2018年高考真题理科数学(全国甲卷) 含解析
2018全国高考理科数学[全国一卷]试题和答案解析
![2018全国高考理科数学[全国一卷]试题和答案解析](https://img.taocdn.com/s3/m/75ec17971eb91a37f0115cac.png)
WORD 格式整理2021年全国普通高等学校招生全国统一考试〔全国一卷〕理科数学一、选择题:〔此题有 12 小题,每题 5 分,共 60 分。
〕1、设 z=,那么∣ z ∣=〔〕A.0B.C.1D.22、集合 A={x|x -x-2>0} ,那么A =〔〕A 、{x|-1<x<2}B 、{x|-1 ≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1} ∪ {x|x≥2}3、某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况, 统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:建立前经济收入构成比例建立后经济收入构成比例那么下面结论中不正确的选项是〔〕A. 新农村建立后,种植收入减少B. 新农村建立后,其他收入增加了一倍以上C. 新农村建立后,养殖收入增加了一倍D. 新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记 S n 为等差数列 { a n } 的前 n 项和,假设 3S 3 = S 2+ S 4,a 1 =2,那么 a 5 =〔〕A 、-12 B、-10 C、10 D、12、设函数 f 〔 〕 〔 〕 x2+ax . 假设 f 〔 〕为奇函数,那么曲线 y= f 〔 〕在点〔 , 〕处的切线 5 x =x3+ a-1 x x 0 0方程为〔〕A.y= -2xB.y= -xC.y=2xD.y=x专业知识分享WORD 格式整理A.-B.-C.+D.+7、某圆柱的高为 2,底面周长为 16,其三视图如右图。
圆柱外表上的点 M在正视图上的对应点为 A,圆柱外表上的点 N 在左视图上的对应点为 B,那么在此圆柱侧面上,从 M到 N的路径中,最短路径的长度为〔〕A.2B.2C.3D.28. 设抛物线 C:y2=4x 的焦点为 F,过点〔-2 ,0〕且斜率为的直线与 C 交于 M,N 两点,那么· =()A.5B.6C.7D.89. 函数 f 〔x〕=g 〔x〕=f 〔 x〕 +x+a,假设 g〔x〕存在 2 个零点,那么 a 的取值X围是( )A. [-1,0〕B. [0,+∞〕C. [-1,+∞〕D. [1,+∞〕10.下列图来自古希腊数学家希波克拉底所研究的几何图形。
2018全国甲卷数学多项选择题及答案解析

2018全国甲卷数学多项选择题及答案解析选择题1:设函数y=3^x+3^(-x),则y的取值范围是:A. (1, +∞)B. (0, +∞)C. (-∞, 0)D. (-∞, +∞)解析:对于任意实数x,都有3^x>0,3^(-x)>0,因此y=3^x+3^(-x)>0。
故答案为B。
选择题2:设集合A={x | -1<x<1},则下列不等式表示的数集是:A. [-2,2]B. (-∞, -2]∪[2, +∞)C. (-∞, -2)∪(2, +∞)D. (-2, 2)解析:不等式|x|>2中,若x>2,-x<-2,即x< -2,与x∈A矛盾;若x<-2,-x>-2,即x>2,与x∈A矛盾。
故不等式|x|>2的解集为空集,即答案为D。
选择题3:若函数f(x)=e^x-4x,则f(x)的单调递增区间是:A. (-∞, 1/4)B. (-∞, 1/4]C. (1/4, +∞)D. [1/4, +∞)解析:f'(x)=e^x-4,令f'(x)>0,解得x>ln4。
故答案为C。
选择题4:设复数z满足|z-1|=|z-i|,则z的坐标表示为:A. (a+bi)B. (a-bi)C. (a, b)D. (b, a)解析:设z=x+yi,则|z-1|=|x+yi-1|=|x-1+yi|=√[(x-1)^2+y^2];|z-i|=|x+yi-i|=|x+(y-1)i|=√[x^2+(y-1)^2]。
根据条件|z-1|=|z-i|,可得√[(x-1)^2+y^2]=√[x^2+(y-1)^2]。
即(x-1)^2+y^2=x^2+(y-1)^2,化简得y=1-x。
故z的坐标表示为C。
选择题5:在等差数列{a_n}中,已知a_1=1,a_2=3,a_3=8,则a_4的值为:A. 8 B. 10 C. 12 D. 15解析:由等差数列的通项公式可知,a_n = a_1 + (n-1)d,其中d为公差。
2018年高考理科数学(全国I卷)试题Word版含答案

2018年高考理科数学(全国I卷)试题Word版含答案理科数学试题第2页(共20页)理科数学试题第3页(共20页)理科数学试题第4页(共20页)理科数学试题 第5页(共20页)以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记nS 为等差数列{}na 的前n 项和. 若3243SS S =+,12a =,则5a =A .12-B .10-C .10D .125.设函数32()(1)f x xa x ax=+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uuu r uuu r B .1344AB AC -uuu r uuu r C .3144AB AC +uuu r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表理科数学试题 第6页(共20页)面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .5C .3D .28.设抛物线24C yx=:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .8 9.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤()()g x f x x a=++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)- B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其理科数学试题 第7页(共20页)余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p = D .123p pp =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .3D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 ABCD理科数学试题 第8页(共20页)二、填空题:本题共4小题,每小题5分,共20分。
