高中数学第三章统计案例3.1回归分析的基本思想及其初步应用自我小测新人教A版选修2_
(人教版)高中数学选修2-3课件:3.1

第三章 统计案例
自主学习 新知突破
合作探究 课堂互动
1.某地最近十年粮食需求量逐年上升,下表是部分统计 数据:
年份
2002 2004 2006 2008 2010
需求量(万吨) 236 246 257 276 286
(1)利用所给数据求年需求量与年份之间的回归直线方程
∧
y
=b∧x+a∧;
(2)利用(1)中所求出的直线方程预测该地 2014 年的粮食需
数学 选修2-3
第三章互动
解析:
5
yi-∧yi2
i=1
∵R2甲=1-
5
=1-1105050=0.845,
yi- y 2
i=1
5
yi-∧yi2
i=1
R2乙=1-
5
=1-1108000=0.82,
yi- y 2
i=1
∵84.5%>82%,∴甲模型拟合的效果更好.
数学 选修2-3
第三章 统计案例
(2)列表计算:
次数 xi 30
成绩 yi 30
33
34
35
37
37
39
39
42
44
46
46
48
50
51
x2i 900 1 089 1 225 1 369 1 521 1 936 2 116 2 500
自主学习 新知突破
合作探究 课堂互动
y2i 900 1 156 1 369 1 521 1 764 2 116 2 304 2 601
数学 选修2-3
第三章 统计案例
自主学习 新知突破
合作探究 课堂互动
5
x iyi = 88×78 + 76×65 + 73×71 + 66×64 + 63×61 = 25
选修2-3 第三章 第一节:回归分析的基本思想及其初步应用 (学生版)

教学辅导教案学生姓名年级高二学科数学上课时间教师姓名课题人教版选修2-3 回归分析的基本思想及其初步应用1.设有一个回归方程为$23y x=+,变量x增加一个单位时,则()A.y平均增加2个单位B.y平均增加3个单位C.y平均减少2个单位D.y平均减少3个单位2.表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为$0.70.35y x=+,那么表中t的值为()x 3 4 5 6y 2.5 t 4 4.5A.3 B.3.15 C.3.5 D.4.53.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元)8.2 8.6 10.0 11.3 11.9支出y(万元) 6.2 7.5 8.0 8.5 9.8据上表得回归直线方程$$y bx a=+$,其中0.76b=$,$a y bx=-$,据此估计,该社区一户收入为15万元家庭年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元4.某企业节能降耗技术改造后,在生产某产品过程中几录的产量x(吨)与相应的生产能耗y (吨)的几组对应数据如表所示:x 3 4 5 61y 2.5 3 4 a若根据表中数据得出y关于x的线性回归方程为$0.70.35y x=+,则表中a的值为()A.3 B.3.15 C.3.5 D.4.55.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程$$y bx a=+$,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:1221()ni iiniix y nx ybx n x---∑=-∑$,$a y bx=-$)一、散点图1.散点图的概念在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合的概念从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋【变式5】在回归分析中,下列说法错误的是( ) A .用线性回归模型近似真实模型可产生误差 B .R 2越大,模型的拟合效果越好 C .残差平方和越小,模型的拟合效果越好 D .R 2越大,残差平方和也越大【变式6】给出下列结论,正确的个数是( )(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好; (2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高. A .0B .1C .2D .3【变式7】设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为$0.8585.71y x =-,则下列结论中不正确的是( )A .身高x 为解释变量,体重y 为预报变量B .y 与x 具有正的线性相关关系C .回归直线过样本点的中心(x ,y )D .若该大学某女生身高为170cm ,则她的体重必为58.79kg1.给出下列四个命题:①由样本数据得到的回归方程$$y bxa =+$必过样本点的中心(x ,y ); ②用相关指数R 2来刻画回归效果,R 2的值越小,说明模型的拟合效果越好;③若线性回归方程为$3 2.5y x =-,则变量x 每增加1个单位时,y 平均减少2.5个单位; ④在残差图中,残差点分布的带状区域的宽度越窄,残差平方和越小. 上述四个命题中,正确命题的个数为( ) A .1 B .2 C .3 D .4 2.身高与体重的关系可以用________来分析( )12.在冬季,某地居民对猪肉的需求情况的一组数据为(右图): 价格x (万元) 12 11 10 9 需求量y (吨)10111213(1)求出y 对x 的回归方程;(2)如果价格升为14万元/吨,请你预测猪肉的需求量是多少.本章重点:回归分析、残差分析、相关指数的意义以及独立性检验中K 2的有关计算. 本章难点:借助于回归分析的思想选择恰当的模型拟合变量间的相关关系(尤其是非线性的),由于该部分内容的数据相对较复杂,故在高考中出现大题的可能性不是很大,应以选择、填空题为主,旨在考察对回归方程的求解及预测,K 2的计算等.1.对于线性回归方程$$y bx a =+$,下列说法中不正确的是( ) A .样本数据中x =0时,一定有$y a= B .x 增加一个单位时,y 平均增加b$个单位 C .样本数据中x =0时,可能有$y a= D .