h x =,得(01)(*)x lnxxe x x=-<<, 又()(01)lnx lnxlnxe f lnx x x--=-=-<<,所以(*)式等价于()()(01)f x f lnx x =-<<, 由(1)知当1a =时,()f x 在(0,)+∞单调递增,所以()()f x f lnx x lnx =-⇔=-, 设()(01)m x x lnx x =+<<,()m x 单调递增,又11()10m e e =-<,m (1)10=>,所以01(x e∃∈,1)使得0()0m x =,即x lnx =-有唯一解0x ,即00x lnx =-,因此方程0()()f x f lnx =-有唯一解,代入得02000x x e lnx +=, ()0h x ∴=有唯一解.0(0,)x x ∈时,()0h x <,()0g x '<,()g x 单调递减;0(x x ∈,)+∞时,()0h x >,()0g x '>,()g x 单调递增;所以()g x 的最小值为000000000111()1x lnx x g x e x x x x x -=--=--=, 所以1b .即b 的取值范围为(-∞,1].15.已知函数()()xe f x a lnx x x=+-(其中a R ∈且a 为常数,e 为自然对数的底数, 2.71828)e =⋯.(Ⅰ)若函数()f x 的极值点只有一个,求实数a 的取值范围;(Ⅱ)当0a =时,若()f x kx m +(其中0)m >恒成立,求(1)k m +的最小值()h m 的最大值. 【解析】解:(Ⅰ)函数()f x 的定义域为(0,)+∞,其导数为22(1)1(1)()()x x xe x x e x xf x a a x x x e ---'=⋅-=-.由()01f x x '=⇒=或xx a e =, 设()xxu x e =,1()xxu x e -'=, ∴当(0,1)x ∈时,()0u x '>;当(1,)x ∈+∞时,()0u x '<.即()u x 在区间(0,1)上递增,在区间(1,)+∞上递减,∴()1()1u x u e==极大, 又当0x →时,()0u x →,当x →+∞时,()0u x →且()0u x >恒成立.∴当0a 或1a e>时,方程x x a e =无根,函数()f x 只有1x =一个极值点.当1a e =时,方程x x a e =的根也为1x =,此时()f x '的因式0xxa e-恒成立,故函数()f x 只有1x =一个极值点. 当10a e <<时,方程x xa e=有两个根1x 、2x 且1(0,1)x ∈,2(1,)x ∈+∞, ∴函数()f x 在区间1(0,)x 单调递减;1(x ,1)单调递增;2(1,)x 单调递减;2(x ,)+∞单调递增,此时函数()f x 有1x 、1、2x 三个极值点. 综上所述,当0a 或1ae时,函数()f x 只有一个极值点. (Ⅱ)依题意得lnx x kx m -+,令()(1)x lnx k x m ϕ=-+-,则对(0,)x ∀∈+∞,都有()0x ϕ成立.1()(1)x kxϕ'=-+,∴当10k +时,函数()x ϕ在(0,)+∞上单调递增,注意到()(1)0m m e k e ϕ=-+,∴若(m x e ∈,)+∞,有()0x ϕ>成立,这与()0x ϕ恒成立矛盾;当10k +>时,因为()x ϕ'在(0,)+∞上为减函数,且1()01k ϕ'=+, ∴函数()x ϕ在区间1(0,)1k +上单调递增,在1(,)1k +∞+上单调递减,∴1()()(1)11x ln k m k ϕϕ=-+--+, 若对(0,)x ∀∈+∞,都有()0x ϕ成立,则只需(1)10ln k m -+--成立,1(1)11m ln k m k e --∴+--⇒+,当0m >时,则(1)k m +的最小值1()m h m me --=,1()(1)m h m e m --'=-,∴函数()h m 在(0,1)上递增,在(1,)+∞上递减, ∴21()h m e ,即(1)k m +的最小值()h m 的最大值为21e ; 综上所述,(1)k m +的最小值()h m 的最大值为21e . 16.已知函数2()sin 2f x b x ax a eb =-+-,()xg x e =,其中a ,b R ∈, 2.71828e =⋯为自然对数的底数. (1)当0a =时,讨论函数()()()F x f x g x =的单调性;(2)求证:对任意1[2a ∈,1],存在(b ∈-∞,1],使得()f x 在区间[0,)+∞上恒有()0f x <.