2018高考试题及解析 (理)

2018年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考生号填写在答题卡上。
2.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案的标号框。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷与答题卡一并交回。
第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的.1.已知集合=A {-2,-1,0,1,2},}0)2)(1(|{<+-=x x x B ,则=⋂B A A. {-1,0} B. {0,1} C. {-1,0,1} D. {0,1,2}2.若a 为实数,且i i a ai 4)2)(2(-=-+,则a =A. -1B. 0C. 1D. 23.根据下面给出的2018年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是A. 逐年比较,2018年减少二氧化硫排放量的效果最显著B. 2007年我国治理二氧化硫排放显现成效C. 2018年以来我国二氧化硫年排放量呈减少趋势D. 2018年以来我国二氧化硫年排放量与年份正相关4.已知等比数列}{n a 满足31=a ,21531=++a a a ,则=++753a a a A. 21 B. 42 C. 63 D. 845.设函数⎩⎨⎧≥<-+=-,1,2,1),2(log 1)(12x x x x f x 则=+-)12(log )2(2f fA. 3B. 6C. 9D. 12 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A .81B .71C .61D .517.过三点)3,1(A ,)2,4(B ,)7,1(-C 的圆交y 轴于M 、N 两点,则=||MN A. 62 B. 8 C. 64 D. 10 8.右边程序框图的算法思路源于我国数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14, 18,则输出的a = A .0 B .2 C .4D .149.已知A ,B 是球O 的球面上两点,090=∠AOB ,C 为该球面上的动点. 若三棱锥ABC O -体积的最大值为36,则球O 的表面积为A .π36B .π64C .π144D .π25610.如图,长方形ABCD 的边2=AB ,1=BC ,O 是AB 的中点. 点P 沿着边BC ,CD 与DA 运动,记x BOP =∠. 将动点P 到A ,B 两点距离之和表示为x 函数)(x f ,则 )(x f y =的图像大致为11.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,ABM ∆为等腰三角形,且顶点为0120,则E 的离心率为A .5B .2C .3D .212.设函数)(/x f 是奇函数))((R x x f ∈的导函数,0)1(=-f ,当0.>x 时,0)()(/<-x f x xf ,则使得0)(>x f 成立的x 的取值范围是A .)1,0()1,(⋃--∞B .),1()0,1(+∞⋃-C .)0,1()1,(-⋃--∞D .),1()1,0(+∞⋃第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷I )理科数学注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1•设z 口2i,则|z|1 A • 0iB • 1C • 1D •222 •已知集合 A {x|x2x 20},则e R AA • {x| 1 x 2}B • {x| 1 w x w 2}C{x |x1} U{x|x2}D •{x|x w 1} U{x|x> 2}3•某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:連谀后经济收入构咸比制则下面结论中不正确的是A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4•记S n 为等差数列{a n }的前n 项和.若3S 3 S 2 S 4, a i = 2,则=取值范围是点,此点取自I ,n,川的概率分别记为 p 1, p 2, P 3,则A . P 1 P 2B . P 1 P 3C . P 2P 3A .12 B .5.设函数f (x)切线方程为10 C . 10 x 3(a 1)x 2ax .若f(x)为奇函数,则曲线y f (x)在点(0,0)处的A . y 2x C . y 2x6. 在△ ABC 3 uu A . AB43 uuC . 3 AB 4AD 中, 1 uuu-AC 4 1 uuu AC4 为BC 边上的中线,E 为AD 的中点,则1 uu -AB 4 1 un AB 4 D . y x uir EB3 uuu 3 AC4 3 uuu -AC 4 7. 某圆柱的高为 2,底面周长为16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的 点N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到的路径中,最短路径的长度为A . 2.17 C . 3 &设抛物线C : y 2= 4x 的焦点为2F ,过点(-2,0)且斜率为2的直线与C 交于M , N3两点,则 uuir uuuFM ?FN9.已知函数f(x)xe , In x, x w 0,x 0,g(x)f(x)若g(x)存在2 个零点,则a 的A . [ 1,0)10 .下图来自古希腊数学家希波克拉底所研究的几何图形 半圆的直径分别为直角三角形B . [0,[1, [1,)所围成的区域记为I,黑色部分记为n,其余部分记为川.此图由三个半圆构成,三个ABC 的斜边BC ,直角边 AB , AC . △ ABC 的三边.在整个图形中随机取一RCD . P 1P 2 P 32x11.已知双曲线C: —- y2 = 1 , O为坐标原点,F为C的右焦点,过F的直线与C的3两条渐近线的交点分别为M , N.若A OMN为直角三角形,则|MN =3 -A. B. 3 C. 2、3 D. 4212•已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A.沁4B.2、3 3 2----- C .-------------------------3 4D.二2、填空题:本题共4小题, 每小题5分,共20分。