直线必经过点(x ,y )2.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x (cm ) 160 165 170 175 180 体重y (kg )6366707274根据上表可得回归直线方程$$0.56y x a=+,据此模型预报身高为172cm 的高三男生的体重为据和散点图:定价x(元/kg)10 20 30 40 50 60年销量y(kg)1150 643 424 262 165 86 z=2⋅ln y14.1 12.9 12.1 11.1 10.2 8.9(参考数据:61()()34580i iix x y y=-⋅-=-∑,61()()175.5i iix x z z=-⋅-=-∑,621()776840iiy y=-=∑,61()()3465i iiy y z z=-⋅-=∑)(1)根据散点图判断,y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).(3)定价为多少元/kg时,年利润的预报值最大?附:对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线$$y bx a=+$的斜率和截距的最小二乘估计分别为:1122211()()=()n ni i i ii in ni ii ix y nx y x x y ybx nx x x====--⋅-∑∑=--∑∑$,$a y nbx=-.8.如图是我国2010年至2016年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2010﹣2016.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以证明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2018年我国生活垃圾无害化处理量. 附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑,721()0.55i i y y =-=∑,7 2.646≈.参考公式:12211()()()()ni i i nn i i i i t t y y r t t y y ===--∑=--∑∑,回归方程$$y abt =+$中斜率和截距的最小二乘估计公式分别为:121()()=()ni i i ni i t t y y b t t ==-⋅-∑-∑$,$a y bt =-$.9.为了解某地区某种农产品的年产量x (单位:吨)对价格y (单位:千元/吨)和利润z 的影响,对近五年该农产品的年产量和价格统计如表:x 1 2 3 4 5 y7.06.55.53.82.2一、(第1天)1.已知x与y之间的一组数据:x0 1 2 3y m 3 5.5 7已求得关于y与x的线性回归方程$ 2.10.85y x=+,则m的值为.2.若样本点为(21,2.1)、(23,2.3)、(25,2.8)、(27,3.2)、(29,4.1),则样本点的中心为.3.一工厂生产某种产品的月产量y(单位:万件)与月份x构成的实数对(x,y)在直线y=x+1附近,则估计3月份生产该产品万件.4.已知x,y的取值如表:x0 1 3 4y 2.2 4.3 4.8 6.7从散点图分析,y与x线性相关,则回归方程为$$y bx a=+$必过点.5.某商店统计了最近6个月某商品的进价x与售价y(单位:元)的对应数据如表:x 3 5 2 8 9 12y 4 6 3 9 12 14假设得到的关于x和y之间的回归直线方程是$$y bx a=+$,那么该直线必过的定点是.二、(第2天)1.如果发现散点图中所有的样本点都在一条直线上,则残差平方和等于,解释变量和预报变量之间的相关系数等于.2.已知某回归分析中,模型A的残差图的带状区域宽度比模型B的残差图的带状区域宽度窄,则在该回归分析中拟合精度较高的模型是.3.回归分析是处理变量之间关系的一种数量统计方法.4.对于一组数据的两个函数模型,其残差平方和分别为152.6 和169.8,若从中选取一个拟合程度较好的函数模型,应选残差平方和为的那个.。
3.1回归分析的基本思想及其初步应用

35
40
45Leabharlann 水稻产量y330 345
365
405 445
450 455
施化肥量x
水稻产量y
15
20
25
365
30
35
40
45
330 345
405 445
450 455
y
500 450
水稻产量
400
350
·
· ·
·
·· ·
施化肥量
40 50
30010
20
30
x
2013-6-4
1、定义:
5
1
3
5
4
3
2
7
1
9
求两变量间的回归方程. 解:列表:
i xi 1 -1 2 -2 3 -3 4 -4 5 -5 6 5 7 3 8 4 9 2 10 1
yi
xiyi
-9
9
-7
14
-5
15
-3
12
-1
5
1
5
5
15
3
12
7
14
9
9
x 0, y 0,
2013-6-4
x
i 1
10
2 i
110,
高二数学 选修2-3
3.1回归分析的基 本思想及其初步 应用(一)
2013-6-4
数学3——统计内容 1. 画散点图
2. 了解最小二乘法的思想
3. 求回归直线方程 y=bx+a 4. 用回归直线方程解决应用问题
2013-6-4
复习 变量之间的两种关系
问题1:正方形的面积y与正方形的边长x之间 的函数关系是 y = x2 确定性关系 问题2:某水田水稻产量y与施肥量x之间是否 有一个确定性的关系? 例如:在 7 块并排、形状大小相同的试验田上 进行施肥量对水稻产量影响的试验,得 到如下所示的一组数据: 施化肥量x 15 20 25 30
人教A版高中数学选修2-3全册同步练习及单元检测含答案

⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
3.1_回归分析(三)

xi2 1660, yi2 327, xi yi 620,
i 1 i 1 i 1
ˆ b
x y 5x y
i 1 5
x
i 1
2 i
5x
2
620 5 18 7.4 1.15. 2 1660 5 18
ˆ a 7.4 1.15 18 28.1.
