必修四同角三角函数的基本关系训练题

必修四同角三角函数的基本关系训练题
必修四同角三角函数的基本关系训练题

第一节 同角三角函数的基本关系

A 组

1.已知sin α=

55,sin(α-β)=-1010

,α、β均为锐角,则β等于________. 解析:∵α、β均为锐角,∴-π2<α-β<π2,∴cos(α-β)=1-sin 2(α-β)=310

10.

∵sin α=

5

5

,∴cos α= 1-(

55)2=255

. ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=

2

2

. ∵0<β<π2,∴β=π4.答案:π

4

2.已知0<α<π2<β<π,cos α=35,sin(α+β)=-3

5

,则cos β的值为________.

解析:∵0<α<π2,π2<β<π,∴π2<α+β<32π.∴sin α=45,cos(α+β)=-4

5

∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=(-45)×35+(-35)×45=-24

25

.答

案:-2425

3.如果tan α、tan β是方程x 2-3x -3=0的两根,则sin(α+β)

cos(α-β)

=________.

解析:tan α+tan β=3,tan αtan β=-3,则sin(α+β)cos(α-β)=sin αcos β+cos αsin β

cos αcos β+sin αsin β

=tan α+tan β1+tan αtan β=31-3

=-32.答案:-32

4.(高考山东卷改编)已知cos(α-π6)+sin α=453,则sin(α+7π

6

)的值是___.

解析:由已知得32cos α+12sin α+sin α=453,即12cos α+32sin α=4

5

得sin(α+π6)=45,sin(α+76π)=-sin(α+π6)=-45.答案:-4

5

5.(原创题)定义运算a b =a 2-ab -b 2,则sin π12cos π

12

=________.

解析:sin π12cos π12=sin 2π12-sin π12cos π12-cos 2π12=-(cos 2π12-sin 2π12)-12×2sin π12cos

π

12

=-cos π6-12sin π

6=-1+234.答案:-1+234

6.已知α∈(π2,π),且sin α2+cos α2=6

2

.

(1)求cos α的值;(2)若sin(α-β)=-35,β∈(π

2

,π),求cos β的值.

解:(1)因为sin α2+cos α2=62,两边同时平方得sin α=1

2

.

又π2<α<π.所以cos α=-32

. (2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π

2

.

又sin(α-β)=-35,得cos(α-β)=4

5

.

cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)

=-

32×45+12×(-3

5)=-43+310

. B 组

1.

cos2α1+sin2α·1+tan α1-tan α

的值为________.

解析:cos2α1+sin2α·1+tan α1-tan α=cos 2α-sin 2α(sin α+cos α)2·1+tan α

1-tan α

=cos α-sin αsin α+cos α·1+tan α1-tan α=1-tan α1+tan α·1+tan α1-tan α

=1. 2.已知cos(π4+x )=3

5,则sin2x -2sin 2x 1-tan x

的值为________.

解析:∵cos(π4+x )=35,∴cos x -sin x =3

5

2,

∴1-sin2x =1825,sin2x =725,∴sin2x -2sin 2x 1-tan x =2sin x (cos x -sin x )cos x -sin x

cos x

=sin2x =7

25.

3.已知cos(α+π3)=sin(α-π

3),则tan α=________.

解析:cos(α+π3)=cos αcos π3-sin αsin π3=12cos α-32sin α,sin(α-π

3)

=sin αcos π3-cos αsin π3=12sin α-3

2cos α,

由已知得:(12+32)sin α=(12+3

2)cos α,tan α=1.

4.设α∈(π4,3π4),β∈(0,π4),cos(α-π4)=35,sin(3π4+β)=5

13

,则sin(α+β)=________.

解析:α∈(π4,3π4),α-π4∈(0,π2),又cos(α-π4)=35,∴sin(α-π4)=4

5.

∵β∈(0,π4),∴3π4+β∈(3π4,π).∵sin(3π4+β)=513,∴cos(3π4+β)=-12

13

∴sin(α+β)=-cos[(α-π4)+(3π

4

+β)]

=-cos(α-π4)·cos(3π4+β)+sin(α-π4)·sin(3π4+β)=-35×(-1213)+45×513=56

65,

即sin(α+β)=56

65.

5.已知cos α=13,cos(α+β)=-13,且α,β∈(0,π

2

),则cos(α-β)的值等于________.

