2008年四川省成都市中考数学试卷及答案
【精选试卷】四川成都市中考数学解答题专项练习(答案解析)

一、解答题1.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?2.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 3.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来4.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.5.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?6.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?7.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w87518751875875(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.9.将A B C D(1)A在甲组的概率是多少?,都在甲组的概率是多少?(2)A B10.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?11.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++12.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x. 13.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.14.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?15.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 16.计算:103212sin45(2π)-+--+-.17.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 18.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83,求AC 的长.19.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?20.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 21.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题: (1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.23.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标;(3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.24.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)25.如图,AD 是ABC 的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.26.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.27.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.28.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)29.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB . 30.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈)【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题 1. 2. 3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、解答题1.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.2.(1)223a 5ab 3b -+-;(2)m m 2-.【分析】()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a2b(2a b)-+--=2222a2ab ab2b4a4ab b+---+-223a5ab3b=-+-;(2)221m4m 4 1m1m m-+⎛⎫-÷⎪--⎝⎭=()2m m1 m2m1(m2)--⋅--mm2=-.【点睛】本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.3.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键. 4.(1)证明见解析;(2)四边形AECF是菱形.证明见解析.【解析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.5.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.6.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人), 答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图7.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85-a ),得a=80,w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w 取得最大值,此时w=2000,(3)设科技创新后成本为b 元,当x=90时,(-5×90+600)(90-b )≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.9.(1)12(2)16【解析】解:所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同.