残差图的制作及作用 几点说明: 1、坐标纵轴为残差变量,横轴可以有不同的选择; 第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为 2、若模型选择的正确,残差图中的点应该分布在以横 的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数 据;如果数据采集没有错误,则需要寻找其他的原因。 轴为心的带形区域; 另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型计较合适,这 样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。 3、对于远离横轴的点,要特别注意。
x
6 9 12 15 18 21 24 27 30 33 36 39
郑平正 制作
最好的模型是哪个?
400 300
400 300 200 100 0
0 5 10 15 20 25 30 35 40
产卵数
产卵数
200 100 0 -100
450 400 350 300 250
产卵数
-40
-30
-20
-10 0 -100 -200
2013-6-13
郑平正 制作
复习回顾
1、线性回归模型: y=bx+a+e, (3)
y=bx+a+e,
E(e)=0,D(e)=
2014-2015学年高中数学(人教版选修2-3)配套课件第三章 3.1.2 回归分析的应用

基 础 梳 理 2.残差分析. (1)残差:样本值与回归值的差叫做残差,即 e=y -^ y ____________ .
i i
残差 来判断模型拟合的效果, (2)残差分析:通过________ 判断原始数据中是否存在可疑数据,这方面的分析工作称 为残差分析 ________. 残差 为纵坐标,以__________ (3)残差图:以________ 样本编号 或 ________ ,或________________ 等为横坐标,作出的图形 身高数据 体重估计值 称为残差图.观察残差图,
题型一 线性回归分析的应用 例1 以下是某地搜集到的新房屋的销售价格
栏 目 链 接
y(万元)和房屋的面积x(m2)的数据:
房屋面积x/m2 115 110 80 135 105
销售价格y/万元
24.8
21.6
18.4
29.2
22
(1)画出数据对应的散点图; (2)求线性回归方程, 并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为150 m2时的销售价 格.
基 础 梳 理 1.建立回归模型的基本步骤: (1)确定研究对象,明确哪个变量是________ 解释变量,哪个 变量是预报变量 ________. 散点图,观 (2)画出确定好的解释变量和预报变量的______ 察它们之间的关系. 类型 . (3)确定回归方程的________
栏 目 链 接
(4)按一定规则估计回归方程中的________ 参数 .
解析:(1)数据对应的散点图如图所示:
栏 目 链 接
5 5 1 (2)- x = xi=109, lxy= (xi-- x )2=1 570, 5 i= 1 i= 1
25-3.1回归分析的基本思想及其初步应用(1)
3.1回归分析的基本思想及其应用教材分析本节内容是数学选修2-3 第三章 统计案例 的起始课,是在《数学③(必修)》之后,学生已经学习了两个变量之间的相关关系,包括画散点图,最小二乘法求回归直线方程等内容.在这一节中进一步介绍回归分析的基本思想及其初步应用.这部分内容《教师用书》共计4课时,第一课时:介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果;第二课时:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤;第三课时:介绍两个变量非线性相关关系;第四课时:回归分析的应用. 本节课是第一课时的内容.本节课的重点是回归分析的基本方法、随机误差e 的认识、残差,难点是回归分析的基本方法.课时分配本节内容用1课时的时间完成,主要介绍线性回归模型的数学表达式,解释随机误差项产生的原因,使学生能正确理解回归方程的预报结果,并能从残差分析角度讨论回归模型的拟合效果.教学目标重点: 回归分析的基本方法、随机误差e 的认识、残差. 难点:回归分析的基本方法.知识点:回归分析的基本方法、随机误差e 、残差.能力点:如何探寻回归分析的基本方法,数形结合的数学思想的运用.教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情. 自主探究点:如何运用最小二乘法求回归直线方程.考试点:求解线性回归方程,从残差的角度讨论回归模型的拟合效果. 易错易混点:随机误差e 与残差之间的区别与联系.拓展点:从相关系数、相关指数角度探讨回归模型的拟合效果,以及建立回归模型的基本步骤.教具准备 多媒体课件 课堂模式 学案导学 一、引入新课对于一组具有线性相关关系的数据112233(,),(,),(,),,(,).n n x y x y x y x y 其回归直线方程的截距和斜率的最小二乘法估计公式分别为:a y bx =- 121()()()niii nii x x y y b x x ==--=-∑∑11n i i x x n ==∑ 11ni i y y n ==∑ (,)x y 称为样本点的中心. 