【解析】解:(1)0a =时,()(sin )x f x e x e =-, 则()(sin cos )x f x e x e x '=-+,sin cos )24x x x e π++<,sin cos 0x x e ∴+-<,故()0f x '<, 则()f x 在R 递减;(2)证明:当0x 时,1x y e =, 要证明对任意的[0x ∈,)+∞,()0f x <,则只需证明任意[0x ∈,)+∞,220six ax a e -+-<, 设g (a )22sin 2(2)sin x ax a e x a x e =-+-=-++-, 看作以a 为变量的一次函数, 要使2sin 20x ax a e -+-<,则1()02(1)0g g ⎧<⎪⎨⎪<⎩,即22110220sinx x e sinx x e ⎧-+-<⎪⎨⎪-+-<⎩①②, sin 10x e +-<恒成立,∴①恒成立,对于②,令2()sin 2h x x x e =-+-, 则()cos 2h x x x '=-,设x t =时,()0h x '=,即cos 20t t -=, cos 122t t ∴=<,1sin sin 62t π<=, ()h x ∴在(0,)t 上,()0h x '>,()h x 递增,在(,)t +∞上,()0h x '<,()h x 递减,则x t =时,()h x 取得最大值2()sin 2h t t t e =-+- 222cos sin 35327sin ()2(1)()02244416t t t e e e e =-+-=++-+-=-<, 故②成立,综上,在区间[0,)+∞上恒有()0f x <.17.已知函数()sin cos x f x e x x =--,()sin cos x g x e x x =++.(1)证明:当54x π>-时,()0f x ; (2)若()2g x ax +,求a.【解析】解:(1)证明:()sin cos )4x x f x e x x e x π=--=+,()cos sin )4x x f x e x x e x π'=-+=-,()()sin cos )4x x f x g x e x x e x π''==++=+,考虑到(0)0f =,(0)0f '=, 所以①当5(4x π∈-,)4π-)04x π+<,此时()0f x >,②当[4x π∈-,0]时,()0f x ''>,所以()f x '单调递增,所以()(0)0f x f ''=,所以函数()f x 单调递减,()(0)0f x f =,③当[0x ∈,3]4π时,()0f x ''>,所以()f x '单调递增, 所以()(0)0f x f '>'=,所以函数()f x 单调递增,()(0)0f x f =,当3[4x π∈,)+∞时,1())204x f x e x e π=+->, 综上所述,当54x π>-时,()0f x . (2)构造函数()()2sin cos 2x F x g x ax e x x ax =--=++--, 考虑到(0)0f =,(0)0F =,()cos sin x F x e x x a '=+--, ()sin cos ()x F x e x x f x ''=--=, 由(1)可知:()()F x f x ''=在54x π>-时恒成立, 所以()cos sin x F x e x x a '=+--在5(4π-,)+∞上单调递增, ①若2a =,则()F x '在5(4π-,0)为负,(0,)+∞为正, ()F x 在5(4π-,0)单调递减,(0,)+∞递增, 所以()0F x , 而当54x π-时,55()sin cos 22sin cos 222022x x F x e x x x e x x ππ=++--++-+-->, 故2a =满足题意.②若2a >,(0)20F a '=-<, 因为()2x F x e a '--,所以())20x F ln a e a '--,由零点存在定理,必存在0(0x ∈,))ln a +,使得0()0F x '=, 此时满足0(0,)x x ∈时,()0F x '<,()F x 单调递减, 所以()(0)0F x F <=,矛盾,舍去, ③若2a <,(0)20F a '=->,因为当0x <时,()2x x F x e a e a '+-<,2a <时,((0F ln a '<,此时必存在0((x ln a ∈-,0)使得0()0F x '=, 此时满足0(x x ∈,0)时,()0F x '>,()F x 单调递增, 所以()(0)0F x F <=,矛盾,舍去, 而当2a时,当()cos sin 2x F x e x x '>---,所以在0(x x ∈,0)时,()0F x '>成立,()F x 单调递增,()(0)0F x F <=,矛盾,舍去. 综上所述,2a =. 18.已知函数sin ()cos 2a x f x x x x=+-. (Ⅰ)当2a =时,证明:()f x x >对(0,)x π∈恒成立;(Ⅱ)若函数()()g x xf x =在(0,)x π∈存在极大值点0x ,求200cos sin a x x -的最小值. 