汽车制动能量回收系统的研究.(DOC)

汽车制动能量回收系统的研究.(DOC)
汽车制动能量回收系统的研究.(DOC)

1绪论

1.1研究背景

进入21世纪以来,能源和环境对人类生活、社会发展的影响越来越大。其中,交通工具在给人类带来方便的同时,也给环境造成极大负担。我国大城市的污染已经不能忽视,燃油汽车排放是主要的污染源之一,我国已有16个城市被列入全球大气污染最严重的20个城市之中,我国的汽车拥有量是每1000人平均10辆汽车,但石油资源不足,每年已经进口几万吨的石油,随着经济的发展。假如中国汽车持有量达到现在全球水平—每1000人有110辆汽车,我国汽车持有量成10倍地增加,石油进口就成为大问题,因此我过研究发展电动汽车不是一个临时的短期措施,而是意义重大的、长远的战略考虑。在社会、环境和政治的多方压力下,世界各国制定了一系列严格的法律法规限制尾气排放。为此,交通运输工具的节能减排技术日益突出,车辆的能量回收技术受到充分重视,再生制动技术就是其中一种。在环保方面,人们正在研究使用天然气、电力(包括蓄电池)、核能等汽车,但由于天然气在不同地区的分布不一样及蓄量的限制,电力汽车的电网及道路条件的限制,高能蓄电池的研究还未获得实质性的突破,燃料电池汽车的价格居高不下,氢能及核能汽车的研究及技术还不成熟,使得汽车在这方面的应用受到一定的限制。

当今地球资源(包括石油和森林资源)日趋枯竭并受到破坏,据美国《国家地理》杂志报道,全世界现在每天消耗石油8000万桶(每7桶合一吨)。目前全世界已经探明的石油储量约为1.15万亿桶。虽然这比前两年的估计数字增长了10%,但以目前的开采速度计算,地球上的石油储量只够满足全世界石油消费40~50年【1】。汽车工业厂商大量使用以下技术来节省能源和有效利用现有地球资源:采用轻型铝合金材料、减轻汽车的重量、降低汽车行驶阻力、降低燃油消耗、采用电子喷射和电子控制系统,从而提高了能源的利用率和汽车的经济性能和动力性能。从节约资源、资源再生以及环境保护与改善出发,能源的有效利用有很重要的意义,本课题从一个全新的角度来考虑能源的有效利用。

1.2研究的内容及意义

1.2.1研究基础

再生制动(Regenerative braking)亦称反馈制动,是一种使用在汽车或铁路列车上的制动技术。普通的制动方法是把车的动能,以摩擦的形式直接转化成热

能,而再生制动则是在制动时把车辆的动能转化并储存起来,而不是变成无用的热。

再生制动是指汽车在减速或制动时,通过与驱动轮(轴)相连的能量转换装置,把汽车的一部分动能转化为其他形式的能量储存起来,在减速或制动的同时达到回收制动能量的目的;然后在汽车起步或加速时又释放储存的能量(如图1所示),以增加驱动轮(轴)上的驱动力或增加混合动力汽车及电动汽车的续驶里程。

目前,制动能量还不能被充分的回收利用,只能任由大量的制动动能通过摩擦转变成热能耗散掉,还造成车辆制动系统过早磨损。因此,采用先进的能量回收技术,应用现代车辆设计方法和手段,对汽车的制动能量回收进行深入研究具有十分重要的意义。再生制动技术针对原本废弃的能量,将其回收再利用,使其获得“新生”,实现节省燃料、降低排放、减小制动噪声、改善车辆制动安全性等作用,为车辆的经济性和安全性提供保障。

驱动轮(轴)能量转换动能

再生

量储能装置

图1 再生制动原理示意图

理论上汽车制动能量回收的方法有气压储能、液压储能、飞轮储能和电储能。空气储能装置结构庞大,密封性能要求很高,实用化困难;液压储能装置能量密度低,但功率密度大,其零部件密封性能要求高,控制结构复杂和存在工作噪声等;飞轮储能装置功率密度较大,其体积小质量轻,但要求高转速和周围空间真空,技术上实现较复杂,且只能短时间储能;电储能各方面性能均很好,且结构简单,只是功率密度低,能量转换环节多。

1.2.2汽车的发展趋势

电动汽车本身不排放污染大气的有害气体,废弃排放出比燃油汽车减少92% ~98%。即使按所耗电量换算为发电厂的排放,除硫酸和微颗粒,其外的污染物也显著减少。由于电厂大多建在远离人口密集的城市,对人类伤害比较少,而且电厂是固定不动的,集中排放,清楚各种有害物比较容易。也已经有了相关的处理技术。电力可以从多一次能源获得,如煤炭、核能、水力等,可以缓解人类对石

油资源的依赖以及对其日益枯竭的担心。电动汽车还可以充分利用晚间用电低谷时富余的电力发电,使发电设备日夜都能充分利用,大大提高其经济效益。有研究表明,同样的原油经过粗炼,运至电厂发电,经充入电池,再由电池驱动汽车,其能量利用率比经过精炼变成汽油,再经汽油驱动汽车高,因此有利于节约能源和减少二氧化碳的排量。正是这个优点,使电动汽车的研究和应用成为现代汽车工业的一个“热点”。

因此,我国研究发展电动汽车不是一个临时的短期措施,而是意义重大的、长远的战略考虑。从技术发展成熟程度和中国国情来看,纯电动汽车应是今后大力推广的发展方向,而混合动力只能作为大面积充电网络还没建立起来之前的过渡技术。

混合动力车动力系统复杂,成本昂贵.其优势是保留了传统汽油汽车的使用方式,根据汽油机和电动机混合程度,充电次数和传统汽油汽车加油次数相当,或者不用充电.行驶距离也不受限制.

纯电动车省去了油箱、发动机、变速器、冷却系统和排气系统, 相比传统汽车的内燃汽油发动机动力系统, 电动机和控制器的成本更低, 且纯电动车能量转换效率更高. 因电动车的能量来源——电, 来自大型发电机组, 其效率是小型汽油发动机甚至混合动力发动机所无法比拟的. 因此纯电动汽车使用成本在下降。

1.2.3研究方案选择

从以上的各种方案看,飞轮储能虽然结构比较简单,但无法实现大量储能,要加大储能就要增加飞轮的质量或增加转速,同时要求增加强度,这会使成本增加,使实现的难度增大。而且如果要实现高效储能,要将飞轮置于真空的环境,需要增加许多额外的设备。蓄电池储能也面临着大量储能的实现问题,虽然实现大量储能的超级电容已经出现,但是其成本太高。因此,选用液压储能法,它能很简便地实现大量储能,且可靠性比较高。液压储能能量回收系统主要由液压马达/液压泵、储能器、离合器和控制系统组成。

1.3国内外研究现状

国外再生制动技术的研究比较深入。除了大量的理论研究成果,实车应用也比较成熟。

日本本田公司的Prius、Estima和丰田公司的Insight轿车就是成功应用再生

制动技术的典范。丰田公司Prius的再生制动系统通过电液比例控制单元调节液压制动力,实现再生制动与摩擦制动的综合控制,在丰田HTS-ò混合系统下,能提高整车能量利用率达20%以上,同时确保制动安全。丰田公司在混合动力汽车Estima中采用了电控柔性制动系统,并将再生制动纳入整车动力控制系统进行集中控制,通过CVT控制,提高了制动能量回收率。

美国福特公司的Escape应用了线传电液系列再生制动系统(线传操控技术、电子系统和机械制动器)代替机械及液压制动系统,把来自驾驶者的命令转变为电信号,以驱动电机实现所需的操作,显著提高了制动能量回收效率、汽车制动方向稳定性和汽车舒适性。

国外的研究所等机构也做了大量研究。美国Michahian大学的Panagiotidis 等建立了并联式混合动力汽车的再生制动模型,对再生制动的效果进行仿真计算和影响因素的分析比较[2]。美国Union学院的Wicks等建立了城市客车在市区行驶循环工况下的数学模型,研究再生制动系统的节能效果[3]。美国Texas A&M大学的HongweiGao等提出了混合动力汽车基于开关磁阻电机再生制动的神经网络控制系统,并在行驶循环工况下进行了能量回收效率的分析[4]。美国福特研究所,日本交通研究所以及荷兰大学等研究机构都进行了这方面的大量研究。