解析:∵α∈(0,π2),∴2α∈(0,π).∵cos α=13,∴cos2α=2cos 2α-1=-7

9

,∴sin2α=

1-cos 22α=429,而α,β∈(0,π2),∴α+β∈(0,π),∴sin(α+β)=1-cos 2(α+β)=22

3

∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)=(-79)×(-13)+429×

22

3

=2327

. 6.已知角α在第一象限,且cos α=3

5,则1+2cos(2α-π

4)

sin(α+π

2)

=________.

解析:∵α在第一象限,且cos α=35,∴sin α=4

5,则1+2cos(2α-π

4)

sin(α+π

2

)

1+2(22cos2α+2

2sin2α)

cos α=2cos 2α+2sin αcos αcos α=2(sin α+cos α)=2(45+35)=14

5

.

7.已知a =(cos2α,sin α),b =(1,2sin α-1),α∈(π2,π),若a ·b =25,则tan(α+π

4

)的值为________.

解析:a ·b =cos2α+2sin 2α-sin α=1-2sin 2α+2sin 2α-sin α=1-sin α=25,∴sin α=3

5

,又

α∈(π2,π),∴cos α=-45,tan α=-34,∴tan(α+π4)=tan α+11-tan α=17.

8.tan10°tan70°

tan70°-tan10°+tan120°

的值为______. 解析:由tan(70°-10°)=tan70°-tan10°

1+tan70°·tan10°

=3,

故tan70°-tan10°=3(1+tan70°tan10°),代入所求代数式得:

tan70°tan10°3(1+tan70°tan10°)+tan120°=tan70°tan10°3(1+tan70°tan10°)-3=tan70°tan10°3tan70°tan10°=3

3

.

9.已知角α的终边经过点A (-1,15),则sin(α+π

4

)

sin2α+cos2α+1

的值等于________.

解析:∵sin α+cos α≠0,cos α=-14,∴sin(α+π

4)

sin2α+cos2α+1=2

4cos α

=- 2.

10.求值:cos20°

sin20°

·cos10°+3sin10°tan70°-2cos40°.

解:原式=cos20°cos10°sin20°+3sin10°sin70°

cos70°

-2cos40°

=cos20°cos10°+3sin10°cos20°sin20°

-2cos40°

=cos20°(cos10°+3sin10°)sin20°

-2cos40°

=2cos20°(cos10°sin30°+sin10°cos30°)sin20°

-2cos40°

=2cos20°sin40°-2sin20°cos40°sin20°

=2.

11.已知向量m =(2cos x 2,1),n =(sin x

2

,1)(x ∈R ),设函数f (x )=m ·n -1.

(1)求函数f (x )的值域;(2)已知锐角△ABC 的三个内角分别为A ,B ,C ,若f (A )=5

13

,f (B )

=3

5

,求f (C )的值. 解:(1)f (x )=m ·n -1=(2cos x 2,1)·(sin x 2,1)-1=2cos x 2sin x

2

+1-1=sin x .

∵x ∈R ,∴函数f (x )的值域为[-1,1].

(2)∵f (A )=513,f (B )=35,∴sin A =513,sin B =3

5

.

∵A ,B 都为锐角,∴cos A =1-sin 2A =1213,cos B =1-sin 2B =4

5

.

∴f (C )=sin C =sin[π-(A +B )]=sin(A +B )=sin A cos B +cos A sin B

=513×45+1213×35=5665.∴f (C )的值为5665

. 12.(南京调研)已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=4

5

.

(1)求sin2β的值;(2)求cos(α+π

4

)的值.

解:(1)法一:∵cos(β-π4)=cos π4cos β+sin π4sin β=22cos β+22sin β=1

3

∴cos β+sin β=23,∴1+sin2β=29,∴sin2β=-7

9.

法二:sin2β=cos(π2-2β)=2cos 2(β-π4)-1=-7

9

.

(2)∵0<α<π2<β<π,∴π4<β-π4<3π4,π2<α+β<3π2,∴sin(β-π

4)>0,cos(α+β)<0.

∵cos(β-π4)=13,sin(α+β)=45,∴sin(β-π4)=223,cos(α+β)=-3

5.

∴cos(α+π4)=cos[(α+β)-(β-π4)]=cos(α+β)cos(β-π4)+sin(α+β)sin(β-π

4)

=-35×13+45×223=82-315

.