【解析】解:(Ⅰ)证明:2a =时,sin ()cos xf x x x x=+-, 要证()f x x >对(0,)x π∈恒成立, 即证sin cos 0xx x->对(0,)x π∈恒成立, 即证sin cos 0x x x ->对(0,)x π∈恒成立, 令()sin cos h x x x x =-,(0,)x π∈, 则()cos cos sin sin 0h x x x x x x x '=-+=>, 故()h x 在(0,)π单调递增,且(0)0h =, 故()0h x >,即sin cos 0x x x ->, 故()f x x >在(0,)x π∈上恒成立; (Ⅱ)2()()sin cos 2a g x xf x x x x x ==+-, 故()cos cos sin sin g x ax x x x x ax x x '=+-+=+, ()g x 在(0,)x π∈上存在极大值点0x ,()sin (sin )0g x ax x x x a x ∴'=+=+=有0x x =这个解, (0,)x π∈,∴只有0sin a x -=,22200cos 1sin 1x x a ∴=-=-,故22300cos sin (1)2a x x a a a a a -=-+=-,[1a ∈-,0),设f (a )32a a =-,[1a ∈-,0),则f '(a )223a =-,令f '(a )0=,解得:a =,故(1,a ∈-时,f '(a )0<,(a ∈0)时,f '(a )0>,故f (a )(min f ==,故200cos sin a x x -的最小值是 19.已知函数()sin f x x ax =-,[0x ∈,?]2π,其中a 为常数.(1)若()f x 在[0x ∈,]2π上是增函数,求a 的取值范围;(2)证明:当1a 时,31()?6f x x -.【解析】解(1)因为()f x 在[0,]2π上是增函数,所以()cos 0f x x a '=-在[0,]2x π∈上恒成立,显然()f x '在[0,]2π上单调递减,故()()02min f x f a π'==-,解得0a 即为所求.(2)要证31()?6f x x -,只需证31sin 06ax x x --恒成立,令31()sin 6g x ax x x =--,[0,]2x π∈,则21()cos 2g x a x x '=--,令21()cos 2h x a x x =--,[0,]2x π∈,则()sin h x x x'=-,令()sin m x x x =-,[0,]2x π∈,则()cos 10m x x '=-, 所以()m x 在[0x ∈,]2π上单调递减,所以()(0)0m x m =,所以()0h x ',所以()h x 在[0,]2x π∈上单调递减,所以()(0)10h x h a =-,即()0g x ',所以()g x 在[0,]2π上单调递减,所以()(0)0g x g =,即31sin 06ax x x --恒成立,所以当1a 时,31()?6f x x -.高考预测四:双零点问题20.已知函数2()(lnx ax f x a x+=是常数)在1x =处切线的斜率等于1.(1)求函数()f x 的单调区间并比较f (2),f (3),f (4)的大小;(2)若方程322(lnx x ex mx e =-+为自然对数的底数)有且只有一个实根,求实数m 的取值; (3)如果方程()f x lnx kx =-有两个不同的零点1x ,2x ,求证212x x e >.【解析】解:(1)2()lnx ax f x x +=的导数为22212()()ax lnx ax f x x +-+'=,在1x =处切线的斜率为121a a +-=,解得0a =, 即有()lnx f x x =,21()lnxf x x -'=, 当0x e <<时,()0f x '>,()f x 递增;当x e >时,()f x 递减. 则()f x 的增区间为(0,)e ,减区间为(,)e +∞; f (2)22ln =,f (4)4242ln ln f ===(2),而f (3)f >(4), 则f (2)f =(4)f <(3); (2)由题意得,22lnxx ex m x=-+在(0,)+∞上有唯一解, 由(1)可得,()lnxf x x=的增区间为(0,)e ,减区间为(,)e +∞, 所以()max f x f =(e )1e=,设2()2g x x ex m =-+,则()g x 在(0,)e 上单调递减,在(,)e +∞上单调递增, 所以()min g x g =(e )2m e =-,所以当且仅当21m e e-=时,322lnx x ex mx =-+有且只有一个实根,所以21m e e=+; (3)不妨设120x x >>,12()()0f x f x ==,110lnx kx ∴-=,220lnx kx -=,可得1212()lnx