国内再生制动技术研究目前处于起步阶段。各高校、汽车厂商、科研院所都在这一领域进行研究并取得了初步的结果,但是大部分研究都停留在理论分析和建模仿真阶段,实车应用不多。

1.4本文研究方向及路线

液压储能能量回收系统的工作原理如图2所示,主要由机械传动和液压系统两部分组成。其中,机械传动主要由车轮轴、三角皮带、传动轴、摩擦片式离合器、气/液组合缸等组成;液压系统主要由液压泵/液压马达、顺序阀、液压蓄能器、溢流阀、二位四通换向阀等组成。当车辆开始制动时,气/液组合缸受到来自车辆制动分配阀压力气体(或压力油)的作用,使原来处于分离状态的摩擦片式离合器转换成结合状态,再通过三角皮带、传动轴将车轮轴与液压泵连接成一体, 实现启动液压系统工作,开始吸收车辆动能之目的。液压油经过滤油器、单向阀、液压泵/液压马达、顺序阀(用来调节液压泵/液压马达出口的工作压力,即制动装置的制动力)进入液压储能器,此时在压力气体(或压力油)的作用下,机动二位四通换向阀的左位工作,使液压油不能通过换向阀,而只能通过顺序阀进入液压储

能器;当进入液压储能器的液压油超过其额定容量时,作为安全阀的溢流阀将打

图2液压蓄能能量回收系统工作原理示意图

开,起过载保护作用,以限制液压系统的最高工作压力。

在车辆停止的过程中,制动用的压力气体(或压力油)仍然存在(此时车辆的原制动装置仍在工作)或车辆的原手制动装置在起作用,都能使液压机动二位四通换向阀仍然以左位工作,使吸收了车辆能量的高压油在顺序阀、溢流阀和液压机动换向阀的共同作用下,被封闭储存在液压蓄能器中,以备车辆随时再次起动或加速时使用。

在车辆再次起动或加速的过程中,车辆原有的制动装置(包括手制动装置)已停止工作,液压机动二位四通换向阀在其弹簧力的作用下以右位工作,使从液压蓄能器中流出的压力油经换向阀的右位后同时到达气/液组合缸的液压腔和液压泵/液压马达的进油腔,促使液压泵/液压马达在与车轮轴连接的状态下以液压马达的工况运行,将液压蓄能器中的液压能以机械能的形式返还给车辆,用来增加车辆的动能。当从液压蓄能器中流出的液压油的压力很低时,气/液组合缸将使摩擦片式离合器自动脱开,实现车轮轴与液压泵/液压马达的自动脱离,从而实现车辆的正常行驶。

2汽车储能及能量回收系统研究的发展

2.1制动蓄能的类型及比较

对于汽车制动能量回收系统,汽车的驱动方式是一种动力源与蓄能器的复合动力驱动系统。如通常采用的内燃机与蓄能器、电力与蓄能器等。通过动力源与蓄能器的合理匹配,自动控制驱动汽车的方式,实现汽车节能和环保。

按照蓄能器型式的不同,常见的汽车节能驱动系统可分为机械式飞轮储能、液压蓄能器储能、蓄电池储能以及它们之间两种组合的复合储能,其中转换器根据储能型式的不同可分为无级变速器、发动机/电动机、液压泵/马达,能量传递的形式如图3所示。

En-发动机Tr-转换器Dr-驱动桥Ac-蓄能器

图3车辆节能驱动系统一般工作原理

国内外对车辆制动能量回收与再利用方式具有代表性的用于行驶车辆的能量储存方式有以下三种:

(1)飞轮储能。飞轮储能是机械储能的一种形式,以惯性能(动能)的方式,将能量储存在高速旋转的飞轮中。当车辆制动时,飞轮储能系统带动飞轮加速,将车身的惯性动能转化为飞轮的旋转动能。当车辆需起动或加速时,飞轮减速,释放其旋转动能给车身。按构成材料,飞轮主要有两种:金属制飞轮与超级飞轮。金属制飞轮以钢制飞轮为主,此种飞轮能量密度(单位飞轮重量储存的最大能量)较低,但因其价廉,宜于加工,并在传动系中易于连接而得到广泛应用。超级飞轮选用比强度(拉伸强度/密度)高10倍。然而它的成本却相当高,并且转速甚快,

目前已有78 000 r/min的报道。为了使飞轮能充分有效地保存能量,常将飞轮运行于密闭的真空系统中。目前该方面的前沿研究是飞轮轴承采用高温超导磁悬浮技术,利用永磁铁的磁通被超导体阻挡所产生的排斥力使飞轮处于悬浮状态。设计飞轮时,既要考虑本身强度,又需注意系统的共振及稳定性。飞轮储能附加重量较轻、成本低,但技术难度大,节油效果不如液压蓄能。

(2)液/气压储能式。液/气压储能以液/气压能的方式储存能量。系统由一个具有可逆作用的泵/马达实现储能器中的液/气压能与车辆动能之间的转化,即在车辆制动时, 储能系统将泵/马达以泵的形式工作,车辆行驶的动能带动泵旋转,将高压油/气压入储能器中,实现动能到液/气压能的转化;在车辆起动或加速时, 储能系统再将泵/马达以马达的形式工作,高压油从储能器中输出,带动马达工作,实现液/气压能到车辆动能的转化。储能器主要有重锤式、弹簧式和充气式,其中以气体储能器使用最为广泛。该储能器是在钢制的压力容器内装有气体和油,中间以某种材料隔开,按隔离方式分为活塞式和皮囊式两种,都是利用密封气体的可压缩性原理制成。液/气压储能的能量密度比飞轮储能与蓄电池储能都小,但其在三者中,具有最大的功率密度,能在车辆起步和加速时提供给车辆所需要的大扭矩。同时,液/气压储能系统可较长时间储能,各个部件技术成熟,工作可靠,整个系统实现技术难度小,便于实际商业化应用。

(3)电化学储能式。蓄电池以电能方式储存能量。系统以具有可逆作用的发电机/电动机实现蓄电池中的电能和车辆动能的转化。在车辆制动时,发电机/电动机以发电机形式工作,车辆行驶的动能带动发电机将车辆动能转化为电能并储存在蓄电池中。在车辆起动或加速时,发电机/电动机以电动机形式工作,将储存在蓄电池中的电能转化为机械能供给车辆。蓄电池储能非常适合于电动车。现在由于人们环保意识增强,对汽车排放有日趋严格的限制,同时为进一步缓解非再生石化燃料张的矛盾,电动汽车的无污染、行驶噪声小的优点受到人们广泛关注。蓄电池储能,各方面性能都较好,但是功率密度低,充放电频率小,不能迅速转化吸收大量能量,而车辆在制动或起动时,需要迅速释放或得到大量能量,这使储能蓄电池的应用受到很大限制。现在,各国技术人员加紧研制大容量、高性能蓄电池,从而为蓄电池储能提供应用基础。现在又出现超级大电容,可望对制动能量回收的棘手问题有一定的解决。

图4三种储能方法的比较

2.1.1飞轮储能系统

机械式飞轮储能系统结构简单,储能密度也很高。但由于来自轴承的摩擦损失,使得飞轮系统一般用作短时储能、减少输出的脉动幅度或提供峰值功率。二十世纪八十年代前后,奔驰、菲亚特等汽车厂家相继试制了采用该系统的新型公交汽车,英国石油公司也曾试图将飞轮部件商品化,但由于当时技术水平的限制,均未达到实用化。到了九十年代后,由于高强度纤维材料、低损耗磁轴承以及电子控制技术等方面的发展,飞轮储能得到了世界各国的高度重视,飞轮储能技术得到迅速发展。目前飞轮的边缘速度也超过1000m/s,储能密度达50W·h/kg 以上,飞轮储能显示出大储能、强功率、高效率、长寿命、无污染的优点[5-8]。