2018年高考试题真题——理科数学(新课标全国卷Ⅰ) Word版含答案解析

2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( ) A .0B .12C .1 D2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:此卷只装订不密封级 姓名 准考证号 考场号 座位号则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
2018年全国高考数学理科123卷共三套
2018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需 改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在 本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 i1 .设z ——2i ,则| z|1 iA. 0B. 1222 .已知集合A xx x 2 0,则命AA. x 1 x 2C. x|x 1 U x|x 23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该 地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:建设前经济收入构成比例则下面结论中不正确的是 A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 1D.、、2B. x 1 x 2xl x 1 U xl x 2建设后经济收入构成比例养殖收入第三产业逾/冲植收人慕他收人C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4 •设S n 为等差数列a n 的前n 项和,若3S 3 S 2 S 4,a. 2,则35A.12B.10C. 10D. 125 •设函数f(x) x 3 (a 1)x 2 ax ,若f(x)为奇函数,贝U 曲线y f(x)在点(0,0)处的切线方程 为 A. y 2xB. y xC. y 2xD. y x6. 在△ ABC 中,AD 为BC 边上的中线,E 为AD 的中点,贝U EB3 uuu 1 uuur 1 uuu3 umr 3 uuu 1 uuurA. — AB ACB. — AB ACC. — AB AC4 4 4 44 41 uuu 3 uuur D . - AB -AC4 47. 某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径+x )10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,直径分别为直角三角形 ABC 的斜边BC,直角边AB, AC △ ABC 的三边所围成的区域记为uuuu uuirFM FN : =A. 5B. 69.已知函数 f(x)xe , x 0, /g(x) f (x) xIn x, x 0,是A. [ - 1, 0)B. [0 , +x)------------- RC. 3D. 220)且斜率为-的直线与C 交于M N 两点,则3C. 7D. 8a .若g (x )存在2个零点,贝U a 的取值范围C. [ - 1,+x)D. [1,三个半圆的8.设抛物线C : y 2=4x 的焦点为F ,过点(-2,I ,黑色部分记为II ,其余部分记为III •在整个图形中随机取一点,此点取自1,11 , III 的概率分别记为P l ,P 2,P 3,则A. P l = P 2B. P l =P 3x 2y 2 013 .若x ,y 满足约束条件x y 1 0,则z 3x 2y 的最大值为 __________________________ .y o14 .记S n 为数列a n 的前n 项和,若S n 2a n 1,则S 6 _____________________________________________ .15. 从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 _____________ 中.(用数字填写答案)16. ________________________________________________________ 已知函数f x 2sinx sin2x ,贝U f x 的最小值是 ___________________________________________ . 三、解答题:共70分。
2018年高考理科数学全国卷1全国卷2全国卷3三套真题完美打印版
(理科数学全国卷I 真题)2018年普通高等学校招生全国统一考试理科数学一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( ) A .0 B .12C .1D .22.已知集合{}2|20A x x x =-->,则A =R( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( )A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( )A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .32二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
2018高考真题全国1卷-3卷数学理正文
2018年普通高等学校招生全国统一考试理科数学 (全国 Ⅰ 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅰ)设z =1-i1+i +2i ,则|z |=( )A .0 B.12 C .1D. 22.(2018·高考全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B.{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D.{x |x ≤-1}∪{x |x ≥2}3.(2018·高考全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12 B.-10 C .10D.125.(2018·高考全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2x B.y =-x C .y =2xD.y =x6.