lnx k x x +=+,1212()lnx lnx k x x -=-,要证明1x 22x e >,即证明122lnx lnx +>,也就是12()2k x x +>, 因为1212lnx lnx k x x -=-,所以即证明:1212122lnx lnx x x x x ->-+,即:1121222(1)1x x x ln x x x ->+,2x 1t +令2(1)()1t g t lnt t -=-+,1t >,则22214(1)()0(1)(1)t g t t t t t -'=-=>++, 故函数()g t 在(1,)+∞上是增函数,所以()g t g >(1)0=, 即2(1)1t lnt t ->+成立. 所以原不等式成立.21.已知函数1()2x f x e kx k +=--(其中e 是自然对数的底数,)k R ∈ (1)讨论函数()f x 的单调性;(2)当函数()f x 有两个零点1x ,2x 时.证明:122x x +>-. 【解析】解:(1)由1()2x f x e kx k +=--,x R ∈,得1()x f x e k +'=-, ①当0k 时,则1()0x f x e k +'=->对x R ∈恒成立, 此时()f x 的单调递增,递增区间为(,)-∞+∞; ②当0k >时,由1()0x f x e k +'=->,得到1x lnk +>,即1x lnk >-, 由1()0x f x e k -'=-<,得到1x lnk +<,即1x lnk <-所以,0k >时,()f x 的单调递增区间是(1,)lnk -+∞;递减区间是(,1)lnk -∞-; 综上,当0k 时,()f x 的单调递增区间为(,)-∞+∞.当0k >时,()f x 的单调递增区间是(1,)lnk -+∞;递减区间是(,1)lnk -∞-; (2)函数()f x 有两个零点1x ,2x 时,则需要满足0k >时,1()20x f x e kx k +∴=--=有两个解,即1(2)x e k x +=+, 由于10x e +>恒成立,则(2)0k x +>,设21x x >,由题意得:112112(2)(2)xx e k x e k x ++⎧=+⎪⎨=+⎪⎩,11(2)1x lnk ln x ∴=++-①,22(2)1x lnk ln x =++-②,②-①得:221122x x x lnx +-=+③,12x +21∴③可化为:11(2)2t x x lnt +--=,121lnt x t ∴+=-,221tlntx t +=-, 12411lnt tlntx x t t ∴+=+---, 要证:122x x +>-, 只需证:211lnt tlntt t +>--, 即证:2(1)1t lnt t ->+, 构造函数2(1)()1t F t lnt t -=-+, 则22212(1)2(1)(1)()0(1)(1)t t t F t t t t t +---'=-=++,()F t ∴在(1,)+∞递增, ()F t F ∴>(1)0=, 122x x ∴+>-.22.已知函数()()x f x e ax a a R =-+∈,其中e 为自然对数的底数. (1)讨论函数()y f x =的单调性;(2)若函数()f x 有两个零点1x ,2x ,证明:122x x lna +<. 【解析】解:(1)函数()x f x e ax a =-+,求导,()x f x e a '=-. ①当0a 时,()0f x '>,则函数()f x 为R 上的单调递增函数. ②当0a >时,令()0f x '=,则x lna =.若x lna <,则()0f x '<,()f x 在(,)lna -∞上是单调减函数; 若x lna >,则()0f x '>,()f x 在(,)lna +∞上是单调增函数. (2)证明:由(Ⅰ)可知,不妨设121x x <<,由121200xx e ax a e ax a ⎧-+=⎪⎨-+=⎪⎩两式相减得2121x x e e a x x -=-.要证122x x lna +<,即证122x x e a +<,也就是证1221221x x x x e e ex x +-<-,即212112122122222121(1)0x x x x x x x x x x e eee eex x x x ---++---=-<--,即证212122211x x x x ee x x ---->-,又210x x ->,只要证21212221(*)x x x x e ex x ---->-.令2102x x t -=>,则(*)式化为 2t t e e t -->, 设()()2(0)t t g t e e t t -=-->,()()20t t g t e e -'=+->,所以()g t 在(0,)+∞上单调递增,所以()(0)0g t g >=. 122x x lna ∴+<.23.