如何推导这两个计算公式?【设计意图】由学生所熟悉的最小二乘法引入新课,消除了学生对新知的恐惧感,引出最小二乘法的中的系数,a b ∧∧的计算公式的推导过程.二、探究新知从已经学过的知识,截距a 和斜率b 分别是使21(,)()niii Q y x αββα==--∑取最小值时,αβ的值,由于212212211(,)[((]{[(2[([(][(]}[(2[([(](ni i i ni i i i i nni i i i i i Q y x y x y x y x y x y x y x y x y x y x y x y x y x y x n y x αββββαβββββαβαβββββαβα=====-----=---+---⋅--+--=---+---⋅--+--∑∑∑∑)+))])])))])]))因为1111[((([(([(]([(]0,nniiiii i n ni i i i y x y x y x y x y x y x y x y x n y x y x ny n x n y x βββαβαβββαβββαββ====-----=-----=-----=-----=∑∑∑∑)])))]))))所以2212222111222221122111[([(]()2()()()(()()[()()](()[]()()()ni i i n n ni i ii i i i nniii i ni i i i nni i iii i Q y x y x n y x x x x x y y y y n y x x x y y x x y y n y x x x y y x x x x αββββαβββαβαβ==========---+--=----+-+------=--+---+---∑∑∑∑∑∑∑∑∑(,))])))1n=∑在上式中,后两项和,αβ无关,而前两项为非负数,因此要使Q 取得最小值,当且仅当前两项的值均为0.,既有121()()()niii nii x x y y x x β==--=-∑∑y x αβ=-通过上式推导,可以训练学生的计算能力,观察分析能力,能够很好训练学生数学能力,必须在老师引导下让学生自己推出.所以:a y bx =- 121()()()niii nii x x y y b x x ==--=-∑∑这正是我们所要推导的公式.三、理解新知准确理解最小二乘法中系数,a b ∧∧的计算公式,以及回归方程的求解过程. 【设计意图】为准确地运用新知,作必要的铺垫.四、运用新知例1、 从某大学中随机选取8名女大学生,其身高和体重的数据如图所示:(1) 画出以身高为自变量x,体重为因变量y 的散点图;(2) 求根据女大学生的身高预报体重的回归方程;(3) 求预报一名身高为172cm 的女大学生的体重. 解:(1)由于问题中要求根据身高预报体重,因此选取身高为自变量x ,体重为因变量y 作散点图:(2)0.849,85.712:0.84985.712.b a y x ==-∴=-回归方程(3)对于身高172cm 的女大学生,由回归方程可以预报体重为:0.84917285.71260.316()y kg =⨯-=ˆ0.849b=是斜率的估计值,说明身高x 每增加1个单位时,体重y 就增加0.849 个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱?【设计意图】通过具体例子让学生感受回归分析思想的应用.最后的问题为接下来引入残差做了铺垫.在必修 3 中,我们介绍了用相关系数;来衡量两个变量之间线性相关关系的方法.本相关系数的具体计算公式为()()niix x y y r --=∑当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r 的绝对值越接近1,表明两个变量的线性相关性越强;r 的绝对值接近于0时,表明两个变量之间几乎不存在线性相关关系.通常,当r 的绝对值大于0. 75 时认为两个变量有很强的线性相关关系.165在本例中,可以计算出r =0. 798.这表明体重与身高有很强的线性相关关系,从而也表明我们建立的回归模型是有意义的.显然,身高172cm 的女大学生的体重不一定是60. 316 kg ,但一般可以认为她的体重接近于60 . 316 kg .图3 . 1- 2 中的样本点和回归直线的相互位置说明了这一点.由于所有的样本点不共线,而只是散布在某一条直线的附近,所以身高和体重的关系可用下面的线性回归模型来表示:y bx a e =++, ( 3 )这里a 和b 为模型的未知参数,e 是y 与y bx a =+之间的误差.通常e 为随机变量,称为随机误差,它的均值 E (e )=0,方差D (e )=2()D e σ=>0 .这样线性回归模型的完整表达式为:2,()0,().y bx a e E e D e σ=++⎧⎨==⎩ (4) 在线性回归模型(4)中,随机误差e 的方差越小,通过回归直线y bx a =+ (5)预报真实值y 的精度越高.随机误差是引起预报值y 与真实值y 之间的误差的原因之一,大小取决于随机误差的方差.另一方面,由于公式(1)和(2)中a 和b 为截距和斜率的估计值,它们与真实值a 和b 之间也存在误差,这种误差是引起预报值y 与真实值y 之间误差的另一个原因.