(2018·高考全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A.34AB →-14AC →B.14AB →-34AC →C.34AB →+14AC → D.14AB →+34AC → 7.(2018·高考全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217 B.2 5 C .3D.28.(2018·高考全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=( )A .5 B.6 C .7D.89.(2018·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x , x ≤0ln x , x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0) B.[0,+∞) C .[-1,+∞)D.[1,+∞)10.(2018·高考全国卷Ⅰ)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A .p 1=p 2 B.p 1=p 3 C .p 2=p 3D.p 1=p 2+p 311.(2018·高考全国卷Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A.32B.3 C .2 3D.412.(2018·高考全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A.334B.233C.324D.32二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0x -y +1≥0y ≤0,则z =3x +2y 的最大值为________.14.(2018·高考全国卷Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.15.(2018·高考全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.(2018·高考全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(2018·高考全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5.(1)求cos ∠ADB ; (2)若DC =22,求BC .18.(2018·高考全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.19.(2018·高考全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .20.(2018·高考全国卷Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(2018·高考全国卷Ⅰ)已知函数f (x )=1x -x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.22.(2018·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程. 23.(2018·高考全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.22018年普通高等学校招生全国统一考试理科数学 (全国 Ⅱ 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅱ)1+2i 1-2i=( )A .-45-35iB .-45+35iC .-35-45iD .-35+45i2.(2018·高考全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B.8C .5D.43.(2018·高考全国卷Ⅱ)函数f (x )=e x -e -xx 2的图象大致为( )4.(2018·高考全国卷Ⅱ)已知向量a ,b 满足|a|=1,a·b =-1,则a·(2a -b )=( ) A .4 B.3 C .2D.05.(2018·高考全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2x B.y =±3x C .y =±22xD.y =±32x6.(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .4 2 B.30 C.29D.2 57.(2018·高考全国卷Ⅱ)为计算S =1-12+13-14+…+199-1100,设计了右侧的程序框图,则在空白框中应填入( )A .i =i +1B .i =i +2C .i =i +3D .i =i +48.(2018·高考全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.1189.(2018·高考全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.2210.(2018·高考全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4B.π2C.3π4D.π11.(2018·高考全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ),若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50 B.0 C .2D.5012.(2018·高考全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为________. 14.(2018·高考全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0x -2y +3≥0x -5≤0,则z =x +y 的最大值为________.15.(2018·高考全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.16.(2018·高考全国卷Ⅱ)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB的面积为515,则该圆锥的侧面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(2018·高考全国卷Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.18.