(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1610.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧. 11.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.12.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n 为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.13.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 14.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x <50、50≤x <90两种情况分别列函数关系式可得;(3)当1≤x <50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x <90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y 1=kx+b ,将(1,41),(50,90)代入,得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩∴y 1=x+40,当50≤x<90时,y 1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.15.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.16.13【解析】 【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答. 【详解】 原式12212132=+-⨯+ =12121313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.17.甲公司有600人,乙公司有500人. 【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人, 根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x=500是该方程的实数根.18.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.19.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论. 试题解析:(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;∴22? (01){157?(1)x x y x x 甲<<=+>,=163y x +乙;(2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <12; 令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4; 令y 甲=y 乙,即15x+7=16x+3,解得:x=4; 令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型.20.44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -;当a=14时,原式=1444⨯-=14-=3-.考点:整式的混合运算—化简求值.21.(1)280名;(2)补图见解析;108°;(3)0.1. 【解析】 【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率. 【详解】解:(1)56÷20%=280(名), 答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名), 补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°, 答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D E A(A ,B )(A ,C ) (A ,D ) (A ,E ) B (B ,A )(B ,C )(B ,D ) (B ,E ) C (C ,A ) (C ,B )(C ,D )(C ,E ) D (D ,A ) (D ,B ) (D ,C )(D ,E )E(E ,A )(E ,B )(E ,C )(E ,D )用树状图为:共20种情况,恰好选到“C”和“E”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是0.1.22.(1)DE=3;(2)ADB S 15∆=. 【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可; (2)利用勾股定理求出AB 的长,然后计算△ADB 的面积. 【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°, ∴CD=DE , ∵CD=3, ∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.(1)213y x x 222=--;(2)D 的坐标为2⎛ ⎝⎭,2⎛+ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】。
2024年四川省成都市中考数学试卷及答案解析

2024年四川省成都市中考数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.(4分)﹣5的绝对值是()A.5B.﹣5C.D.﹣2.(4分)如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A.B.C.D.3.(4分)下列计算正确的是()A.(3x)2=3x2B.3x+3y=6xyC.(x+y)2=x2+y2D.(x+2)(x﹣2)=x2﹣44.(4分)在平面直角坐标系xOy中,点P(1,﹣4)关于原点对称的点的坐标是()A.(﹣1,﹣4)B.(﹣1,4)C.(1,4)D.(1,﹣4)5.(4分)为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是()A.53B.55C.58D.646.(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠ACB=∠ACD7.(4分)中国古代数学著作《九章算术》中记载了这样一个题目:今有共买进,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买进石,每人出钱,会多出4钱;每人出钱,又差了3钱.问人数,琎价各是多少?设人数为x,琎价为y,则可列方程组为()A.B.C.D.8.(4分)在▱ABCD中,按以下步骤作图:①以点B为圆心,以适当长为半径作弧,分别交BA,BC于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠ABC内交于点O;③作射线BO,交AD于点E,交CD延长线于点F.若CD=3,DE=2,下列结论错误的是()A.∠ABE=∠CBE B.BC=5C.DE=DF D.=二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)若m,n为实数,且(m+4)2+=0,则(m+n)2的值为.10.(4分)分式方程的解是.11.(4分)如图,在扇形AOB中,OA=6,∠AOB=120°,则的长为.12.(4分)盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是,则的值为.13.(4分)如图,在平面直角坐标系xOy中,已知A(3,0),B(0,2),过点B作y轴的垂线l,P为直线l上一动点,连接PO,PA,则PO+PA的最小值为.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:+2sin60°﹣(π﹣2024)0+|﹣2|;(2)解不等式组:.15.(8分)2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有人,表中x的值为;(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16.(8分)中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB垂直于地面,AB长8尺.在夏至时,杆子AB在太阳光线AC照射下产生的日影为BC;在冬至时,杆子AB在太阳光线AD照射下产生的日影为BD.已知∠ACB=73.4°,∠ADB=26.6°,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50,sin73.4°≈0.96,cos73.4°≈0.29,tan73.4°≈3.35)17.(10分)如图,在Rt△ABC中,∠C=90°,D为斜边AB上一点,以BD为直径作⊙O,交AC于E,F两点,连接BE,BF,DF.(1)求证:BC•DF=BF•CE;(2)若∠A=∠CBF,tan∠BFC=,AF=4,求CF的长和⊙O的直径.18.(10分)如图,在平面直角坐标系xOy中,直线y=﹣x+m与直线y=2x相交于点A(2,a),与x轴交于点B(b,0),点C在反比例函数y=(k<0)图象上.(1)求a,b,m的值;(2)若O,A,B,C为顶点的四边形为平行四边形,求点C的坐标和k的值;(3)过A,C两点的直线与x轴负半轴交于点D,点E与点D关于y轴对称.若有且只有一点C,使得△ABD与△ABE相似,求k的值.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,△ABC≌△CDE,若∠D=35°,∠ACB=45°,则∠DCE的度数为.20.(4分)若m,n是一元二次方程x2﹣5x+2=0的两个实数根,则m+(n﹣2)2的值为.21.(4分)在综合实践活动中,数学兴趣小组对1~n这n个自然数中,任取两数之和大于n的取法种数k进行了探究.发现:当n=2时,只有{1,2}一种取法,即k=1;当n=3时,有{1,3}和{2,3}两种取法,即k=2;当n=4时,可得k=4;…….若n=6,则k的值为;若n=24,则k的值为.22.(4分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的一条角平分线,E为AD中点,连接BE.若BE=BC,CD=2,则BD=.23.(4分)在平面直角坐标系xOy中,A(x1,y1),B(x2,y2),C(x3,y3)是二次函数y=﹣x2+4x﹣1图象上三点.若0<x1<1,x2>4,则y1y2(填“>”或“<”);若对于m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,存在y1<y3<y2,则m的取值范围是.二、解答题(本大题共3个小题,共30分)24.(8分)推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A,B两种水果共1500kg进行销售,其中A种水果收购单价10元/kg,B种水果收购单价15元/kg.(1)求A,B两种水果各购进多少千克;(2)已知A种水果运输和仓储过程中质量损失4%,若合作社计划A种水果至少要获得20%的利润,不计其他费用,求A种水果的最低销售单价.25.(10分)如图,在平面直角坐标系xOy中,抛物线L:y=ax2﹣2ax﹣3a(a>0)与x轴交于A,B两点(点A在点B的左侧),其顶点为C,D是抛物线第四象限上一点.(1)求线段AB的长;(2)当a=1时,若△ACD的面积与△ABD的面积相等,求tan∠ABD的值;(3)延长CD交x轴于点E,当AD=DE时,将△ADB沿DE方向平移得到△A′EB′.将抛物线L 平移得到抛物线L′,使得点A′,B′都落在抛物线L′上.试判断抛物线L′与L是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.(12分)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC和ADE中,AB=AD=3,BC =DE=4,∠ABC=∠ADE=90°.【初步感知】(1)如图1,连接BD,CE,在纸片ADE绕点A旋转过程中,试探究的值.【深入探究】(2)如图2,在纸片ADE绕点A旋转过程中,当点D恰好落在△ABC的中线BM的延长线上时,延长ED交AC于点F,求CF的长.【拓展延伸】(3)在纸片ADE绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形CDE的面积;若不能,请说明理由.2024年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选:A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】根据主视图是从正面看到的图形判定则可.【解答】解:从正面看,底层是三个小正方形,上层的左边是一个小正方形.