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

高中数学必修三角函数常考题型同角三角函数的基本关系

高中数学必修三角函数常考题型同角三角函数 的基本关系 集团文件版本号:(M928-T898-M248-WU2669-I2896-

同角三角函数的基本关系 【知识梳理】 同角三角函数的基本关系 (1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2 α+cos 2 α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即 sin α cos α=tan_α ? ?? ??其中α≠k π+π2?k ∈Z ?. 【常考题型】 题型一、已知一个三角函数值求另两个三角函数值 【例1】 (1)已知sin α=12 13 ,并且α是第二象限角,求cos α和tan α. (2)已知cos α=-4 5 ,求sin α和tan α. [解] (1)cos 2 α=1-sin 2 α=1-? ????12132=? ?? ??5132 ,又α是第二象限角, 所以cos α<0,cos α=- 513,tan α=sin αcos α=-125 . (2)sin 2 α=1-cos 2 α=1-? ????-452=? ?? ??352 , 因为cos α=-4 5 <0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-3 4;当α是第 三象限角时,sin α=-35,tan α=sin αcos α=3 4 .

【类题通法】 已知三角函数值求其他三角函数值的方法 (1)若已知sin α=m,可以先应用公式cos α=±1-sin2α,求得 cos α的值,再由公式tan α=sin α cos α 求得tan α的值. (2)若已知cos α=m,可以先应用公式sin α=±1-cos2α,求得 sin α的值,再由公式tan α=sin α cos α 求得tan α的值. (3)若已知tan α=m,可以应用公式tan α=sin α cos α =m?sin α= m cos α及sin2α+cos2α=1,求得cos α=± 1 1+m2 ,sin α= ± m 1+m2 的值. 【对点训练】 已知tan α= 4 3 ,且α是第三象限角,求sin α,cos α的值.解:由tan α= sin α cos α = 4 3 ,得sin α= 4 3 cos α,① 又sin2α+cos2α=1,② 由①②得 16 9 cos2α+cos2α=1,即cos2α= 9 25 . 又α是第三象限角,故cos α=- 3 5 ,sin α= 4 3 cos α=- 4 5 . 题型二、化切求值 【例2】已知tan α=3,求下列各式的值.

高中数学必修4三角函数测试题

高一数学同步测试(1)—角的概念·弧度制 一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A ∩C B .B ∪C=C C .A ?C D .A=B=C 2.下列各组角中,终边相同的角是 ( ) A . π2 k 与)(2Z k k ∈+ π π B .)(3k 3Z k k ∈± ππ π与 C .ππ)14()12(±+k k 与 )(Z k ∈ D .)(6 6Z k k k ∈± + π πππ与 3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A .2 B . 1 sin 2 C .1sin 2 D .2sin 4.设α角的终边上一点P 的坐标是)5 sin ,5(cos π π ,则α等于 ( ) A . 5 π B .5 cot π C .)(10 32Z k k ∈+ππ D .)(5 92Z k k ∈- ππ 5.将分针拨慢10分钟,则分钟转过的弧度数是 ( ) A . 3 π B .- 3 π C . 6 π D .-6 π 6.设角α和β的终边关于y 轴对称,则有 ( ) A .)(2 Z k ∈-= βπ α B .)()2 1 2(Z k k ∈-+ =βπα C .)(2Z k ∈-=βπα D .)()12(Z k k ∈-+=βπα 7.集合A={}, 32 2|{},2|Z n n Z n n ∈±=?∈= ππααπαα, B={}, 2 1 |{},3 2|Z n n Z n n ∈+=?∈=ππββπ ββ, 则A 、B 之间关系为 ( ) A .A B ? B .B A ? C .B ?A D .A ?B 8.某扇形的面积为12 cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( ) A .2° B .2 C .4° D .4 9.下列说法正确的是 ( ) A .1弧度角的大小与圆的半径无关 B .大圆中1弧度角比小圆中1弧度角大 ≠ ≠ ≠