汽车飞轮储能节能系统如图5所示。

图5飞轮储能系统原理图

1.飞轮储能系统的主要优点:

(1)能量转换的效率较高,能量的损耗小。

(2)比功率和比能量都远远高于铅酸电池,比功率可达10000W/kg,比能量可达50W·h/kg。

(3)废弃时不会像蓄电池对环境造成影响。

2.飞轮储能系统的主要缺点

(1)采用机械式的单一的飞轮储能系统的结构尺寸较大,对于传统机械式传动系的轻微型汽车(包括轿车)的结构布置有一定的困难。

(2)单一的飞轮储能系统的能量的吸收率较低,能量的释放不易按汽车运行的工况控制或成本较高。

(3)高速旋转的飞轮会产生较大的噪音,影响乘客乘座的舒适性。此外,飞轮的制造精度、支撑方式和支撑刚度要求较高,这在一定程度上会提高成本。

2.1.2电储能系统

电储能系统与电动汽车是紧密联系的,电动汽车与电储能系统的主要特点可概括如下[9-12]。

2.1.2.1电动汽车的发展概况

在1886年1月26日世界第一辆汽车(汽油机汽车)诞生之前,1881年法国工程师克斯塔夫·特鲁夫(Gustave Trouve)研制成功世界上第一辆可充电铅酸电池

电动三轮机动车(也有人认为1873年英国人罗伯特·戴维森(Robert Davishen)研制成功第一辆电动机动车),1881年8~11月参展国际电器展览会。1882年英国威廉·爱德华·阿顿(W.E.Ayrton)和约翰·培里(John.Perry)两位教授组装成功第二辆电动机动车。

20世纪60年代、70年代汽车污染和石油危机的影响,对电动汽车的研究和开发起到了强有力的推动作用。近30年来,世界范围内能源意识和环保意识的空前强化,电动汽车重新受到高度重视。

1975年出现第一辆现代汽油-电动混合动力车辆,1981年出现第一辆飞轮-电动混合汽车,1986年福特和通用电气公司开发出ETX.I型和II型电动汽车,1990年通用汽车公司开发出“冲击牌”电动汽车,1991年通用、福特和克来斯勒三大汽车公司组建了美国高效电池联合企业,1999年福特汽车公司研制的燃料电池汽车P2000在北京、上海展出,2002~2005年法国雷诺、日本日产、韩国现代等汽车公司计划将自己研制电动汽车投放市场;2004年通用在欧洲的欧宝公司拟将甲醇燃料电池汽车投放市场。

我国于20世纪70年代开展蓄电池汽车的研究,如交通部公路科学研究所,采用离子导流薄膜式的钠硫电池,进行装车实验。90年代“八五”期间蓄电池电动汽车被列为国家重点攻关项目,以清华大学为主,开发出我国第一代蓄电池汽车,已在清华大学校园作为绿色交通车使用。20世纪90年代,国内推出若干种电动汽车样车。

目前的电动汽车,按动力源分为三类:

(1)单纯以蓄电池作为汽车动力源的电动汽车。

(2)以燃料电池作为汽车动力源的电动汽车,燃料电池可以将燃料的化学能直接转变为电能的电池。

(3)混合动力电动汽车。是由电力和其它动力混合驱动的电动汽车。其中电力可以是内燃机带动发电机提供、或蓄电池提供动力、或燃料电池提供动力,目前研究主要集中在后两种,而其它动力主要是指燃用某种燃料的内燃机。

混合动力的电动汽车是目前较为成熟的电动汽车,也会是最先占领一部分市场的电动汽车。如丰田汽车公司在1997年推出电/汽油驱动的Prius混合车,2001年又推出FCHV-4混合动力系统,其中电能由燃料电池提供。在电动汽车研

究中,特别是在蓄电池作为电能的电动汽车中,很多都采用了能量回收装置,如西安交通大学科技园等国内很多单位在电动汽车上采用该技术。

2.1.2.2电动汽车主要存在的问题

(1)蓄电池电动汽车及电储能系统主要存在的问题

可作为电动汽车动力电池的蓄电池有数十种,目前主要研究的蓄电池有铅酸电池、镍镉电池、镍氢电池、钠硫电池、锌-空气电池、锂电池等,所有这些蓄电池共同存在的主要问题是:

①由于蓄电池容量的限制,续驶里程极其有限,长途运行时需要经常的充电(充电时间长),或带较多的备用蓄电池,增加了汽车的重量,反过来又进一步影响车辆的续驶里程;

②汽车的动力性能差,最高时速一般不超过lOOkm/h,因此这种时速无论如何算不上是真正意义上的现代汽车。

③很多蓄电池价格昂贵,成本高。

④比能量、比功率小。汽车运行工况变化较大时,难以满足汽车的运行工况。

⑤充电时间长,使用寿命短。

⑥废弃的蓄电池会对环境造成污染。

作为回收能量的电储能系统,主要存在的问题有:

⑦电池的功率密度低,所以不利于负载变化较大且频繁的汽车制动能量回收系统的应用。

⑧电储能结构复杂,在汽车大负载情况下储能系统的的体积较大,控制技术也较复杂,使用成本高。

(2)燃料电池电动汽车及电储能系统主要存在的问题

①成本高。

②储运困难。

③加氢站网络投资大。

④起动性能差。

⑤功率密度小。

⑥由于燃料电池无法直接回收能量,需设置蓄电池二次电池,成本较高,结构及控制技术比较复杂。

2.1.3气动储能系统

该系统是将超高压气体(空气)作为动力源,经过控制和分配环节,驱动汽车在不同工况下行驶。在汽车制动时又将汽车的动能(或将汽车下坡时的势能)通过空压机转化为压缩空气储存起来,以便重新加以利用,其系统框图见图6[13]

图6气动汽车的能量系统流程图

1.气动储能系统主要优点

对于气动储能部分,不会对环境产生排放污染。

2.该方法尚存在如下问题:

(1)如何将超高压气体经过减压控制装置调节进入气动发动机,使其动力满足汽车在各种复杂工况下正常运行;

(2)气动发动机的研制;

(3)汽车制动或下坡时的机械能通过空压机如何转化为超高压气体储存在超高压气体的储能罐内(其转换机构极其复杂);或另设置蓄能罐时,如何实现超高压储能罐与蓄能罐的能量供给的协调性。这样的结构由于体积较大,会导致汽车的成本上升,同时体积增大布置困难。

2.1.4液压蓄能器储能系统

按照其传动系的不同,液压蓄能器储能系统可分为机械式传动系和液压传动系储能系统。

①机械式传动系的液压储能系统原理如图7所示。

图7机械式传动系的液压储能器系统原理图②液压式传动系的液压储能系统原理如图8、9所示。

图8液压式传动系的液压储能器系统原理图

l发动机2离合器3变量泵4液压储能器5变量泵/马达6电磁换向阀7作动器

8驱动桥9驱动轮10控制器

图9车辆传动系统结构原理图

下章即对本文所要研究的基于定压源(CPS)液压储能系统进行详细的研究分析。

3定压源(CPS)液压储能系统

3.1研究现状及应用

3.1.1定压源(CPS)液压储能系统的出现

二十世纪八十年代末,瑞典著名VOLVO汽车制造公司就开始对城市公交车传统的机械传动系汽车进行制动能量回收的研究,并取得了成功[14-15]。

试验结果表明,在城市使用的车辆,燃料消耗量大约可降低30%,或者在相同的燃料消耗条件下,车辆可以多行驶45%的里程数。同时,汽车易损件制动器及同步器的使用寿命提高了三倍以上。此外与传统汽车相比,汽车的废气排放可减少约30%,改善了汽车对环境的污染。

在九十年代,日本著名学者Hiroshi NAKAZAWA、Yasuo KITA等开始研究定压源液压驱动系统,并取得了较大进展。由于车辆全部采用了液压传动系统,因而使汽车底盘的布置更为方便,试验证明,汽车的部分性能(如动力性、燃油经济性、舒适性及制动安全性等)也得到了明显的改善。