(2018·高考全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:y^=-30.4+13.5 t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:y^=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(2018·高考全国卷Ⅱ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.20.(2018·高考全国卷Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M-P A-C为30°,求PC与平面P AM所成角的正弦值.21.(2018·高考全国卷Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .22.(2018·高考全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos αy =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 23.(2018·高考全国卷Ⅱ)设函数f (x )=5-|x +a |-|x -2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.2018年普通高等学校招生全国统一考试理科数学 (全国 Ⅲ 卷)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2018·高考全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2} D .{0,1,2} 2.(2018·高考全国卷Ⅲ)(1+i)(2-i)=( ) A .-3-i B.-3+i C .3-iD.3+i3.(2018·高考全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.(2018·高考全国卷Ⅲ)若sin α=13,则cos 2α=( )A.89B.79 C .-79D.-895.(2018·高考全国卷Ⅲ)(x 2+2x)5的展开式中x 4的系数为( )A.10 B.20C.40 D.806.(2018·高考全国卷Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x -2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6] B.[4,8]C.[2,32] D.[22,32]7.(2018·高考全国卷Ⅲ)函数y=-x4+x2+2的图象大致为()8.(2018·高考全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p, 各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.39.(2018·高考全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为a2+b2-c24,则C=()A.π2 B.π3C.π4 D.π610.(2018·高考全国卷Ⅲ)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为() A.12 3 B.18 3C.24 3 D.54 311.(2018·高考全国卷Ⅲ)设F1,F2是双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若|PF1|=6|OP|,则C的离心率为()A. 5B.2C. 3D. 212.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B.ab <a +b <0 C .a +b <0<abD.ab <0<a +b二、填空题:本题共4小题,每小题5分,共20分.13.(2018·高考全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.14.(2018·高考全国卷Ⅲ)曲线y =(ax +1)e x 在点(0,1)处的切线的斜率为-2,则a =________.15.(2018·高考全国卷Ⅲ)函数f (x )=cos(3x +π6)在[0,π]的零点个数为________.16.(2018·高考全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(2018·高考全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .18.(2018·高考全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.82819.(2018·高考全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 20.(2018·高考全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+F A →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.21.(2018·高考全国卷Ⅲ)已知函数f(x)=(2+x +ax 2)ln (1+x)-2x. (1)若a =0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x =0是f(x)的极大值点,求a.22.(2018·高考全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.(2018·高考全国卷Ⅲ)设函数f(x)=|2x +1|+|x -1|. (1)画出y =f(x)的图象;(2)当x ∈[0,+∞)时,f(x)≤ax +b ,求a +b 的最小值.。
2018 年高考数学全国甲卷(Ⅱ卷)压轴题解析
例 1( 文科第 12 题,理科第 11 题 )已知 f ( x ) 是定义域为 ( , ) 的奇函数,满足
f (1 x) f (1 x) ,若 f (1) 2 , f (1) f (2) f (3) f (50) (
x3 3a 0 . x2 x 1
x 2 ( x 2 2 x 3) x3 0 ,仅当 x 0 时 g ( x ) 0 ,所以 g ( x ) ,则 3 a ( x 2 x 1) 2 x2 x 1 1 1 1 1 6(a ) 2 0 , f (3a 1) 0 .故 f ( x ) 有一个零 3 6 6 3
f (1) f (2) f (3) f (4) 0 .