人教版必修四 同角三角函数的基本关系教案

1.2.2同角三角函数的基本关系(3) 教学目的: 知识目标:根据三角函数关系式进行三角式的化简和证明; 能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。 (2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力; 德育目标:训练三角恒等变形的能力,进一步树立化归思想方法; 教学重点:同角三角函数的基本关系式 教学难点:如何运用公式对三角式进行化简和证明。 授课类型:新授课 教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.同角三角函数的基本关系式。 (1)倒数关系:sin csc 1αα?=,cos sec 1αα?=,tan cot 1αα?=. (2)商数关系: sin tan cos ααα=,cos cot sin ααα =. (3)平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+=. (练习)已知tan α43=,求cos α 2.tan αcos α= ,cot αsec α= ,(sec α+tan α)·( )=1 二、讲解新课: 例82tan α=-,试确定使等式成立的角α的集合。 =|1sin ||1sin |cos ||cos |αααα+-- =1sin 1sin |cos |ααα+-+=2sin |cos | αα. 2tan α-=-, ∴2sin |cos |αα2sin 0cos αα +=, 即得sin 0α=或|cos |cos 0αα=-≠. 所以,角α的集合为:{|k ααπ=或322,}22 k k k Z πππαπ+<<+∈. 例9.化简(1cot csc )(1tan sec )αααα-+-+. 解:原式=cos 1sin 1(1)(1)sin sin cos cos αααααα -+-+ 2sin cos 1cos sin 11(sin cos )sin cos sin cos αααααααααα-+-+--=?=?112sin cos 2sin cos αααα-+?==?. 说明:化简后的简单三角函数式应尽量满足以下几点: (1)所含三角函数的种类最少; (2)能求值(指准确值)尽量求值; (3)不含特殊角的三角函数值。 例10.求证: cos 1sin 1sin cos x x x x +=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.

必修四第一章三角函数测试题(含答案)

必修四第一章三角函数测试题 班别 姓名 分数 一、选择题 1.已知cos α=1 2 ,α∈(370°,520°),则α等于 ( ) A .390° B .420° C .450° D .480° 2.若sin x ·tan x <0,则角x 的终边位于 ( ) A .第一、二象限 B .第二、三象限 C .第二、四象限 D .第三、四象限 3.函数y =tan x 2 是 ( ) A .周期为2π的奇函数 B .周期为π 2的奇函数C .周期为π的偶函数D .周期为2π的偶函数 4.已知函数y =2sin(ωx +φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于 ( ) A .1 B .2 C.12 D.13 5.函数f (x )=cos(3x +φ)的图象关于原点成中心对称,则φ等于 ( ) A .-π2 B .2k π-π 2 (k ∈Z ) C .k π(k ∈Z ) D .k π+π 2(k ∈Z ) 6.若sin θ+cos θsin θ-cos θ =2,则sin θcos θ的值是 ( ) A .-310 B.310 C .±310 D.34 7.将函数y =sin x 的图象上所有的点向右平行移动π 10 个单位长度,再把所得各点的横坐标伸 长到原来的2倍(纵坐标不变),所得图象的函数解析式是 ( ) A .y =sin ? ???2x -π10 B .y =sin ????2x -π5 C .y =sin ????12x -π10 D .y =sin ??? ?12x -π 20 8.在同一平面直角坐标系中,函数y =cos ????x 2+3π2(x ∈[0,2π])的图象和直线y =1 2的交点个数是 ( ) A .0 B .1 C .2 D .4 9.已知集合M =???? ??x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π 2,k ∈Z }.则 ( ) A .M =N B .M N C .N M D .M ∩N =?

(精心整理)同角三角函数基本关系式练习题

任意角的三角函数 1.已知sin α=45 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.若θ是第三象限角,且02 cos <θ,则2 θ是 ( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限 3.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ=3 1,π<θ<32 π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5 若α 是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A) 钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 6.已知α的终边经过P (ππ6 5cos ,6 5sin ),则α可能是 ( ) A .π6 5 B . 6 π C .3 π- D .3 π 7.如果).cos(|cos |π+-=x x 则x 的取值范围是 ( ) A .)(] 22 ,22 [Z k k k ∈++-ππππ B .)() 22 3,22 (Z k k k ∈++ππππ C .)(] 22 3,22 [Z k k k ∈++ππππ D .)()2,2(Z k k k ∈++-ππππ 8.1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( ) A .5 B .-5 C .6 D .-6 9. 扇形的周期是16,圆心角是2弧度,则扇形面积是______________

(人教版)高二数学必修4第一章三角函数单元测试题(含答案)

y x 1 1 2 3 O (人教版)高二数学必修4第一章三角函数单元测试题(含答案) 一、选择题:本大题共12个小题,每小题5分,共 60分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1 . A B . C D 2.下列函数中,最小正周期为 的是 A . B . C . D . 3.已知 , ,则 A B C D . 4.函数 是周期为的偶函数,且当 A B C . D .2 5 A B 个单位 C 个单位 D .向右平 移 6 .函数的零点个数为 A .5 B .7 C .3 D .9 7 .函数 可取的一组值为 A B C D 8 .已知函数 的值可能是 A B C D . 9 ,则 这个多边形为 A .正六边形 B .梯形 C .矩形 D .正五边 形 10 .函数有3个零点,则 的值为 A .0 B .4 C .2 D .0,或2 11 .对于函数的一组值计 ,所得的结果可能是 A .0与1 B .1 C .101 D .与 12.给出下列3个命题:

①函数; ②函数 ③ A.0 B.1 C.2 D.3 二、填空题:本大题共4个小题,每小题5分,共20分.把正确答案填在题中横线上.13.角的终边过点,且,则的值为▲. 14.设,若函数在上单调递增,则的取值范围是▲. 15.已知,则▲. 16.函数个单位,所的函数为偶函数; 的最大值为▲. 三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 已知扇形的周长为4,那么当扇形的半径为何值时,它的面积最大,并求出最大面积,以及相应的圆心角. 18.(本小题满分12分) 已知函数时,取得最小值 (Ⅰ)求函数的最小正周期; (Ⅱ)求函数的解析式. 19.(本小题满分12分) 若,为第四象限角,求 20.(本小题满分12分) 求下列函数的值域 (Ⅰ) (Ⅱ). 21.(本小题满分12分) 已知函数.求的 (Ⅰ)定义域; (Ⅱ)单调递增区间; (Ⅲ)值域. 22.(本小题满分12分)

高中数学必修4三角函数测试题答案详解1

三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ?? ? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θ tan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =5 1(0≤x <π),则tan x 的值等于( ). A .-4 3 B .-3 4 C .4 3 D .3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π 2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B

D .B ?C ?A 8.已知cos (α+β)=1,sin α=3 1,则sin β 的值是( ). A .3 1 B .-3 1 C . 3 2 2 D .- 3 2 2 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .??? ??2π , 4π∪??? ??4π5 ,π B .?? ? ??π , 4 π C .?? ? ??4π5 ,4π D .??? ??π , 4 π∪?? ? ??23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的2 1 倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ?? ? ? ?3π - 2x ,x ∈R B .y =sin ??? ??6π + 2x ,x ∈R C .y =sin ??? ? ?3π + 2x ,x ∈R D .y =sin ??? ? ? 32π + 2x ,x ∈R 二、填空题 11.函数f (x )=sin 2 x +3tan x 在区间??? ???3π 4π ,上的最大值是 . 12.已知sin α= 552,2 π ≤α≤π,则tan α= . 13.若sin ??? ??α + 2π=53,则sin ?? ? ??α - 2π= . 14.若将函数y =tan ??? ? ? 4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函 数y =tan ?? ? ??6π + x ω的图象重合,则ω的最小值为 . 15.已知函数f (x )=21(sin x +cos x )-2 1 |sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ?? ? ? ?3π + 2x ,x ∈R ,有下列命题: ①函数 y = f (x )的表达式可改写为y = 4cos ?? ? ? ?6π - 2x ; ②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(- 6 π ,0)对称;

人教A版必修4同角三角函数的基本关系式练习及答案

§1.2.2 同角三角函数的基本关系式 班级 姓名 学号 得分 一、选择题 1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) (A) 2 3 (B)4 3 (C)3 (D)± 2 3 3.设是第二象限角,则 2 sin 1 1cos sin ααα - ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ= 3 1,π<θ<3 2π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 10 (D)± 10 5.已知 sin cos 2sin 3cos αα αα-+=5 1,则tan α的值是 ( ) (A)±83 (B)83 (C)83- (D)无法确定 * 6.若α是三角形的一个内角,且sin α+cos α=3 2 ,则三角形为 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形 二.填空题 7.已知sin θ-cos θ=12 ,则sin 3θ-cos 3θ= ; 8.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ; 9.1cos 1cos 1cos 1cos αα αα +--+α为第四象限角)= ; * 10.已知cos (α+ 4π)=1 3 ,0<α<2π,则sin(α+4π)= . 三.解答题 11.若sin x = 35m m -+,cos x =425 m m -+,x ∈(2π,π),求tan x

必修4三角函数所有知识点归纳归纳

《三角函数》【知识网络】 一、任意角的概念与弧度制 1、将沿x轴正向的射线,围绕原点旋转所形成的图形称作角.

逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈ x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈ 3、第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 第二象限角:{}()90360180360k k k Z αα??+<<+∈ 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈ 第四象限角: {}()270 360360360k k k Z αα??+<<+∈ 4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈ 锐角: {}090αα<< 小于90的角:{}90αα< 5、若α为第二象限角,那么 2 α 为第几象限角? ππαππ k k 222 +≤≤+ ππ α ππ k k +≤ ≤ +2 2 4 ,24,0παπ≤≤=k ,2345,1παπ≤≤=k 所以2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 8、角度与弧度对应表: 9、弧长与面积计算公式

弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α 终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号 口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)

(完整版)必修4第一章三角函数单元基础测试题及答案

三角函数数学试卷 一、 选择题1、ο 600sin 的值是( ) )(A ;21 )(B ;23 )(C ;23- )(D ; 21 - 2、),3(y P 为α终边上一点, 53 cos = α,则=αtan ( ) )(A 43- )(B 34 )(C 43± )(D 34± 3、已知cos θ=cos30°,则θ等于( ) A. 30° B. k ·360°+30°(k ∈Z) C. k ·360°±30°(k ∈Z) D. k ·180°+30°(k ∈Z) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( ) 5、函数 的递增区间是( ) 6、函数) 62sin(5π +=x y 图象的一条对称轴方程是( ) ) (A ;12π - =x )(B ;0=x ) (C ;6π = x ) (D ; 3π = x 7、函数的图象向左平移个单位,再将图象上各点的横坐标 压缩为原来的,那么所得图象的函数表达式为( ) 8、函数|x tan |)x (f =的周期为( ) A. π2 B. π C. 2π D. 4π

9、锐角α,β满足 41sin sin - =-βα,43 cos cos = -βα,则=-)cos(βα( ) A.1611- B.85 C.85- D.1611 10、已知tan(α+β)=2 5,tan(α+4π)=322, 那么tan(β-4π)的值是( ) A .15 B .1 4 C .1318 D .1322 11.sin1,cos1,tan1的大小关系是( ) A.tan1>sin1>cos1 B.tan1>cos1>sin1 C.cos1>sin1>tan1 D.sin1>cos1>tan1 12.已知函数f (x )=f (π-x ),且当)2 ,2(ππ-∈x 时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则( ) A.a

同角三角函数的基本关系教案

同角三角函数的基本关系 东宁县绥阳中学 教学目的: 知识目标:1.能根据三角函数的定义导出同角三角函数的基本关 系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函 数值的方法。 能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用 于解题,提高学生分析、解决三角的思维能力; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为 (0)r r ==>,那么:sin y r α=,cos x r α=,tan y x α=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的? 3.背景:如果5 3sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系? 二、讲解新课: (一)同角三角函数的基本关系式:

(板书课题:同角的三角函数的基本关系) 1. 由三角函数的定义,我们可以得到以下关系: (1)商数关系:α ααcon sin tan = (2)平方关系:1sin 22=+ααcon 说明: ①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等; ②注意这些关系式都是对于使它们有意义的角而言的,如 tan cot 1(,)2 k k Z πααα?=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、 变形用),如: cos α= 22sin 1cos αα=-, sin cos tan ααα =等。 2.例题分析: 一、求值问题 例1.(1)已知12sin 13α= ,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4 cos 5α=-,求sin ,tan αα. 解:(1)∵22sin cos 1αα+=, ∴2222125cos 1sin 1()()1313 αα=-=-= 又∵α是第二象限角, ∴cos 0α<,即有5cos 13 α=- ,从而 sin 12tan cos 5ααα==-, 15cot tan 12αα==- (2)∵22sin cos 1αα+=, ∴222243sin 1cos 1()()55αα=-=--=, 又∵4cos 05α=-<, ∴α在第二或三象限角。 当α在第二象限时,即有sin 0α>,从而3sin 5 α=,sin 3tan cos 4 ααα==-; 当α在第四象限时,即有sin 0α<,从而3sin 5α=-,sin 3tan cos 4ααα==. 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。 2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。 例2.已知tan α为非零实数,用tan α表示sin ,cos αα.