3.1.2定压源(CPS)液压储能系统的应用

使用定压源(Constant Pressure Source,简称CPS)的飞轮系统由于结构简单,效率高等优点,成为目前汽车能量回收系统的主要形式之一。

为此,通过发动机和飞轮的混合驱动为系统提供动力,采用定压源液压驱动系统代替传统的能量传递,从而实现能量的传递及汽车牵引力(加速/减速)的控制,,实现汽车在制动时能量的回收和利用。如图10。

CPS是由一个飞轮、三个可变排量的泵/马达组成的液压动力传递系统。变量泵/马达一般采用柱塞式,其排量在正负两个方向可变,通过对排量方向的控制,可实现泵、马达正、反转功能。

整个系统的油路是由共用高压油路和共用低压油路组成,系统压力的基本恒定由飞轮转速的变化和调节液压变量泵/马达的排量及采用稳压阀来实现的。

1发动机2、7离合器3、8、16变量泵/马达4三位四通换向阀5油箱6飞轮9溢流阀10单向节流阀1l蓄能器12三位四通换向阀13单向阀14过滤器15冷却

图12为某车型原有的底盘结构示意图。其传动系统是由传统的离合器、变速器、万向节、传动轴、主减速器和半轴组成。将原传动系统改为CPS系统后,系统结构简图如13。

1-发动机2-离合器3-变速器4-万向节5-传动轴6-主减速器及差速器

图12某车辆底盘结构示意图

1发动机 2、7离合器3与发动机相连的变量泵/马达 4三位四通换向阀 5油箱6飞轮 8与飞轮相连的变量泵/马达 9溢流阀 10单向节流阀 11蓄能器 12三位四通换向阀13过滤器14单向阀15冷却器16与驱动桥干开连的变量泵/马达

17驱动桥

图13车辆CPS 系统结构简图

3.3.1 飞轮运动分析

飞轮的运动方程式可表示为[18]:

f f f t

f T w C d dw =+f T 式中 J f ——飞轮的转动惯量(k

g ·m 2);

w f ——飞轮的转速(rad /s):

C f ——因风阻和轴承损失而引起的飞轮损失系数;

T f ——与飞轮相连的变量泵/马达的输出转矩(N ·m)。

3.3.2 液压系统计算

CPS 的液压系统计算包括液压回路流量、蓄能器及变量泵/马达元件有关 参数的计算[18、19、20]。

1.在正常情况下,蓄能器流量与发动机、飞轮及驱动轮相连的变量泵/马达的流量应达到平衡,可分为下列几种情况。

(1)当汽车运行或加速行驶时,与驱动轮相连的变量泵/马达及与飞轮相连的变量泵/马达作为马达工作,与发动机相连的变量泵/马达作为泵工作的流量关系式

(e e f f d d a Q Q Q Q Q Q Q ?--?++?+= 式中 Q a ——蓄能器的流量(m 3/s);

Q d 、ΔQ d ——与驱动轮相连的变量泵/马达作为马达工作时的流量

及马达的泄露量(m 3/s);

Q f 、ΔQ f ——与飞轮相连的变量泵/马达作为马达工作时的流量及

马达的泄露量(m 3/s);

Q e 、ΔQ e ——发动机相连的变量泵/马达作为泵工作时的流量及泵

的泄露量(m 3/s)。

(2)当汽车运行或加速行驶时,与驱动轮相连的变量泵/马达作为马达工作,与飞轮相连的变量泵/马达作为泵工作,与发动机相连的变量泵/马达停止工作的流量关系式

(f f Q Q Q Q Q d d a ?--?+= (3)当汽车减速时,与驱动轮相连的变量泵/马达作为泵工作,与飞轮相连的变量泵/马达作为马达工作,与发动机相连的变量泵/马达停止工作的流量关系式

f f c Q Q Q Q Q d d ?++=?-

2 蓄能器参数计算

蓄能器和系统之间的压力关系式可表示为:

P c V c n =P 0V 0n =常数(C )

蓄能器压力与系统压差

P c -P s =K c Q c

合并上两式,蓄能器流量可表示为:

)Ps V V P (K 1n c

n 00c c -=Q

式中

V c——蓄能器的气体容积(m3);

P c——蓄能器的气体压力(Pa);

P0——蓄能器气体的初始压力(Pa);

P s——CPS系统压力(Pa);

V0——蓄能器气体的初始容积(m3):

K c——蓄能器入口压力损失系数(Pa·s/m3)。

3 与发动机相连的变量泵/马达参数计算

变量泵/马达的转矩

T e=P s q e/ηte

式中T e——与发动机相连的变量泵/马达的转矩(N·m);

q e——与发动机相连的变量泵/马达的排量(m3/rad);

T e——与发动机相连的变量泵/马达的机械效率。

变量泵/马达的流量及泄露量

Q e=ηve q eωe

ΔQ e=K e P s

式中ωe——与发动机相连的变量泵/马达的转速(rad/s);

ηve——与发动机相连的变量泵/马达的容积效率;

K e——与发动机相连的变量泵/马达的泄露系数。

4 与飞轮相连的变量泵/马达参数计算

变量泵/马达的转矩

T f=ηtf P s q f

式中T f——与飞轮相连的变量泵/马达的转矩(N·m);

q f——与飞轮相连的变量泵/马达的排量(m3/rad);

ηtf——与飞轮相连的变量泵/马达的转矩效率。

变量泵/马达的流量及泄露量

Q f= q fωf/ηvf

ΔQ f=K f P s

式中ωf——与飞轮相连的变量泵/马达的转速(rad/s);

T f——与飞轮相连的变量泵/马达的容积效率;

T f——与飞轮相连的变量泵/马达的泄露系数。

5 与驱动轮相连的变量泵/马达参数计算

变量泵/马达的转矩

T d=ηtd P s q d

式中T d——与驱动轮相连的变量泵/马达的转矩(N·m):

q d——与驱动轮相连的变量泵/马达的排量(m3/rad);

ηtd——与驱动轮相连的变量泵/马达的转矩效率。

变量泵/马达的流量及泄露量

Q d= q dωd/ηvd

ΔQ d=K d P s

式中ωd——与驱动轮相连的变量泵/马达的转速(rad/s);

ηvd——与驱动轮相连的变量泵/马达的容积效率;

K d——与驱动轮相连的变量泵/马达的泄露系数。

3.3.3燃料消耗计算

与发动机相连变量泵/马达作为马达工作时所消耗的能量,在不计机械损失时应与发动机供给的能量一致。

E e=∫T eωe dt

因此,CPS系统车辆模型的燃料消耗可通过下式计算[21]即

M s=bE e

式中E e——与发动机相连变量泵/马达所消耗的能量(J);

M s——发动机总的燃料消耗量(kg):

b——发动机在万有特性图上对应的燃料消耗率(kg/J)。

由于在CPS模型中发动机工作与驱动轮所要求的驱动力无直接关系,且发动机实行开一关控制,当发动机工作时,应使其在最经济转速附近运行,因此b 可认为是一常数

3.4 CPS系统与传统的汽车制动比较

CPS系统与传统的汽车相比,由于传统汽车在制动时,汽车的动能变为热能而损失,一方面,汽车的能量没有得到利用,另一方面,降低了汽车有关零部件

制动能量回收技术现状及发展趋势

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:汽车技术现状及发展趋势教师:贺岩松姓名:赵金龙学号:20110702218 专业:车辆工程类别:学术 上课时间:2011年11月至2011年11月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

再生制动技术现状及发展趋势 摘要 随着新能源危机的加剧,混合动力汽车和纯电动汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车和电动汽车的一向重要节能技术,已经得到越来越大的重视。再生制动技术使汽车在制动过程中将一部分动能转化为电能并储存在储能装置中,实现了制动减速时的能量再利用。本文对再生制动的工作原理、技术发展现状进行了详细的阐述,并提出日后的发展趋势。 关键词:制动能量;制动能量回收;发展现状 Regenerative Braking Technology Status and Development Trends ABSTRACT With the new energy crisis intensifies, hybrid vehicles and pure electric vehicles has become the new direction of next generation car, and regenerative brakingtechnology as an important energy-saving technology for hybrid vehicles and electric cars has been paid more and more attention.During braking, part of the kinetic energywill be turn into electrical energy by regenerative braking technology so that we can achieve the energy re-use when the car speed is brakingdeceleration .In this paper, regenerative braking technology works and research status has been elaborated in detail and proposed the future development trend. Key words:Braking energy; Energy regeneration and use; Research status