所以 f (1) f (2) f (3) f (50) f (1) f (2) 2 0 2 ,故选 C. 解法 2:因为 f ( x ) 是奇函数且 f (1 x ) f (1 x ) , 所以函数 f ( x ) 的图象关于原点和直线 x 1 对称,且函数 f ( x ) 的周期为 4.
x ,由 f (1) 2 得 A 2 , f ( x ) 2sin x . 2 2 3 于是 f (1) f (2) f (3) f (4) 2sin 2sin 2sin 2sin 2 0 . 2 2
不妨设 f ( x ) A sin 所以 f (1) f (2) f (3) f (50) f (1) f (2) 2 0 2 ,故选 C. 【评注】若对于小题中含周期性的问题通常可以考虑构造 y A sin( x ) B 或 因 y A cos( x ) B .函数图象的对称性问题是近十年高考数学全国卷每年必考的问题, 此要熟悉函数图象的对称性的有关性质,详见本书第 7 章例 2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:非官方版正式答案,有可能存在少量错误,仅供参考使用。
2018年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )()31-,(B )()13-,(C )()1,∞+(D )()3∞--,【解析】A∴30m +>,10m -<,∴31m -<<,故选A .(2)已知集合{1,23}A =,,{|(1)(2)0}B x x x x =+-<∈Z ,,则AB =(A ){}1(B ){12},(C ){}0123,,,(D ){10123}-,,,, 【解析】C()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,, ∴{}01B =,,∴{}0123A B =,,,,故选C .(3)已知向量(1,)(3,2)a m b =-,=,且()a b b +⊥,则m = (A )8-(B )6-(C )6(D )8【解析】D()42a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--= 解得8m =, 故选D .(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C (D )2【解析】A圆2228130x y x y +--+=化为标准方程为:()()22144x y -+-=,故圆心为()14,,1d ==,解得43a =-,故选A .(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9 【解析】BE F →有6种走法,F G →有3种走法,由乘法原理知,共6318⨯=种走法故选B .(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π【解析】C几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得2r =,2π4πc r ==,由勾股定理得:4l =,21π2S r ch cl =++表4π16π8π=++28π=,故选C .(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈ 【解析】B平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 【解析】C第一次运算:0222s =⨯+=, 第二次运算:2226s =⨯+=, 第三次运算:62517s =⨯+=, 故选C .(9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725(B )15(C )15-(D )725-【解析】D∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似值为(A )4n m (B )2n m (C )4m n (D )2mn【解析】C由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在 如图所示的阴影中由几何概型概率计算公式知π41m n=,∴4πmn=,故选C .(11)已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(A(B )32(C(D )2 【解析】A离心率1221F F e MF MF =-,由正弦定理得122112sin 31sin sin 13F F Me MF MF F F ====---. 故选A .(12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点 为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】B由()()2f x f x =-得()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.(13)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B AC A C A C =+=+=, 由正弦定理得:sin sin b a B A =解得2113b =.(14)α,β是两个平面,m ,n 是两条线,有下列四个命题:①如果m n ⊥,m α⊥,n β∥,那么αβ⊥. ②如果m α⊥,n α∥,那么m n ⊥. ③如果a β∥,m α⊂,那么m β∥.④如果m n ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 【解析】②③④(15)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 【解析】 (1,3)由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足,若丙(1,3),则乙(2,3),甲(1,2)不满足, 故甲(1,3),(16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,b = . 【解析】 1ln2-ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ) ()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++ ∴()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩解得112x = 212x =-∴1ln 11ln 2b x =+=-.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和.【解析】⑴设{}n a 的公差为d ,74728S a ==,∴44a =,∴4113a a d -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101101lg lg 2b a ===. ⑵记{}n b 的前n 项和为n T ,则1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,;当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=.