必修4三角函数地诱导公式专项练习题

训练专题化设计能力系统化培养 必修4三角函数的诱导公式专项练习题 班级:姓名:座号:一、选择题 1. 已知sin(π+α)= 4 5 ,且α是第四象限角,则c os(α-2π)的值是【】 (A) -3 5 (B) 3 5 3 (C) ± 5 (D) 4 5 2. 若cos100 °= k,则t an ( - 80°)的值为【】 (A) -1 k k 2 (B) 1 k k 2 (C) 1 k k 2 (D) - 1 k k 2 3. 在△ABC 中,若最大角的正弦值是2 2 ,则△ABC 必是 【】 (A) 等边三角形(B) 直角三角形(C)钝角三角形(D)锐角三角形 4. 已知角α终边上有一点P(3a,4a)(a≠0),则s in(450 -°α)的值是【】 (A) -4 5 (B) - 3 5 3 (C) ± 5 4 (D) ± 5 5.设A,B,C 是三角形的三个内角,下列关系恒等成立的是【】 (A)cos( A +B)=cosC (B)sin( A+ B)=sin C(C)tan( A+B )=tanC (D)sin A B 2 =sin C 2 二、填空题 6. 若 1 cos( A) ,则s in( A) 的值是. 2 2 2 7. 若cos( ) m (| m |≤1) ,则s in( ) 6 3 是. 8. 计算:t an( 150 ) cos( 570 ) cos( 1140 ) tan( 210 ) sin( 690 ) = . 9. 化简:sin 2( 2( 2( -x)+sin 3 6 +x)= . 10. 化简: 1 2sin10 cos10 2 cos10 1 cos 170 = . 三、解答题 11. 化简 2 tan( ) sin ( ) cos(2 ) 2 3 cos ( ) tan( 2 ) . 12.设f(θ)= 3 2 2cos sin (2 ) cos( ) 3 2 2 2cos ( ) cos(2 ) ,求f( 3 )的值.

同角三角函数的基本关系式_练习题

同角三角函数的基本关系式 练习题 1.若sin α=4 5,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±43 2.化简1-sin 2160°的结果是( ) A .cos160° B .-cos160° C .±cos160° D .±|cos160°| 3.若tan α=2,则2sin α-cos α sin α+2cos α的值为( ) A .0 B.34 C .1 D.5 4 4.若cos α=-8 17 ,则sin α=________,tan α=________. 5.若α是第四象限的角,tan α=-5 12 ,则sin α等于( ) A.15 B .-15 C.315 D .-513 6.若α为第三象限角,则cos α1-sin 2α+2sin α 1-cos 2α 的值为( ) A .3 B .-3 C .1 D .-1 7、已知A 是三角形的一个内角,sin A +cos A = 2 3 ,则这个三角形是 ( ) A .锐角三角形 B .钝角三角形 C .不等腰直角三角形 D .等腰直角三角形 8、已知sin αcos α = 1 8 ,则cos α-sin α的值等于 ( ) A .±3 4 B .±23 C .23 D .-2 3 9、已知θ是第三象限角,且9 5 cos sin 4 4 = +θθ,则=θθcos sin ( ) A . 32 B . 32- C . 3 1 D . 31- 10、如果角θ满足2cos sin =+θθ,那么θθcot tan +的值是 ( ) A .1- B .2- C .1 D .2 11、若 2cos sin 2cos sin =-+α αα α,则=αtan ( ) A .1 B .- 1 C .43 D .3 4- 12.A 为三角形ABC 的一个内角,若sin A +cos A =12 25 ,则这个三角形的形状为( ) A .锐角三角形 B .钝角三角形 C .等腰直角三角形 D .等腰三角形 13.已知tan θ=2,则sin 2 θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C.-34 D.45 14.(tan x +cot x )cos 2x =( )

北师版新课标高中数学必修二教案《同角三角函数的基本关系》

《同角三角函数的基本关系》教学设计 与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵. 同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin 24π+cos 24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+2 ,k ∈Z . 已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根. 1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明. 2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明. 3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法. 教学重点:课本的三个公式的推导及应用. 教学难点:课本的三个公式的推导及应用.

同角三角函数的基本关系式

同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角和与差的三角函数公式 万能公式 sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2) 半角的正弦、余弦和正切公式 三角函数的降幂公式

必修4三角函数单元测试题(含答案)

三角函数 单元测试 一、选择题 1.sin 210=o ( ) A . B . C .12 D .12 - 2.下列各组角中,终边相同的角是 ( ) A .π2k 或()2k k Z π π+∈ B . (21)k π+或(41)k π± )(Z k ∈ C .3 k π π± 或k ()3 k Z π ∈ D .6 k π π+ 或()6 k k Z π π± ∈ 3.已知cos tan 0θθ?<,那么角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角 D .第一或第四象限角 4.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A .2 B . 1sin 2 C .1sin 2 D .2sin 5.为了得到函数2sin(),36 x y x R π =+∈的图像,只需把函数2sin ,y x x R =∈的图 像上所有的点( ) A .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) B .向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) C .向左平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D .向右平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) 6.设函数()sin ()3f x x x π? ?=+∈ ?? ?R ,则()f x ( ) A .在区间2736ππ?? ? ??? ,上是增函数 B .在区间2π? ? -π-??? ?,上是减函数