已知函数21()2f x ax x xlnx =-+,a R ∈.(1)若()f x 在其定义域上单调递减,求a 的取值范围. (2)若()f x 存在两个不同极值点1x ,2x ,且21x ex >,求证21221232x x a x x ->-.【解析】(1)解:由21()2f x ax x xlnx =-+,得()(0)f x ax lnx x '=+>,()f x 在其定义域上单调递减,0ax lnx ∴+在(0,)+∞恒成立,即lnxa x-在(0,)+∞恒成立, 令()lnxg x x=-,则21()lnx g x x -'=,当(0,)x e ∈时,()0g x '<,当(,)x e ∈+∞时,()0g x '>. ()g x ∴在(0,)e 上单调递减,在(,)e +∞上单调递增.∴1()()min g x g e e==-.则1a e-;(2)证明:若()f x 存在两个不同极值点,1x ,2x ,且210x ex >. 欲证21221232x x a x x ->-,只需证2212212()3a x x x x ->-, 只需证221221122()2()()a x x x x x x ->-++, 也就是证1212121()2x x a x x x x --+>+. 12()()0f x f x '='=,11ax lnx =-,22ax lnx =-,∴212211()x a x x lnx lnx lnx -=-=.∴2122112212111()1x x x x x a x x ln x x x x x ---+=+++. 令21x t x =,则t e ,则1212121()1x x ta x x lnt x x t---+=+++, 设1()1t h t lnt t-=++,则2222111()0(1)(1)t t h t t t t t --+'=+=>++,可知()h t 在[e ,)+∞上单调递增. 1()1t h t lnt h t -∴=+>+(e )1221111132e e e -=+=>=+++. ∴21221232x x a x x ->-.24.已知函数()(1)1f x k x klnx k =--+-,其中k R ∈,0k ≠. ()I 讨论函数()f x 的单调性;(Ⅱ)设函数()f x 的导函数为()g x .若函数()f x 恰有两个零点1x ,212()x x x <,证明:122()03x x g +>. 【解析】(Ⅰ)解:由()(1)1f x k x klnx k =--+-,得(1)()(1)k k x kf x k x x--'=--=,(0,)x ∈+∞. (1)当10k -,即1k 时,()(1)0kf x k x'=--<, ()f x ∴在(0,)+∞上单调递减;(2)当10k ->,即1k <时,(1)()k x kf x x--'=. ①当0k <时,0k ->且(1)0k x ->,(1)()0k x kf x x--∴'=>, ()f x ∴在(0,)+∞上单调递增;②当01k <<时,(1)()(1)1()k k x k x kk f x xx-----'==,01kk>-, 当x 变化时,()f x ,()f x '的变化情况如下表:综上,当0k <时,()f x 在(0,)+∞上单调递增,当01k <<时,()f x 在(0,)1kk-上单调递减,在(1k k -,)+∞上单调递增, 当1k 时,()f x 在(0,)+∞上单调递增,(Ⅱ)证明:由()I 知,当01k <<时,函数()f x 在(0,)1kk-上单调递减, 在(1kk-,)+∞上单调递增, 又f (1)0=,函数()f x 恰有两个零点1x ,212()x x x <,∴102k <<或112k <<. ①当102k <<,即011kk<<-时, 令21x =,当0x +→时,()f x →+∞,且()(1)01kf f k<=-,∴有唯一的1(0,1)x ∈,使得1()0f x =,则不等式122()03x x g +>等价于1231x kk+>-, 又11(1)10k x klnx k --+-=,即1111x klnx k-=-, ∴只需证明111213x x lnx +->,即当101x <<时,证明1113(1)02x lnx x --<+成立, 令3(1)()21x h x lnx x -=-+,则2219(1)(4)()0(2)(2)x x h x x x x x --'=-=>++, ()h x ∴在(0,1]上单调递增,即当01x <<时,有()h x h <(1)0=.∴原不等式122()03x x g +>成立. ②当112k <<,即11k k >-时, 令11x =,当x →,+∞时,()f x →+∞,且()(1)01kf f k<=-,∴有唯一的2(1,)x ∈+∞,使得2()0f x =,则不等式122()03x x g +>等价于21231x kk+>-, 又22(1)10k x klnx k --+-=,即2211x klnx k-=-, 只需证明2221213x x lnx +->,即当21x >时,证明2223(1)021x lnx x -->+成立, 令3(1)()21x H x lnx x -=-+,则2219(1)(41)()0(21)(21)x x H x x x x x --'=-=>++.。