(18)(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05EX a a a a a =⨯++⨯+⨯+⨯+⨯ 0.2550.150.250.30.1750.a a a a a a a =+++++=,∴平均保费与基本保费比值为1.23.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,5AB =,6AC =,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△D EF '的位置OD '=(I )证明:DH'⊥平面ABCD ; (II )求二面角B D A C '--的正弦值.【解析】⑴证明:∵54AE CF ==, ∴AE CFAD CD=, ∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥, ∴EF BD ⊥, ∴EF D H ⊥,∴EF DH'⊥. ∵6AC =, ∴3AO =;又5AB =,AO OB ⊥, ∴4OB =, ∴1AEOH OD AO=⋅=, ∴3DH D H '==, ∴222'OD OH D H '=+, ∴'D H OH ⊥. 又∵OH EF H =I ,∴'D H ⊥面ABCD . ⑵建立如图坐标系H xyz -.()500B ,,,()130C ,,,()'003D ,,,()130A -,,,()430AB =u u u r ,,,()'133AD =-u u u r ,,,()060AC =u u u r,,, 设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩, ∴()1345n =-u r,,.同理可得面'AD C 的法向量()2301n =u u r,,,∴1212cos n n n n θ⋅==u r u u ru r u u r∴sin θ=.(20)(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围.【解析】 ⑴当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,,则直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,则222861223434k AM k k -=+=++ 因为AM AN ⊥,所以21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭因为AM AN =,0k >,212124343k k k=++,整理得()()21440k k k --+=, 2440k k -+=无实根,所以1k =.所以AMN △的面积为221112144223449AM ⎫==⎪+⎭. ⑵直线AM的方程为(y k x =+,联立(2213x y t y k x ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x x t k t +++-=解得x =x =所以AM =所以3AN k k=+因为2AM AN =所以23k k=+,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-2k <.(21)(本小题满分12分) (I)讨论函数2(x)e 2xx f x -=+的单调性,并证明当0x >时,(2)e 20;x x x -++> (II)证明:当[0,1)a ∈ 时,函数()2e =(0)x ax ag x x x--> 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 【解析】⑴证明:()2e 2xx f x x -=+ ()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭∵当x ∈()()22,-∞--+∞,时,()0f x '>∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时,()2e 0=12xx f x ->-+ ∴()2e 20x x x -++>⑵ ()()()24e 2e xx a x x ax a g x x ----'=()4e 2e 2x x x x ax a x -++=()322e 2x x x a x x-⎛⎫+⋅+⎪+⎝⎭=[)01a ∈,由(1)知,当0x >时,()2e 2xx f x x -=⋅+的值域为()1-+∞,,只有一解. 使得2e 2tt a t -⋅=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增()()()222e 1ee 1e 22t ttt t t a t t h a t t t -++⋅-++===+记()e 2tk t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD ,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(I) 证明:B ,C ,G ,F 四点共圆;(II)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.【解析】(Ⅰ)证明:∵DF CE ⊥∴Rt Rt DEF CED △∽△ ∴GDF DEF BCF ∠=∠=∠ DF CFDG BC= ∵DE DG =,CD BC = ∴DF CFDG BC= ∴GDF BCF △∽△ ∴CFB DFG ∠=∠∴90GFB GFC CFB GFC DFG DFC ∠=∠+∠=∠+∠=∠=︒ ∴180GFB GCB ∠+∠=︒. ∴B ,C ,G ,F 四点共圆. (Ⅱ)∵E 为AD 中点,1AB =, ∴12DG CG DE ===, ∴在Rt GFC △中,GF GC =, 连接GB ,Rt Rt BCG BFG △≌△,∴1112=21=222BCG BCGF S S =⨯⨯⨯△四边形.(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xOy 中,圆C 的方程为()22625x y ++=.(I )以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II )直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B两点,AB l 的斜率.【解析】解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=. ⑵记直线的斜率为k ,则直线的方程为0kx y -=,=即22369014k k =+,整理得253k =,则k =(24)(本小题满分10分),选修4—5:不等式选讲 已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.【解析】解:⑴当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.⑵当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+, 证毕.。