【设计意图】引入随机误差e 后,将回归方程推广到回归模型. 思考:产生随机误差项e 的原因是什么?一个人的体重值除了受身高的影响外,还受许多其他因素的影响.例如饮食习惯、是否喜欢运动、度量误差等.事实上,我们无法知道身高和体重之间的确切关系是什么,这里只是利用线性回归方程来近似这种关系.这种近似以及上面提到的影响因素都是产生随机误差 e 的原因.因为随机误差是随机变量,所以可以通过这个随机变量的数字特征来刻画它的一些总体特征.均值是反映随机变量取值平均水平的数字特征,方差是反映随机变量集中于均值程度的数字特征,而随机误差的均值为0,因此可以用方差2σ来衡量随机误差的大小.为了衡量预报的精度,需要估计护的值.一个自然的想法是通过样本方差来估计总体方差.如何得到随机变量e 的样本呢?由于模型(3)或(4)中的e 隐含在预报变量y 中,我们无法精确地把它从y 中分离出来,因此也就无法得到随机变量e 的样本.解决问题的途径是通过样本的估计值来估计2σ.根据截距和斜率的估计公式(1)和(2 ) , 可以建立回归方程y bx a =+,因此y 是(5)中y 的估计量.由于随机误差e y y =-,所以e y y =-是e 的估计量.对于样本点(11,x y ) , (22,x y ) ,…, (,n n x y ) 而言,相应于它们的随机误差为,1,2,,i i i i i e y y y bx a i n =-=--=,其估计值为,1,2,,i i i i i e y y y b x a i n ∧∧∧∧=-=--=,i e ∧称为相应于点(,)i i x y 的残差(residual ).类比样本方差估计总体方差的思想,可以用22111(,)(2)22n i i e Q a b n n n σ∧∧∧∧===>--∑ 作为2σ的估计量, 其中a 和b 由公式(1) (2)给出,Q (a ,b )称为残差平方和(residual sum of squares ).可以用2σ∧衡量回归方程的预报精度.通常,2σ∧越小,预报精度越高.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差12,,,n e e e ∧∧∧来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析. 【设计意图】引入残差的概念,使学生会运用残差分析的思想分析模型的拟合效果. 表3- 2 列出了女大学生身高和体重的原始数据以及相应的残差数据.e -6.373 的估计值等,这样作出的图形称为残差图.【设计意图】通过例1的具体数据让学生感受残差分析的应用. 【变式练习】观察两相关变量得如下数据:求两个变量的回归方程. 解:10102110,0,110,110,i i i i i x y x x y ======∑∑10110221101101001,000.11010010i ii i i x y x yb a y b x b x x∧∧∧∧==--⨯∴====-=-⋅=-⨯-∑∑ 所以所求回归直线方程为y x =【设计意图】让学生自己动手解决求回归方程的问题,加深对回归分析思想的印象.五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法? 学生作答:1.回归直线方程,随机误差及残差.2.思想:回归分析的思想、数形结合的思想、残差分析的思想.教师总结: 公式的证明过程用到了前面两章学过的知识,提醒学生: 在学习新知时,也要经常复习前面学过的内容,“温故而知新”.在应用中增强对知识(如本节的随机误差和残差)的理解,及时查缺补漏,从而更好地运用知识,解题要有目的性,加强对数学知识、思想方法的认识与自觉运用. 【设计意图】 加强对学生学习方法的指导,做到“授人以渔”.六、布置作业1.阅读教材P80—84;2.书面作业 P89 习题3.1 1.(1)、(2)、(4).3.课外思考:如何运用回归分析的思想对未知量进行预报轨迹呢?【设计意图】设计作业1,2,是引导学生先复习,再作业,培养学生良好的学习习惯.书面作业的布置,是为了让学生能够运用回归分析的思想,解决简单的数学问题;课外思考的安排,是让学生理解回归分析的思想,从而让学生深刻地体会随机误差,残差分析的思想,培养学生回归分析的基本思想,起到承上启下的作用.七、教后反思1.由于各校的情况不同,建议教师在使用本教案时灵活掌握,但必须在公式的证明思路的探寻上下足功夫.2.本节课的弱项是由于整堂课课堂容量较大,在课堂上没有充分暴露学生的思维过程,并给予针对性地诊断与分析.八、板书设计1i nb ==∑bx。
回归分析的基本思想及其初步应用
我们可以利用图形来分析残差特性,作图时纵坐标 为残差,横坐标可以选为样本编号,或身高数据,或 体重估计值等,这样作出的图形称为残差图。
非线性回归问题
案例2 一只红铃虫的产卵数y和温度x有关。现
收集了7组观测数据列于表中:
4. 用回归直线方程 解决应用问题
7. 了解相关指数 R2 和模型拟 合的效果之间的关系
8. 了解残差图的作用
9. 利用线性回归模型解决一类 非线性回归问题
10. 正确理解分析方法与结果
复习回顾
1、线性回归模型:
y=bx+a+e, (3)
y=bx+a+e, E(e)=0,D(e)= 2.