故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.【分析】A.根据积的乘方法则进行计算,然后判断即可;B.先判断3x,3y是不是同类项,能否合并,然后判断即可;C.根据完全平方公式进行计算,然后判断即可;D.根据平方差公式进行计算,然后判断即可.【解答】解:A.∵(3x)2=9x2,∴此选项的计算错误,故此选项不符合题意;B.∵3x,3y不是同类项,不能合并,∴此选项的计算错误,故此选项不符合题意;C.∵(x+y)2=x2+2xy+y2,∴此选项的计算错误,故此选项不符合题意;D.∵(x+2)(x﹣2)=x2﹣4,∴此选项的计算正确,故此选项符合题意;故选:D.【点评】本题主要考查了整式的有关运算,解题关键是熟练掌握积的乘方法则、完全平方公式和平方差公式.4.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:在平面直角坐标系xOy中,点P(1,﹣4)关于原点对称的点的坐标是(﹣1,4).故选:B.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.5.【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】解:把这组数据从小到大排序后为50,51,55,55,61,64,所以这组数据的中位数为=55.故选:B.【点评】本题考查了中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.6.【分析】由矩形的性质分析每个选项,从而可得答案.【解答】解:∵四边形ABCD是矩形,∴AC=BD,∠ADC=90°,AD=BC,AD∥BC,,∴AC⊥BD,∠ACB=∠ACD不一定成立,AC=BD,一定成立,AB=AD一定不成立,故选:C.【点评】本题考查了矩形的性质,解题的关键是掌握相关知识的灵活运用.7.【分析】根据“每人出钱,会多出4钱;每人出钱,又差了3钱”,即可列出关于x,y的二元一次方程组,此题得解.【解答】解:∵每人出钱,会多出4钱,∴y=x﹣4;∵每人出钱,会差3钱,∴y=x+3.∴根据题意可列方程组.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.8.【分析】直接利用基本作图对A选项进行判断;根据平行四边形的性质得到AB=CD=3,BC=AD,AB ∥CD,AD∥BC,再利用平行线的性质证明∠ABE=∠AEB得到AE=AB=3,则AD=5,所以BC=5,于是可对B选项进行判断;接着利用平行线的性质证明∠DEF=∠F得到DE=DF=2,则可对C选项进行判断;由于DE∥BC,则根据平行线分线段成比例定理可对D选项进行判断.【解答】解:由作法得BO平分∠ABC,∴∠ABE=∠CBE,所以A选项不符合题意;∵四边形ABCD为平行四边形,∴AB=CD=3,BC=AD,AB∥CD,AD∥BC,∵AD∥BC,∴∠CBE=∠AEB,∴∠ABE=∠AEB,∴AE=AB=3,∴AD=AE+DE=3+2=5,∴BC=5,所以B选项不符合题意;∵AB∥CD,∴∠F=∠ABE,∵∠AEB=∠DEF,∴∠DEF=∠F,∴DE=DF=2,所以C选项不符合题意;∵DE∥BC,∴==,所以D选项符合题意.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质和平行四边形的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9.【分析】利用非负数的性质列出方程,求出方程的解得到m与n的值,代入原式计算即可得到结果.【解答】解:∵m,n为实数,且(m+4)2+=0,∴m+4=0,n﹣5=0,解得m=﹣4,n=5,∴(m+n)2=(﹣4+5)2=12=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.【分析】利用弧长公式计算即可求解.【解答】解:的长为=4π.故答案为:4π.【点评】本题考查弧长的计算,正确记忆弧长公式是解题关键.12.【分析】根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.【解答】解:∵盒中有x枚黑棋和y枚白棋,共有(x+y)个棋,∵从盒中随机取出一枚棋子,如果它是黑棋的概率是,∴可得关系式=,∴8x=3x+3y,即5x=3y,∴=.故答案为:.【点评】此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=.13.【分析】取点O'(0,4),连接O'P,O'A,推出PO+PA的最小值为O'A的长,再利用勾股定理求出O'A的长即可.【解答】解:取点O'(0,4),连接O'P,O'A,如图,∵B(0,2),过点B作y轴的垂线l,∴点O'(0,4)与点O(0,0)关于直线l对称,∴PO'=PO,∴PO+PA=PO'+PA≥O'A,即PO+PA的最小值为O'A的长,在Rt△O'AO中,∵OA=3,OO'=4,∴由勾股定理,得O'A===5,∴PO+PA的最小值为5.故答案为:5.【点评】本题考查轴对称﹣最短路线问题,平面直角坐标系,勾股定理,能用一条线段表示两线段和的最小值是解题的关键.三、解答题(本大题共5个小题,共48分)14.【分析】(1)先化简二次根式,然后根据零指数幂,绝对值,特殊角的三角函数值进行计算,再算乘法,最后算加减即可;(2)先根据不等式的性质求出不等式的解集,再根据求不等式组解集的规律求出不等式组的解集即可.【解答】解:(1)原式=4+2×﹣1+2﹣=4+﹣1+2﹣=5;(2)解不等式①,得x≥﹣2,解不等式②,得x<9,所以不等式组的解集是﹣2≤x<9.【点评】本题考查了实数的运算和解一元一次不等式组等知识点,能根据实数的运算法则进行计算是解(1)的关键,能根据求不等式组解集的规律求出不等式组的解集是解(2)的关键.15.【分析】(1)根据选择亲子互动慢游线的人数和所占的百分比即可求出调查的总人数,用总人数乘以选择世界公园打卡线的百分比即可求出x的值;(2)用360°乘以选择“国风古韵观赏线”所占的百分比即可求出对应的圆心角度数;(3)用2200乘以选择“园艺小清新线”的员工人数所占百分比即可.【解答】解:(1)本次调查的员工共有48÷30%=160(人),表中x的值为160×=40;故答案为:160,40;(2)360°×=99°,答:在扇形统计图中,“国风古韵观赏线”对应的圆心角度数为99°;(3)2200×=385(人),答:估计选择“园艺小清新线”的员工人数为385人.【点评】本题考查扇形统计图,条形统计图和用样本估计总体,能从统计图中获取有用信息是解题的关键.16.