制动能量回馈系统协调控制

制动能量回馈系统协调控制 张俊智,张鹏君,陆欣,陈鑫 清华大学汽车安全与节能国家重点实验室,北京,100084 【摘要】本文为混合动力电动汽车设计了分层控制的制动能量回馈系统,该分层结构主要包括驾驶员意图识别、能量管理和元件协调控制三个部分。分层控制结构的采用,将复杂的制动能量回馈系统简化为若干部分,降低了控制难度,为研究提供了便利。所设计的系统已在一款串联混合动力客车上实现,并根据中国城市公交循环工况进行了道路测试。 【关键词】混合动力电动汽车,制动能量回馈系统,分层控制结构,协调控制 Coordinated Control for Regenerative Braking System Zhang Junzhi, Zhang Pengjun, Luxin, Chen Xin State Key Lab. of Automotive Energy and Safety, Tsinghua University, Beijing, China, 100084 Abstract: This paper presents a design of regenerative braking system(RBS) for hybrid electric vehicles using hierarchical control structure and method. The hierarchical model is mainly composed of three modules for driver intent identification, energy management and coordinated control based on components control. As a consequence, RBS, a complicated hybrid dynamic system, is successfully decomposed by several simple modules. The control system and strategies are carried out on a typical serial HEV bus, and tested on road based china typical urban cycle.. Key words: hybrid electric vehicles, regenerative braking system, hierarchical control structure, coordinated control 1 介绍 车辆的动能通过制动能量回馈系统可转化为其它形式能量储存起来,并进一步用于车辆驱动。研究显示,在城市驾驶循环中,发动机发出能量的大约1/3至1/2被制动过程所消耗[1,2]。因此,回馈制动是车辆提高燃油经济性并降低排放的有效方法,有助于缓解能源危机和环境污染。

城轨车辆制动控制系统

第六章制动控制系统 制动控制系统是空气制动系统的核心,它接受司机或自动驾驶系统(ATO)的指令,并采集车上各种与制动有关的信号,将指令与各种信号进行计算,得出列车所需的制动力,再向动力制动系统和空气制动系统发出制动信号。动力制动系统进行制动时将实际制动力的等值信号反馈给制动控制系统,制动控制系统通过运算协调动力制动和空气制动的制动量。空气制动系统将制动系统发来的制动力信号经流量放大后使执行部件产生相应的制动力。这就是制动控制系统的主要功能。 6.1 制动控制系统的组成 如图6.1制动控制系统主要由电子制动控制单元(EBCU)、空气制动单元(BCU)和电气指令单元等组成。 图6.1制动控制系统的组成 6.1.1 电子制动控制单元 在电子技术和微机技术的迅猛发展下,列车的制动控制由微机综合列车运行中的所有参数,经过判断和运算,给制动系统发出精确的指令。以微机为中心的电子控制装置被称为电子制动控制单元(EBCU)、微机制动控制单元(MBCU)

或制动控制电子装置(BCE)等。 它有一下主要功能: (1)接受司机控制器或ATO的指令,与牵引控制系统协调列车的制动和缓解。 (2)将接收到的动力制动实际值经 EP转换,将电信号转换成气动信号发送给空气制动控制单元。 (3)控制供气系统中空气压缩机组的工作周期,监控主风缸输出压力等参数。 (4)在列车制动过程中始终收集列车所有轮对速度传感器发来的速度参数,对轮对在制动过程中出现的滑行进行监视。 (5)对列车制动时的各种参数和故障进行监视与记录。 6.1.2空气制动控制单元 空气制动控制单元是制动系统中电气制动和空气制动的联系点,也是电子、电子信号与气动信号的转换点。在过去论述中称为中继阀或EP。 (一)EP 由电磁线圈、铁芯、顶杆和活塞等组成。当它的电磁线圈没有励磁时,铁芯和连杆落在阀底,通路阻断或通路与大气连通。当线圈励磁,铁芯被吸引上移,推动顶杆和活塞上移,通路与储风缸压力空气连通。 (二)中继阀 它上部是给排阀,下部是腔室。腔室中是活塞和膜板,活塞和膜板带动有空心通路的顶杆上下移动。 中继阀也是一个将电信号转换成压力空气的电磁阀,只是电信号的变化不是励磁电流的变化,而是通过电磁阀励磁线圈和消磁状态的不同组合,将多个电信号输入转换成对应空气压力输出。 (三)空重车调整阀 空重车调整阀的作用是根据车辆载重的变化,即根据乘客的多少,输出一个空气压力信号,并通过中继阀使单元制动机风缸保持一个恒定的制动力。 空重车调整阀的输入是车辆二系弹簧的空气压力信号。考虑到车辆载重的不平衡,一般采取前后转向架对角的两个空气弹簧压力为输入信号,这样就能比较准确地使空重车调整阀的输出压力信号与乘客负载成一定比例关系。

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

地铁车辆再生制动能量利用方案

地铁车辆再生制动能量利用方案 摘要:目前,节能减排已成为我国的基本国策,建设低碳型交通基础设施、推广应用低碳型交通运输装备是城市轨道交通建设者责任。地铁由于站间距比较短,制动频繁、列车起动,考虑各钟车型、站距、编组、发车间隔等差异,列车电制动时产生的再生能量可达到牵引能量的40%以上。充分利用列车再生能量将节约大量能量,产生效益可观,为节能减排做出贡献。西安市地铁已经运营1、2号线,在建3、4、5、6号线,如何在保证线路运行安全的前提下,提高供电水平,同时为城市节能减排做出贡献,是我们必须考虑的问题。 关键词:轨道交通;列车制动;能量回馈 1 传统列车车载制动电阻方案存在的问题 目前国内外城市轨道交通动车组列车均采用VVVF牵引/制动系统,采用交流电机驱动列车,制动系统普遍采用空气制动和电制动混合的形式。列车在运行时,牵引系统将电能转为机械能,使机车启动加速;在制动时,一部分采用电制动,将机械能转为电能使列车制动,另一部分采用空气制动,通过刹车闸瓦与车轮踏面摩擦而产生制动使列车减速。传统列车上设置了车载制动电阻。当列车制动时,首先采用再生制动方式,列车电机从电动机状态转换为发电机状态,将机械能转换为电能返回到牵引网系统,返回到牵引网系统的能量部分被相邻列车吸收,由于线路的行车密度等多种因素,很大部分能量不能被回馈,此时大量电能量得不到释放,将会使系统供电网电压

急剧上升,为此列车上设置了制动电阻,将这部分能量通过电阻变成热能吸收,稳定系统电压。电阻所转化的热能,车站环控专业通过隧道活塞风、车站轨顶排风和车站轨底排风,将热量排出车站外。 车载制动电阻使用虽然方便,但也有缺点:(1)列车制动电阻吸收再生制动能量转换为热能白白消耗了,没有起到节能减排作用。(2)列车制动电阻吸收再生制动能量转换为热能散于隧道内,虽然部分可以通过隧道活塞风排出隧道,但还有部分遗留在隧道,这部分热量使隧道温升逐步上升;(3)列车制动电阻重量大,列车运行时,不仅没有节能,还增加列车牵引能耗。(4)制动电阻体积大,而且考虑制动电阻散热需在列车上安装通风设备,这样会使列车底部其他设备安装布局困难;(5)制动电阻发热会对车体底板形成烘烤效应,有引发火灾危险。(6)列车采用车空气制动,增加闸瓦的损耗,加大车辆维修工作量,提高了运营成本,摩擦闸瓦产生大量金属粉尘,造成环境污染。 2 国内外现状 在国外城市轨道交通运输系统中,再生制动能量吸收技术发展历程主要有车载电阻耗能式、逆变回馈式、超级电容储能式以及飞轮储能式吸收等。其中最先发展的车载电阻耗能式因其可靠、结构简单等优点应用最为广泛,相对较少的是能量回馈式和能量存储式的应用。国外轨道交通研究制动能量吸收技术较早,已有成熟产品,而国内在这方面的研究刚起步,使用车载电阻耗能式较多,不能够很好的把再生制动能量充分利用起来。 图1 2.1 车载电阻耗能型吸收