高数考研不等式的证明

高数考研不等式的证明
令 x = 0, x = 1, 则有 1 2 f (0) = f ( x0 ) − f ′( x0 ) x0 + f ′′(ξ1 ) x0 2 1 ′( x0 )(1 − x0 ) + f ′′(ξ 2 )(1 − x0 )2 f (1) = f ( x0 ) + f 2
12

, 注意到 f (0) = f (1),
3、利用极值、最值证明不等式 、利用极值、 例5. 证明当 0 < x < 2时, 4xlnx – x2 – 2x + 4 > 0. 时 证: 令 f (x) = 4xlnx – x2 – 2x + 4 , 则 f ′(x) = 4lnx – 2x + 2 ,
2(2 − x ) ,f ′′(1) = 2 > 0, 这是唯一驻点. 这是唯一驻点 而 f ′′( x ) = x 的极小值点. 故 x = 1是 f (x)的极小值点 是 的极小值点 又当0 又当 < x < 2时, f ′′ > 0, 故曲线 y = f (x)在(0, 2)内 时 ′′(x) 在 内 是凹的, 既是极小值点, 是凹的 故 x = 1既是极小值点 又是最小值点 从而在 既是极小值点 又是最小值点, 0 < x < 2中, 有 中 f (x) > f (1) = 1 > 0, , 4xlnx – x2 – 2x + 4 > 0. 从而
(0 < ξ1 < c )
f ′(a ) − f ′(c ) = f ′′(ξ 2 ) ⋅ ( a − c ) (c < ξ 2 < a )
≤ M (c + a − c ) = Ma
7
⇒| f ′(0) | + | f ′(a ) |=| f ′′(ξ1 ) | ⋅c + | f ′′(ξ 2 ) | (a − c )

拉格朗日证明不等式经典例题

拉格朗日证明不等式经典例题

拉格朗日证明不等式经典例题拉格朗日中值定理是一种强有力的数学工具,可以用于证明各种不等式。

下面是一个使用拉格朗日中值定理来证明不等式的例子:**例题**:证明对于所有正数a 和b,以下不等式成立:\[ \sqrt{a} + \sqrt{b} \geq 2 \sqrt{ab} \]**证明**:我们假设函数\( f(x) = x^2 \) 在区间\( [0, \infty) \) 上连续。

由于\( f'(x) = 2x \),我们可以应用拉格朗日中值定理在区间\( [a, b] \) 上找到一个数\( c \),满足:\[ f'(c) = \frac{f(b) - f(a)}{b - a} \]即\[ 2c = \frac{b^2 - a^2}{b - a} \]解这个方程得到:\[ c = \frac{b + a}{2} \]现在我们使用均值不等式(AM-GM 不等式)在区间\( [a, c] \) 和\( [c, b] \) 上应用到函数\( f(x) = x^2 \),得到:\[ f(a) + f(b) \geq 2f(c) \]即\[ a^2 + b^2 \geq 2c^2 \]将\( c \) 的值代入上式,我们得到:\[ a^2 + b^2 \geq 2\left(\frac{b + a}{2}\right)^2 \]简化这个不等式,我们得到:\[ a^2 + b^2 - ab \geq \frac{1}{4}(a - b)^2 \]注意到\( \sqrt{a} + \sqrt{b} \) 可以被看作是函数\( f(x) = x^2 \) 在区间\( [0, \infty) \) 上的导数\( f'(x) = 2x \) 的一个不等值,因为\( \sqrt{x} \) 是一个增函数。

所以我们可以将上面的不等式重写为:\[ (\sqrt{a} + \sqrt{b})^2 \geq 2ab \]这证明了原不等式\[ \sqrt{a} + \sqrt{b} \geq 2 \sqrt{ab} \] 对于所有正数 a 和b 都成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式的证明
一、不等式的证明方法 1.利用不等式的基本性质 2.基本不等式
代数平均,几何平均,调和平均,平方平均,以及柯西不等式
3.不等式的放大或缩小(即不等式的放缩) 3.函数方法
如单调性,凹、凸函数(琴生不等式)等
4.其它的数学方法 数学归纳法、反证法、构造、数形结合等
二、举例
1. x ∈R ,求证:6510x x -+>.