(4)
产卵数y/个
350 300 250 200 150 100
50 0 0
t
150 300 450 600 750 900 1050 1200 1350
合作探究
指数函数模型
-10
450 400 350 300 250 200 150 100
50 0
-5-50 0
产卵数
气 温
5
10 15 20 25 30 35 40
就转换为z=bx+a.
温度xoC z=lny 产卵数y/个
21
1.946
7
23
2.398
11
25
3.045
21
27
3.178
24
29
4.190
66
32
4.745
115
35
5.784
325
由计算器得:z关于x的线性回归方程
回归分析的基本思想及其初步应用(1)
温度 温度的平方t 产卵数y/个
21 441 7
23 529 11
25 625 21
27 729 24
29 841 66
32 1024 115
35 1225 325
作散点图,并由计算器得:y和t之间的线性回归方程为 y=0.367t-202.543,相关指数R2=0.802
将t=x2代入线性回归方程得: y=0.367x2 -202.543
分析和预测
相关指数R2≈0.7464 当x=28时,y =19.87×28-463.73≈ 93
所以,一次函数模型可中编温辑度ppt解释了74.64%的产卵数变化。 9
93>66 ? 模型不好?
奇
怪
?
可编辑ppt
10
合作探究
问题1 问题2 问题3
二次函数模型
方案2
选用y=bx2+a ,还是y=bx2+cx+a ?
7
23
2.398
11
25
3.045
21
27
3.178
24
29
4.190
66
32
4.745
115
35
5.784
325
由计算器得:z关于x的线性回归方程
z
为
zˆ=0.272x-3.849,yˆ
e0.272x-3.849
.
2.8 2.4
2
相关指数R2=0.985
1.6
1.2
当x=28oC 时,y ≈44 ,指数回归
纵坐标为残差,横坐标
为样本编号 8残差 6
残差图
4 2
0 -2 0
1
2
人教a版高中数学选修2-3全册同步练习及单元检测含答案
人教版高中数学选修2~3 全册章节同步检测试题目录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3二项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2二项分布及其应用第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应用第3章练习 3.2独立性检验的基本思想及其初步应用第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题一、选择题1.一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是( )A.8 B.15 C.16 D.30答案:A2.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有( )A.5种 B.6种 C.7种 D.8种答案:B3.如图所示为一电路图,从A 到B 共有( )条不同的线路可通电( )A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( )A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则李芳有( )种不同的选择方式( ) A.24 B.14 C.10 D.9答案:B6.设A ,B 是两个非空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是( )A.4 B.7 C.12 D.16答案:C二、填空题7.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有 种不同的选法;要买上衣,裤子各一件,共有 种不同的选法.答案:33,2708.十字路口来往的车辆,如果不允许回头,共有 种行车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则方程22()()25x a y b -+-=表示不同的圆的个数是 .答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有 项.答案:1011.如图,从A →C ,有 种不同走法.答案:612.将三封信投入4个邮箱,不同的投法有 种.答案:34三、解答题13.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =⨯=种.14.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =⨯⨯=种;(3)56644574N =⨯+⨯+⨯=种15.已知集合{}321012()M P a b =---,,,,,,,是平面上的点,a b M ∈,. (1)()P a b ,可表示平面上多少个不同的点?(2)(),可表示多少个坐标轴上的点?P a b解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法也有6种,∴P点个数为N=6×6=36(个);(2)根据分类加法计数原理,分为三类:①x轴上(不含原点)有5个点;②y轴上(不含原点)有5个点;③既在x轴,又在y轴上的点,即原点也适合,∴共有N=5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题一、选择题1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有( )A .30个B .42个C .36个D .35个答案:C2.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种答案:A3.如图,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有( )A .72种B .48种C .24种D .12种答案:A4.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )A .10种B .52种 C.25种 D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的子集的个数是( ) A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最大边长为11的三角形的个数为( )A.25 B.26 C.36 D.37答案:C二、填空题7.平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线的条数是 .答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直角三角形的个数为 .答案:2(1)n n-9.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生种不同的信息.答案:25610.椭圆221x ym n+=的焦点在y轴上,且{}{}123451234567m n∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:2011.