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

电动汽车能量回馈的整车控制(1)

2005005 电动汽车能量回馈的整车控制 张 毅,杨 林,朱建新,冒晓建,卓 斌 (上海交通大学汽车电子研究所,上海 200030) [摘要] 以4种典型循环工况为例对电动汽车进行能量分析,设计了基于常规汽车制动系统的整车能量回馈控制方式,研究了控制策略,完成了车辆道路试验与标定优化。试验表明,整车能量回馈控制方式与控制策略安全、可靠,且柔顺性良好;利用能量回馈技术,蓄电池能量消耗可减少10%,能有效延长电动汽车的一次充电续驶里程。 关键词:电动汽车,能量回馈,控制策略 The Control Strategy of Energy Regeneration for Electric Vehicle Zhang Yi,Yang Lin,Zhu Jianxin,Mao Xiaojian&Zhuo Bin Instit ute of A utomotive Elect ronic Technology,S hanghai Jiaotong U niversity,S hanghai200030 [Abstract] The energy consumption in four typical vehicle testing cycles(FTP,HWEFT,ECE2EUDC and J P1015)is analyzed for EV.Based on the traditional vehicle braking system,a new regenerative braking scheme and its control strategy are designed.The road testing,calibration and optimization are performed.T est results show that the control scheme and strategy is safe,https://www.360docs.net/doc/bf16746607.html,ing the regenerating scheme,the energy consumption of battery can re2 duce by10percent and the driving range of EV in one charge can increase effectively. K eyw ords:Electric vehicle,E nergy regeneration,Control strategy 原稿收到日期为2003年12月29日,修改稿收到日期为2004年3月8日。 1 前言 电动汽车采用了新型的汽车动力,如何充分提 高车辆行驶能量效率,进而延长车辆续驶里程,是电 动汽车需要解决的一个关键问题。能量回馈是解决 该问题的主要技术措施。 能量回馈包括车辆制动能量回馈与车辆滑行能 量回馈两种。此时,驱动电机按发电机运行,将车辆 行驶动能转化为电能,可以起到3个作用:辅助制 动;回收能量给动力蓄电池充电,从而延长车辆续驶 里程;在车辆有供热需求时,直接利用这部分电能供 热取暖。 能量回馈制动与电动汽车其它电气制动方式 (主要有能耗制动、反接制动[1])比较,无须改变系 统硬件结构,回馈电流可柔性控制,可使制动效果与 能量回收效果综合最佳。因此,能量回馈是最适合 电动汽车的电气制动方式,其关键是能量回馈的过 程控制。电动汽车的能量回馈控制由整车控制与电 机控制交互作用而实现,作者在电动汽车制动能量 分析的基础上,设计一种能量回馈的整车控制方式, 并进行相应控制策略的研究。 2 制动能量分析 为了进行电动汽车能量回馈控制,需首先探明 其在各种用途中的制动能量回馈潜力。作者分别以 美国F TP工况、高速公路HFET工况、欧洲城市循 环ECE2EUDC工况和日本J P10154种循环工况为 例,进行制动能量的分析。 4种循环工况的驱动与制动能量如图1所示, 可见在这4种循环工况中,制动能量都占了不小的 比例,其中J P1015工况为2517%,ECE2EUDC工况 为18%,HFET工况为6%,F TP为25%。 回馈能量还与制动方式和回馈系统各环节的效 率因子有关[2]。电动汽车的制动方式包括:电气制2005年(第27卷)第1期 汽 车 工 程 Automotive Engineering 2005(Vol.27)No.1

城市轨道交通再生制动能量回收系统研究

华东理工大学 毕业设计(论文) 题目城市轨道交通再生制动能量 回收系统研究 学院华东理工大学 专业电气自动化 年级 2016 学号 26140118 姓名 导师 定稿日期: 2016年 11月12 日

摘要 城市轨道交通作为一种运量大、速度快、污染少、舒适性好的交通工具,很有力的缓解大中型城市乘车难、环境污染及交通拥堵等难题。近年来我国着力发展城市轻轨和地铁,本文主要以地铁作为研究对象。城市轨道交通站间距离短、运行密度高,机车频繁制动吋产生相当可观的再生能量,将产生的能量得以利用,不仅节约能源、保护环境同时降低电压利于机车安全运行。再生制动产生的能量得以利用是本文研究的重点,提出逆变电阻混合型再生制动能量吸收方案。本课题以建立地铁再生制动及能量吸收仿真平台为目的,利用仿真软件建立机车运行制动模型及混合型能量吸收模型。首先,分析和总结几种城市轨道交通车辆制动方案的优缺点,重点研究馈能型再生制动方案的基本原理及主要技术问题,提出逆变电阻混合型再生制动能量吸收方案。然后基于电阻制动原理,结合逆变并网电阻制动方案进行建模、仿真分析,并对再生制动产生功率及电流进行粗略的计算。 关键词:再生制动;逆变并网;电阻制动 Abstract

As a large capacity, fast speed, less pollution and comfortable transportation, urban rail transit effectively alleviate the transportation pressure of the large and medium-sized city, environmental pollution and traffic congestion . In recent years, China began to develop the light rail transit and subway. The subway stations has shorter distance and locomotive has haig density running. During locomotive frequently braking, it produced considerable regeneration energy. Reasonable utilization of the regeneration energy not only save energy, protect environment but also reduce the regeneration energy not only save energy, protect environment but also reduce the voltage grade for the locomotive’s safety operation. This paper is the focus on utilization of the regeneration energy, and The inverter-resistance hybrid method is propose. This topic is purposed to build Metreo regenerative braking and inverter-resistance hybrid energy absorption model by simulation software. Firstly, the urban rail transit power supply system has been introduced. Several vehicle braking scheme has been summarized and analyzed for their advantages and disadvantages. The inverter-resistance hybrid of regenerative braking energy absorption solution has been purposed. Secondly, combined with inver and resistance braking scheme, the model was built analyze and the power and current ofregenerative braking was computd.

第七章 汽车制动防抱死系统

第七章汽车制动防抱死系统 制动防抱死系统功用、基本组成及控制方式 1、ABS功用 制动防抱死系统(简称ABS,Anti-lock Brake System),是汽车上的一种主动安全装臵。其作用就是防止汽车制动时车轮抱死拖滑,并把车轮的滑移率保持在Sp左右的一定范围内,以提高汽车制动过程中的方向稳定性、转向控制能力和缩短制动距离,使汽车制动更为安全有效。 ABS的优点: (1)制动时保持方向稳定性(图7-1)。控制车轮滑动率基本在20%附近,有效防止汽车侧滑、甩尾、调头等现象发生。 图7-1 保持方向稳定性 (2)制动时保持转向控制能力,如图7-2。不会出现汽车前轮抱死产生的方向失控事故。 图7-2 保持转向控制能力 (3)缩短制动距离(松散的沙土和积雪较深的路面除外)(图7-3)。保持制动力在最佳的范围内。 图7-3 缩短制动距离 (4)减少轮胎磨损。车轮保持在既滚又滑的状态,克服车轮抱死造成的轮胎杯型磨损和轮胎面磨损不均匀的缺点。 (5)减少驾驶员紧张情绪。传统制动系统进行制动时,驾驶员往往产生一种紧张情绪,缺乏安全感。

装备ABS 与未装备ABS 汽车相比,各项安全指标的下降百分比见图7-4。 图7-4 安全指标比较 2、ABS 基本组成及控制原理 制动防抱死系统是在常规制动装臵的基础上增加一电子控制系统,一般由传感器、电子控制器(ECU)和执行器(制动压力调节器)组成(图7-5)。 图7-5 ABS 基本组成及控制原理示意图 传感器感受系统控制所需的汽车行驶状态参数,并将运动物理量转换成为电信号。电子控制器根据传感器信号及其内部存储信号,经过计算、比较和判断后,向执行器发出控制指令,同时监控系统的工作状况。执行器则根据ECU 的指令,依靠由电磁阀及相应的液压控制阀组成的液压调节系统对制动系统实施增压、保压或减压的操作(图7-6),让车轮始终处于理想的运动状态。 a )增压