C .在区间84ππ?? ????,上是增函数 D .在区间536ππ?? ???? ,上是减函数 7.函数sin()(0,,)2 y A x x R π ω?ω?=+>< ∈的部分图象如图所示, 则函数表达( ) A .)48sin(4π+π-=x y B .)48sin(4π -π=x y C .)48sin(4π-π-=x y D .)4 8sin(4π +π=x y 8. 函数sin(3)4 y x π =-的图象是中心对称图形,其中它的一个对称中心是 ( ) A .,012π??- ??? B . 7,012π??- ??? C . 7,012π?? ??? D . 11,012π?? ??? 9.已知()21cos cos f x x +=,则 ()f x 的图象是下图的 ( ) A B C D 10.定义在R 上的偶函数()f x 满足()()2f x f x =+,当[]3,4x ∈时,()2f x x =-,则 ( ) A .11sin cos 22f f ??? ?< ? ???? ? B . sin cos 33f f ππ??? ?> ? ???? ? C .()()sin1cos1f f < D .33sin cos 22f f ??? ?> ? ???? ? 二、填空题 11.若2cos 3 α=,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=___ 12.若tan 2α=,则22sin 2sin cos 3cos αααα++=___________ 13.已知3sin 4πα??+= ???,则3sin 4πα?? - ??? 值为 14.设()f x 是定义域为R ,最小正周期为 32 π 的周期函数,若

同角三角函数的基本关系式_基础

同角三角函数基本关系 【要点梳理】 要点一:同角三角函数的基本关系式 (1)平方关系:22 sin cos 1αα+= (2)商数关系: sin tan cos ααα = (3)倒数关系:tan cot 1?=αα,sin csc 1αα?=,cos sec 1αα?= 要点诠释: (1)这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(使得函数有意义的前提下)关系式都成立; (2)2sin α是2 (sin )α的简写; (3)在应用平方关系时,常用到平方根,算术平方根和绝对值的概念,应注意“±”的选取。 要点二:同角三角函数基本关系式的变形 1.平方关系式的变形: 2222sin 1cos cos 1sin αααα=-=-,,212sin cos (sin cos )αααα±?=± 2.商数关系式的变形 sin sin cos tan cos tan αααααα =?= ,。 【典型例题】 类型一:已知某个三角函数值求其余的三角函数值 例1.若4sin 5 α=-,且α是第三象限角,求cos α,tan α的值。 【总结升华】解答此类题目的关键在于充分借助已知角的三角函数值,缩小角的范围。在解答过程中如果角α所在象限已知,则另两个三角函数值结果唯一;若角α所在象限不确定,则应分类讨论,有两种结果,需特别注意:若已知三角函数值以字母a 给出,应就α所在象限讨论。 举一反三: 【变式1】已知3sin 5 α=- ,求cos α,tan α的值。 类型二:利用同角关系求值

例2.已知:tan cot 2,θθ+=求: (1)sin cos ?θθ的值;(2)sin cos θθ+的值; (3)sin cos θθ-的值;(4)sin θ及cos θ的值 【变式1】已知sin cos αα-= (1)tan α+cot α;(2)sin 3α-cos 3α。 例3.已知:1tan 2θ=- ,求: (1)sin cos sin 3cos θθθθ +-; (2)2212sin cos sin cos θθθθ +-; (3)222sin 3sin cos 5cos θθθθ--。 【总结升华】已知tan α的值,求关于sin α、cos α的齐次式的值问题①如(1)、(2)题,∵cos α≠0,所以可用cos n α(n ∈N*)除之,将被求式转化为关于tan α的表示式,可整体代入tan α=m 的值,从而完成被求式的求值;②在(3)题中,求形如a sin 2α+b sin αcos α+c cos 2α的值,注意将分母的1化为1=sin 2α+cos 2α代入,转化为关于tan α的表达式后再求值。 举一反三: 【变式1】已知 tan 1tan 1 A A =--,求下列各式的值. (1)sin 3cos ;sin 9cos A A A A -+ (2)2 sin sin cos 2A A A ++

相关文档
最新文档