已知集合{}123A,,,且A中至少有一个奇数,则满足条件的集合A分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题13.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3410大的四位数有多少个?解:本题可以从高位到低位进行分类.(1)千位数字比3大.(2)千位数字为3:①百位数字比4大;②百位数字为4:1°十位数字比1大;2°十位数字为1→个位数字比0大.所以比3410大的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜色旗子各(3)n n>面,任取其中三面,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗子中不允许有三面相同颜色的旗子,可以有多少种不同的信号?若所升旗子颜色各不相同,有多少种不同的信号?解:1N=3×3×3=27种;227324N=-=种;33216N=⨯⨯=种.15.某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法.解:首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷一.选择题:1.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出一本,则不同的取法共有()(A)37种(B)1848种(C)3种(D)6种2.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出语文、数学、英语各一本,则不同的取法共有()(A)37种(B)1848种(C)3种(D)6种3.某商业大厦有东南西3个大门,楼内东西两侧各有2个楼梯,从楼外到二楼的不同走法种数是()(A) 5 (B)7 (C)10 (D)124.用1、2、3、4四个数字可以排成不含重复数字的四位数有()(A)265个(B)232个(C)128个(D)24个5.用1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A)265个(B)232个(C)128个(D)24个6.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有()(A)43种(B)34种(C)4×3×2种(D)1×2×3种7.把4张同样的参观券分给5个代表,每人最多分一张,参观券全部分完,则不同的分法共有()(A)120种(B)1024种(C)625种(D)5种8.已知集合M={l,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()(A)18 (B)17 (C)16 (D)109.三边长均为整数,且最大边为11的三角形的个数为()(A)25 (B)36 (C)26 (D)3710.如图,某城市中,M、N两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M到N 不同的走法共有()(A)25 (B)15 (C)13 (D)10二.填空题:11.某书店有不同年级的语文、数学、英语练习册各10本,买其中一种有种方法;买其中两种有种方法.12.大小不等的两个正方形玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有个.15.某班宣传小组要出一期向英雄学习的专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A、B、C、D每一部分只写一种颜色,如图所示,相邻两块颜色不同,则不同颜色的书写方法共有种.三.解答题:D CB A16.现由某校高一年级四个班学生34人,其中一、二、三、四班分别为7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人做中心发言,这二人需来自不同的班级,有多少种不同的选法?17.4名同学分别报名参加足球队,蓝球队、乒乓球队,每人限报其中一个运动队,不同的报名方法有几种?[探究与提高]1.甲、乙两个正整数的最大公约数为60,求甲、乙两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线方程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第一象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、 排列综合卷1.90×9l ×92×……×100=( )(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是( )(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于( ) (A )827n A - (B )2734n n A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是( )(A )0 (B )3 (C )5 (D )85.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( ) (A )24个 (B )30个 (C )40个 (D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有( ) (A )20个 (B )19个 (C )25个 (D )30个7.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有( )(A )12种 (B )18种 (C )24种 (D )96种8.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )(A )6种 (B )9种 (C )18种 (D )24种9.有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有( )(A )88A 种 (B )48A 种 (C )44A ·44A 种 (D )44A 种10.有4位学生和3位老师站在一排拍照,任何两位老师不站在一起的不同排法共有( ) (A )(4!)2种 (B )4!·3!种 (C )34A ·4!种 (D )35A ·4!种11.把5件不同的商品在货架上排成一排,其中a ,b 两种必须排在一起,而c ,d 两种不能排在一起,则不同排法共有( )(A )12种 (B )20种 (C )24种 (D )48种 二.填空题::12.6个人站一排,甲不在排头,共有 种不同排法.13.6个人站一排,甲不在排头,乙不在排尾,共有 种不同排法.14.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有 种.15.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的口袋中,但红口袋不能装入红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每人各一本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每人各一本,共有种不同的送法.三、解答题:17.一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单(1)前4个节目中要有舞蹈,有多少种排法?(2)3个舞蹈节目要排在一起,有多少种排法?