新能源电动汽车回收系统

现代汽车电子技术 题目:电动助力转向系统 摘要 本文从全球环境污染和能源短缺等严峻问题阐述了发展电动汽

车的重要性和必要性,着重分析概括了电动汽车制动能量回收系统的研究现状 关键字电动汽车制动能量回收系统 1 引言 目前,普通燃油汽车在国内外仍占据绝大部分汽车市场。汽车发动机燃烧燃料产生动力的同时排放出大量尾气,其成分主要有二氧化碳(CO2),一氧化碳(CO),氮氧化合物(NO X)和碳氢化合物(HC),还有一些铅尘和烟尘等固体细微颗粒物,虽然现代汽车技术已经使汽车尾气排放降到很低,但由于汽车保有量持续高速增加,汽车排放的尾气还是会对人类的生存环境造成很严重的影响,例如近年来不断加剧的温室效应,光化学烟雾,城市雾霾等大气污染现象。 内燃机汽车消耗的能源主要来自石油,石油属于不可再生资源,目前全球已探明的石油总量为12000.7亿桶,按现在的开采速度将只够开采40.6年左右,即使会不断发现新的油田,但总会有消耗的一天。全球交通领域的石油消耗占石油总消耗的57%,由于汽车的保有量持续快速增长(主要来自发展中国家),到2020年预计这一比例将达到62%以上,2010年我国的石油对外依存度已达到53.8%,到2030年预计这一比例将达到80%以上,可见石油资源的短缺将会直接影响我国的能源安全,经济安全和国家安全,不利于我国长期可持续的发展,因此探索石油以外的汽车动力能源是21世纪迫切需要解决的问题。 电动汽车具有无污染,已启动,低噪声,易操纵等优点,相关的技术研究已趋成熟,是公认的未来汽车的主流。自1997年10底丰田推出混合动力车型Prius 以来,电动汽车越来越受市场的欢迎,近年来不少国内外汽车生厂商已向市场推出不少种类的电动汽车,在混合动力汽车领域,日本的丰田和本田不管从技术研发还是在市场销售,宣传等方面已经走在世界的前列,推出了诸如Pius,Insight,Fit,Civic 等量产化混合动力车型,其他国外汽车制造商在本田和丰田之后也相继推出相应的车型,例如宝马3系,5系,7系,8系都推出了相应的混合动力车型,大众途锐的混合动力版,特斯拉推出的MODEL S 纯电动车,国内汽车生产商比亚迪在电动汽车领域已经走在前列,相继推出包含“秦”在内的许多种混合动力车型。

列车再生制动能量回收的方法及分析

列车再生制动能量回收的方法及分析 城市轨道交通是耗电大户。而如何高效利用电能是目前城市轨道交通节能技术的关键问题。车辆在运行过程中,由于站间距一般较短,因此要求起动加速度和制动减速度比较大,并具有良好的起动和制动性能。城轨交通供电系统一直采用二极管整流技术实现交流电源到直流牵引电源的转换,特别是采取24脉波整流技术后,与电网的谐波兼容问题得到较好地解决。该技术虽然可以较好地满足车辆牵引取流的需求,但是此类系统存在以下问题: (1)只能实现能量的单向流动,对于需要频繁起动和制动的地铁、轻轨等交通工具,制动能量的回收有着很大的潜力。车辆再生制动产生的反馈能量一般为牵引能量的30%甚至更多。而这些再生能量除了按一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其它相邻列车吸收利用外,剩余部分将主要被车辆的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。如果在一列地铁列车刹车时附近没有其他列车加速运行,那它所回馈的电能中只有30%~50%能被再次利用(尤其是在低电压、高电流的网络系统里)。如果当列车发车的间隔大于10 min时,再生制动能量被相邻列车吸收重新利用的概率几乎为零。 (2)由于制动电阻的发热引发站台和地下隧道热量积累、温度上升,某些城轨系统隧道温度高达50℃,不得不加大通风设备的容量,造成严重的二次能耗; (3)对于车载制动电阻模式制动电阻增加车体自重造成的电能消耗十分可观; (4)牵引网上同时在线运行的车辆有十几对甚至几十对,负荷的变化造成牵引网压波动严重,不利于车辆平稳、可靠运行。可见车辆的制动能量至今还是一种没有被很好地开发利用的能量。 目前,在我国大力提倡节能降耗的形势下,城轨供电系统的发展进度已滞后列车车辆技术的发展,多个待建的城市轨道线路,如无锡、苏州、长沙、西安、深圳和广州等多条线路,都提出了对现有牵引供电系统进行技术改造的需求或者是寻求更好的储能装置去回收这些多余的再生能量。再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。 首先介绍储能型回收装置 (1)蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。

车辆制动能量回收

低碳世博,能源再利用—— 基于超级电容的城市轨道车辆制动能量回收 1 概述 由于城市轨道车辆具有运量大、速度快、安全、准点、保护环境、节约能源和用地等特点,世界各国普遍认识到,解决城市交通问题的根本出路在于优先发展以轨道交通为骨干的城市公共交通系统。随着我国经济的高速发展、城市化进程的不断加快,城市轨道交通将在我国城市公共交通运输中占有越来越越重要的地位。到目前为止我国已有北京、上海、广州、深圳、武汉等城市已经运行,截至2009年9月,我国有27个城市正在筹备建设城市轨道交通,其中22个城市的轨道交通建设规划已经获得国务院批复。至2015年,北京、上海、广州、深圳等22个城市将建设79条轨道交通线路,总长度为2259.84公里,计划总投资8820.03亿元。 城市轨道交通列车的特点就是线路的站间距短,列车运行时频繁地起动、制动,基本上在列车达到最高速时很快就会制动。目前,我国地铁列车大都采用接触网/轨直流供电, 牵引系统大都是变压变频的交流传动系统。列车牵引时从电网吸收能量,制动时采用反馈制动把制动能量反馈回电网, 根据经验,地铁再生制动产生的能量除了一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其他相邻列车吸收利用外,剩余部分将主要被列车的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。当列车发车密度较低时,再生能量被其他车辆吸收的概率将大大降低。资料表明,当列车发车间隔大于10 min 时,再生制动能量被吸收的概率几乎为零,此时绝大部分制动能量将被车辆吸收电阻吸收,变成热能并向四外散发,这必将使隧道和站内的温度升高。目前国内城市轨道交通在地面采用电阻能耗吸收装置处理列车运行过程中的再生能量,这不仅浪费能量,而且也增加了站内空调通风装置的负担,并使城轨建设费用和运行费用增加。如能将这部分能量储存再利用,这些问题将迎刃而解。 2 可行性分析 城市轨道交通车辆制动能量是否具有回收的可行性,需要对制动能量进行合理计算,并根据其大小确定制动能量是否具有实际回收价值。现以一列上海轨道交通2号线6节车辆编组为例(4节动车,2节拖车),设轨道车辆的制动初速度为70km/h (V1) ,制动末速度为8km/h (V2),M为车辆和载客质量,则利用公式(1)计算电制动能量。(1)