2. 已知n ∈*N ,求证:1111111
11135
2124
2n n n n ⎛⎫⎛⎫++++
≥+++
⎪ ⎪+-⎝⎭⎝⎭
3. 设1x y z ++=,求证:2221
3
x y z ++≥.
4. 设x y z 、、均为正数,且1x y z ++=.
5. 求证:()111
12223
21
n n n n <++++
<≥-.
6. a b c 、、是三角形的三边长,求证:2a b c b c a c b a
++<+++.
7. 已知v ∈+
R ,u ⎡∈⎣,求证:()2
2
98u v v ⎫-+≥⎪⎭.
8. 已知()213f x x x =-+,且1x a -<,求证:()()()2||1f x f a a -<+.
9. 已知,a b ∈+R ,且111a b
+=.求证:对任意n ∈*N 都有()2122n
n n n n a b a b ++--≥-.
10. 求证:1213n
n ⎛⎫
≤+< ⎪⎝⎭
(n *∈N ).
11. ,1a b c a b c ∈++=+
R 、、,求证:333
11110009a b c a b c ⎛
⎫⎛⎫⎛⎫+++++≥ ⎪ ⎪ ⎪⎝
⎭⎝⎭⎝⎭.
三、练习 1.当02
x π
<<时,证明2cos sin 2x x x +<.
2.对于正整数m ,证明:11
1
112
31
m m m +++
>+++.
3.若n *
∈N ,求证:1!2n
n n +⎛⎫
< ⎪⎝⎭

4.设x y z 、、均为实数,求证:223()0x xz z y x y z -+++-≥.
5.已知:1234,,,a a a a 均为正数,,且12341a a a a +++=,求证: 1234
1111111181a a a a ⎛⎫⎛⎫⎛⎫⎛⎫
----≥ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.
6.已知10<<x ,求证:22
2)(1b a x
b x a +≥-+.
7.||1,a n *<∈N 1a n
+.
8.设12,,,n a a a 是正实数,12n S a a a =+++,求证:12(1)(1)(1)n a a a +++≤
2
12!!
n
S S S n +++
+.
9.已知12,,,n a a a 均为正数,求证:22
22
11212231
n n n n a a a a a a a a a a a -++++≥+++.
10.已知α为锐角,求证:11115sin cos αα⎛
⎫⎛⎫++> ⎪⎪⎝⎭⎝⎭

11.若12,,,n a a a 均为正数,且12n S a a a =++
+(1n >)
,求证: 2
12
1
n S S
S n S a S a S a n +++≥----.
12.证明:1
111
(1)123
n
n n n n
+<++
+++
.这里n *∈N ,1n >.
222
12
112
2111n n
n
n a a a a a a n n
n
a a a ≤≤≤
+++++++++
调和平均 几何平均 代数平均 平方平均 柯西不等式:
设有非零实数组
12,,,n
a a a 及实数组
12,,,n
b b b ,则
()()()222222*********n n n n a b a b a b a a a b b b ++
+≤++
++++.当且仅当
()1,2,
,i i b a i n λ==时等号成立.
一般地,设()f x 是定义在(),a b 内的函数,如果对于(),a b 内的任意两数1x ,2x ,都有
()()1212122
x x f f x f x +⎛⎫≤+⎡⎤ ⎪⎣⎦⎝⎭,那么称()f x 在(),a b 内是凸函数. 琴生不等式:
设()f x 是(),a b 内的凸函数,则对于(),a b 内任意的n 个实数12,,,n x x x ,有
()()()12121
n n x x x f f x f x f x n n
++
+⎛⎫≤+++⎡⎤
⎪⎣⎦⎝⎭,等号当且仅当
12n x x x ==
=时取得.。

相关文档
最新文档