(3)3个舞蹈节目彼此要隔开,有多少种排法?18.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合 综合卷一、选择题:1.下列等式不正确的是( ) (A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=-(C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是( )(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11111m m m m n n n n C C C C --+--=++3.方程2551616x x x CC --=的解共有( ) (A )1个 (B )2个 (C )3个 (D )4个4.若372345n n n C A ---=,则n 的值是( )(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男生中挑选3人,4名女生中挑选2人,组成一个小组,不同的挑选方法共有( )(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男生,3个女生中挑选4人参加智力竞赛,要求至少有一个女生参加的选法共有( )(A )12种 (B )34种 (C )35种 (D )340种8.平面上有7个点,除某三点在一直线上外,再无其它三点共线,若过其中两点作一直线,则可作成不同的直线( )(A )18条 (B )19条 (C )20条 (D )21条9.在9件产品中,有一级品4件,二级品3件,三级品2件,现抽取4个检查, 至少有两件一级品的抽法共有( )(A )60种 (B )81种 (C )100种 (D )126种10.某电子元件电路有一个由三节电阻串联组成的回路,共有6个焊点,若其中某一焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有( ) (A )5种 (B )6种 (C )63种 (D )64种 二.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每人教两个班,分配方案共有 种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金戈出品
学 习 资 料 汇编
3.1 回归分析的基本思想及其初步应用
自我小测
1.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了100
次和150次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知两个人在试验
中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下
列说法正确的是( )
A.l1和l2有交点(s,t)
B.l1与l2相交,但交点不一定是(s,t)
C.l1与l2必定平行
D.l1与l2必定重合
2.已知x,y取值如下表:
x 0 1 3
4
y 2.2 4.3 4.8
6.7
若x,y具有线性相关关系,且回归方程为y^=0.95x+a,则a=( )
A
.0.325 B.2.6 C.2.2 D.0
3.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数R2分
别为:模型1的相关指数R2为0.98,模型2的相关指数R2为0.80,模型3的相关指数
R
2
为0.50,模型4的相关指数R2为0.25.其中拟合效果最好的模型是( )
A.模型1 B.模型2 C.模型3 D.模型4
4.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
父亲身高x(cm) 174 176 176 176 178
儿子身高y(cm) 175 175 176 177 177
则y对x的线性回归方程为( )
A.y=x-1 B.y=x+1
C.y=88+12x D.y=176
5.如果某地的财政收入x与支出y满足线性回归方程y=bx+a+e(单位:亿元),其
中b=0.8,a=2,|e|≤0.5,如果今年该地区财政收入为10亿元,则年支出预计不会超过
________亿元.
6.若对于变量y与x的10组统计数据的回归模型中,R2=0.95,又知残差平方和为
金戈出品
120.53,那么∑10i=1 (yi-y)2的值为________.
7.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成
本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本(单位:元)
的资料进行线性回归分析,结果如下:
x=72,y=71,∑6i=1x2i=79,∑6i=1xiy
i
=1 481.
则销量每增加1 000箱,单位成本下降________元.
8.某服装店经营某种服装,在某周内纯获利y(元)与该周每天销售这种服装件数x之
间的一组数据如下表:
x 3 4 5 6 7 8
9
y 66 69 73 81 89 90
91
(1)求样本中心点;
(2)画出散点图;
(3)求纯获利y与每天销售件数x之间的回归方程.
9.为了研究某种细菌繁殖的个数随时间x变化的情况,收集如下数据:
天数x(天) 1 2 3 4 5 6
繁殖个数y(个) 6 12 25 49 95 190
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;
(2)观察散点图是否可用曲线21ecxyc拟合,描述解释变量与预报变量之间的关系.
金戈出品
参考答案
1.解析:都过样本中心点(s,t),但斜率不确定.
答案:A
2.解析:由已知x=2,y=4.5,而回归方程过点(x,y).则4.5=0.95×2+a,
∴a=2.6.
答案:B
3.解析:相关指数R2能够刻画用回归模型拟合数据的效果,相关指数R2的值越接近于
1,说明回归模型拟合数据的效果越好.
答案:A
4.解析:法一:由线性回归直线方程过样本中心(176,176),排除A,B选项,结合选
项可得C为正确选项.
法二:将表中的五组数值分别代入选项验证,可知y=88+12x最适合.
答案:C
5.解析:∵当x=10时,y=0.8×10+2+e=10+e,
又∵|e|≤0.5,∴y≤10.5.
答案:10.5
6.解析:依题意有0.95=1-120.53∑10i=1yi-y2,所以∑10i=1(yi-y)2=2 410.6.
答案:2 410.6
7.解析:由题意知b^=1 481-6×72×7179-6×722≈-1.818 2,
a^=71-(-1.818 2)×72≈77.36,y^=-1.818 2x
+77.36,所以销量每增加1千箱,单
位成本下降1.818 2元.
答案:1.818 2
8.解:(1)x=6,y≈79.86,即样本中心点(6,79.86).
(2)散点图如下图:
金戈出品
(3)因为b^=∑7i=1 xi-xyi-y∑7i=1 xi-x2≈4.75,
a^=y-b^ x≈51.36,所以y^=4.75x
+51.36.
9.解:(1)作出散点图,如图
(2)由散点图可以看出样本点分布在一条指数型函数21ecxyc曲线的周围,于是令z=
ln y,则
x 1 2 3 4 5
6
z 1.79 2.48 3.22 3.89 4.55
5.25
由计算得z^=0.69x+1.115,
则有y^=e0.69x+1.115.
敬请批评指正