汽车电子感应制动控制系统简介

汽车制动系统经历了从传统机械制动到液压防抱死制动系统ABS,再到电子制动控制 系统EBS。如今又出现了一种全新的制动理念,它是集成了电子控制系统和电液制动 力增压器的一种新型汽车制动技术,即汽车电子感应制动控制系统(Sensotronic Brake Control),简称SBC。 电子感应制动控制系统SBC最早是由博世公司提出来的。在20世纪90年代,博世公司推出了一项名为“Brake 2000”的研究项目,该项目主要是让其最前沿的开发 部门,开始有关进一步改进汽车制动系统的研究,目标是研究一种反应速度更快、制 动效果更显著的制动系统,电子感应制动控制系统SBC就是因为这种要求而诞生的。 SBC电子感应控制系统是世界上第一套完全线控的制动系统(Brake-by-Wire),首 先装载于高档车奔驰SL500,在最新Maybach 62中也装备了SBC系统。 SBC系统的构成 传统制动器工作原理是:驾驶员踩下制动踏板,推动与制动调压器及制动主缸相 连的活塞连杆。制动主缸根据踏板力的大小,在制动管路上形成相应的制动压力,在 机械和液力相结合的作用下,通过制动缸推动制动钳压向制动盘。由于中间传递机构 复杂,制动的反应速度比较慢。 在电子感应制动控制系统中,电子元件将替代当前制动系统中大量使用的机械元件,把制动踏板和执行机构分离开来,由于大大减少了中间元件,因此反应速度就大 幅提高。右图所示为在奔驰车上应用的SBC系统,它由传感器、ECU(电子控制单元)与执行器(液压控制单元)等构成。传感器用来测量制动主缸内的压力以及制动踏板 运动的速度,如果监测到驾驶员开始制动,就发送信号给ECU。SBC系统的制动力是 由电子控制的电机来实现的。电机带动高压储能器,使制动液以很高的压力进入制动 系统,快速而准确地完成汽车制动。 为了让驾驶员能够有真实的制动感觉,SBC系统还带有一个踏板行程模拟器,它 连接在制动主缸上,用弹簧力和液压力来推动制动踏板运动。制动踏板感觉是可调节的,以满足不同的要求。

制动能量回馈系统协调控制精编版

制动能量回馈系统协调 控制精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

制动能量回馈系统协调控制 张俊智,张鹏君,陆欣,陈鑫 清华大学汽车安全与节能国家重点实验室,北京,100084 【摘要】本文为混合动力电动汽车设计了分层控制的制动能量回馈系统,该分层结构主要包括驾驶员意图识别、能量管理和元件协调控制三个部分。分层控制结构 的采用,将复杂的制动能量回馈系统简化为若干部分,降低了控制难度,为研究提供 了便利。所设计的系统已在一款串联混合动力客车上实现,并根据中国城市公交循环 工况进行了道路测试。 【关键词】混合动力电动汽车,制动能量回馈系统,分层控制结构,协调控制 Coordinated Control for Regenerative Braking System Zhang Junzhi, Zhang Pengjun, Luxin, Chen Xin State Key Lab. of Automotive Energy and Safety, Tsinghua University, Beijing, China, 100084 Abstract: This paper presents a design of regenerative braking system(RBS) for hybrid electric vehicles using hierarchical control structure and method. The hierarchical model is mainly composed of three modules for driver intent identification, energy management and coordinated control based on components control. As a consequence, RBS, a complicated hybrid dynamic system, is successfully decomposed by several simple modules. The control system and strategies are carried out on a typical serial HEV bus, and tested on road based china typical urban cycle.. Key words: hybrid electric vehicles, regenerative braking system, hierarchical control structure, coordinated control 1 介绍 车辆的动能通过制动能量回馈系统可转化为其它形式能量储存起来,并进一步用于车辆驱动。研究显示,在城市驾驶循环中,发动机发出能量的大约1/3至1/2被制

再生制动能量吸收装置在地铁的应用

再生制动能量吸收装置在地铁的应用 发表时间:2017-08-04T10:58:59.653Z 来源:《电力设备》2017年第11期作者:于志永 [导读] 摘要:再生制动能量吸收装置是把地铁车辆在制动产生的能量反馈到电网上,确保车辆再生制动的安全稳定 (青岛地铁集团有限公司山东青岛 266012) 摘要:再生制动能量吸收装置是把地铁车辆在制动产生的能量反馈到电网上,确保车辆再生制动的安全稳定。本文分析了该装置工作原理,对其在地铁应用制定了详细的操作顺序,根据实际维修经验有针对性的制定出该设备的快速维修法。通过我对该设备制定的操作顺序、快速维修法使制动能量吸收装置的操作失误率、设备故障维修率大大降低,设备始终运行在最佳状态。 关键词:再生制动能量吸收装置操作顺序 1、概述 随着我国城市轨道交通建设的迅速发展,地铁及轻轨电动客车控制技术也得到长足的进步。在国外,为减少车载设备,抑制地铁洞内温度的升高,一般在车上不设置全功率电阻制动装置,而在运营线的每个供电所设置一套总的功率吸收设备。电阻吸收方式是目前国外应用得比较普遍的方案。该方案控制简单、工作可靠、应用成熟、功率组合方便;采用斩波调阻控制系统实现对电网恒压调节,有较地控制了车辆再生制动时可能引起的制动过电压;但是,由于电阻吸收是将再生能量消耗,所以,再生能源没有充分利用。采用电阻-逆变混合吸收的模式,将再生能量逆变成380V 电能回馈至380V电网系统,实现了节能,同时考虑到380V电网的容量,在大的再生能量吸收时,逆变吸收不了的能量,由电阻吸收,确保车辆再生制动的安全稳定。而且该方案设备投资较小,性价比高。 2、再生制动能量吸收装置工作原理 电阻–逆变混合型制动能量吸收装置原理如图1所示。由隔离开关柜、斩波控制柜、逆变控制柜、电阻柜、隔离变压器柜等部分组成,具体功能如下:隔离开关柜:执行能量吸收系统与直流电网的接通和分断、承担系统的滤波功能。斩波控制柜:执行能量吸收设备的控制、保护与监控;执行与上级控制系统的通信;执行能量吸收设备投入与退出判断;承担电阻吸收能量时的控制。逆变控制柜:执行逆变能量吸收;自动跟踪并网;根据直流电网电压的变化调节逆变输出电流。电阻柜:执行电阻吸收能量时再生能量的消耗。隔离变压器柜:执行直流电网与400V交流电网的隔离。 图1 电阻?逆变制动能量吸收装置原理图 当列车再生制动时.电压升高到需要外部设备来吸收时,电阻?逆变混合型制动能量吸收装置(以下简称:混合型装置)启动。逆变器率先投入,将再生电能逆变成三相交流电并馈人车站40OV配电网,由动力照明负荷利用。当列车制动能量较大,再生能量超出逆变器容量时(表现为线网电压升高至某一限值),电阻投入,与逆变器共同吸收再生能量;当再生能量下降至逆变器吸收范围内时(表现为线网电压下降到某一限值),电阻退出,仍由逆变器独自吸收再生能量。当线网电压下降至无需外部设备吸收再生电能时,混合型装置系统停止吸收。装置根据再生能量的大小自动调节吸收电流的大小,维持线网电压恒定。线路上无车辆制动或制动能量不超过吸收启动值时,装置不启动。在制动能量吸收的过程中,逆变器始终工作,而电阻只是作为逆变器的功率补充,在逆变器达到容量最大值后才启动,绝大部分制动能量由逆变器回馈至400V电网,实现了大部分能量的回收。 再生制动能量吸收装置正常工作时的配置: (1)、当地铁车辆额定电压等级为DC1500V时,车辆车重(整列)不能超过720T,制动减速度按照1m/s,制动初始速度为80km/h,20s短时功率为7693kw,额定吸收功率为3096kw,允许电网电压波动范围DC1100V-1800V。 (2)、当地铁车辆额定电压等级为DC750V时,车辆车重(整列)不能超过470T,制动减速度按照1m/s,制动初始速度为80km/h,20s短时功率为4757kw,额定吸收功率为1892kw,允许电网电压波动范围DC500V-900V。 3、地铁线再生制动能量吸收装置操作顺序 为防止操作者因操作失误使设备不能正常投运或损坏设备,根据多年的操作与维修经验,制定出针对再生制动能量吸收装置的操作顺序。此操作顺序一经推出以来,因操作不当引起的设备故障率降为零。 以下是试验线再生制动能量吸收装置操作顺序: (一)、开机程序: (1)、根据车上要求,把电阻柜转换开关切换到相应制式(750v/1500v),并把隔离开关柜750 v、1500v制式转换开关SM1切换到相应制式。 (2)、把隔离开关柜上触摸屏内变压器分接头接法,按主回路变压器分接头接法连接。调整变压器分接头位置的用户名是:

相关文档
最新文档