【分析】在Rt△ABC中,AB=8尺,∠ACB=73.4°,可得BC≈≈2.4(尺),同理可得BD≈16.0(尺),即得CD=BD﹣BC=13.6(尺),观察可知,春分和秋分时日影顶端为CD的中点,列式计算即可得春分和秋分时日影长度为9.2尺.【解答】解:在Rt△ABC中,AB=8尺,∠ACB=73.4°,∴tan73.4°=,∵tan73.4°≈3.35,∴BC≈≈2.4(尺);在Rt△ABD中,AB=8尺,∠ADB=26.6°,∴tan26.6°=,∵tan26.6°≈0.50,∴BD≈16.0(尺);∴CD=BD﹣BC=16.0﹣2.4=13.6(尺),观察可知,春分和秋分时日影顶端为CD的中点,∵2.4+=9.2(尺),∴春分和秋分时日影长度为9.2尺.【点评】本题考查解直角三角形的应用,解题的关键是读懂题意,掌握三角函数的定义.17.【分析】(1)由BD是⊙O的直径,可得∠BFD=∠C,而∠BEC=∠BDF,故△BCE∽△BDF,=,从而BC•DF=BF•CE;(2)连接DE,过E作EH⊥BD于H,根据∠C=90°,tan∠BFC=,得BC=CF,又∠A=∠CBF,知tan∠ABC=tan∠BFC=,即得AC=BC=×(CF)=5CF,而AF=4,故5CF﹣CF=4,CF=,可求出BC=CF=5,AC=5CF=5,AB==5,由△BCE∽△BDF,有∠CBE=∠DBF,即可得∠A=∠EBA,AE=BE,从而BH=AH=AB=,因∠BEH=90°﹣∠EBA=90°﹣∠CBF=∠BFC,即得=,EH=,又tan∠EDH=tan ∠BEH=,可得=,DH=,求出BD=DH+BH=3,即⊙O的直径为3.【解答】(1)证明:∵BD是⊙O的直径,∴∠BFD=90°,∵∠C=90°,∴∠BFD=∠C,∵=,∴∠BEC=∠BDF,∴△BCE∽△BDF,∴=,∴BC•DF=BF•CE;(2)解:连接DE,过E作EH⊥BD于H,如图:∵∠C=90°,tan∠BFC=,∴=,∴BC=CF,∵∠A=∠CBF,∴90°﹣∠A=90°﹣∠CBF,即∠ABC=∠BFC,∴tan∠ABC=tan∠BFC=,∴=,∴AC=BC=×(CF)=5CF,∵AC﹣CF=AF=4,∴5CF﹣CF=4,∴CF=,∴BC=CF=5,AC=5CF=5,∴AB===5,由(1)知△BCE∽△BDF,∴∠CBE=∠DBF,∴∠CBE﹣∠FBE=∠DBF﹣∠FBE,即∠CBF=∠EBA,∵∠A=∠CBF,∴∠A=∠EBA,∴AE=BE,∴BH=AH=AB=,∵∠BEH=90°﹣∠EBA=90°﹣∠CBF=∠BFC,∴tan∠BEH=tan∠BFC=,∴=,即=,∴EH=,∵BD是⊙O的直径,∴∠BED=90°,∴∠EDH=90°﹣∠DEH=∠BEH,∴tan∠EDH=tan∠BEH=,∴=,即=,∴DH=,∴BD=DH+BH=+=3,∴⊙O的直径为3.答:CF的长为,⊙O的直径为3.【点评】本题考查相似三角形判定与性质,涉及勾股定理,锐角三角函数,等腰三角形判定与性质等知识,解题的关键是掌握锐角三角函数的定义和圆的相关性质.18.【分析】(1)把A(2,a)代入y=2x得a=2×2=4,把A(2,4)代入y=﹣x+m得m=6;把B(b,0)代入y=﹣x+6得b=6;(2)设C(t,),由(1)知A(2,4),B(6,0),而O(0,0),①当AC,BO为对角线时,AC,BO的中点重合,,②当CB,AO为对角线时,CB,AO的中点重合,,③当CO,AB为对角线时,CO,AB的中点重合,,分别解方程组可得答案;(3)设直线AC解析式为y=px+q,可知y=px+4﹣2p,求出D(,0),E(,0),可得BE=,BD=,由△ABD与△ABE相似,可得=,即BE•BD=AB2,从而×=32,解得p=1,直线AC的解析式为y=x+2,又有且只有一点C,使得△ABD与△ABE相似,得x+2=只有一个解,即x2+2x﹣k=0有两个相等实数根,可得Δ=0,k=﹣1.【解答】解:(1)把A(2,a)代入y=2x得:a=2×2=4,∴A(2,4),把A(2,4)代入y=﹣x+m得:4=﹣2+m,∴m=6;∴直线y=﹣x+m为y=﹣x+6,把B(b,0)代入y=﹣x+6得:0=﹣b+6,∴b=6,∴a的值为4,m的值为6,b的值为6;(2)设C(t,),由(1)知A(2,4),B(6,0),而O(0,0),①当AC,BO为对角线时,AC,BO的中点重合,∴,解得,经检验,t=4,k=﹣16符合题意,此时点C的坐标为(4,﹣4);②当CB,AO为对角线时,CB,AO的中点重合,∴,解得,经检验,t=﹣4,k=﹣16符合题意,此时点C的坐标为(﹣4,4);③当CO,AB为对角线时,CO,AB的中点重合,∴,解得,∵k=32>0,∴这种情况不符合题意;综上所述,C的坐标为(4,﹣4)或(﹣4,4),k的值为﹣16;(3)如图:设直线AC解析式为y=px+q,把A(2,4)代入得:4=2p+q,∴q=4﹣2p,∴直线AC解析式为y=px+4﹣2p,在y=px+4﹣2p中,令y=0得x=,∴D(,0),∵E与点D关于y轴对称,∴E(,0),∵B(6,0),∴BE=6﹣=,BD=6﹣=,∵△ABD与△ABE相似,∴E只能在B左侧,∴∠ABE=∠DBA,故△ABD与△ABE相似,只需=即可,即BE•BD=AB2,∵A(2,4),B(6,0),∴AB2=32,∴×=32,解得p=1,经检验,p=1满足题意,∴直线AC的解析式为y=x+2,∵有且只有一点C,使得△ABD与△ABE相似,∴直线AC与反比例函数y=(k<0)图象只有一个交点,∴x+2=只有一个解,即x2+2x﹣k=0有两个相等实数根,∴Δ=0,即22+4k=0,解得k=﹣1,∴k的值为﹣1.【点评】本题考查反比例函数综合应用,涉及待定系数法,平行四边形判定与性质,相似三角形判定与性质,解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度.一、填空题(本大题共5个小题,每小题4分,共20分)19.【分析】由△ABC≌△CDE,得∠ACB=∠CED=45°,故∠DCE=180°﹣∠CED﹣∠D=100°.【解答】解:∵△ABC≌△CDE,∴∠ACB=∠CED=45°,∵∠D=35°,∴∠DCE=180°﹣∠CED﹣∠D=180°﹣45°﹣35°=100°,故答案为:100°.【点评】本题考查全等三角形的性质,涉及三角形内角和定理的应用,解题的关键是掌握全等三角形对应角相等.20.【分析】先利用一元二次方程根的定义和根与系数的关系得到m2﹣5m+2=0,m+n=5,即可得到m2﹣5m=﹣2,n=5﹣m,则m+(n﹣2)2可化为m2﹣5m+9,然后利用整体代入的方法计算.【解答】解:∵m,n是一元二次方程x2﹣5x+2=0的两个实数根,∴m2﹣5m+2=0,m+n=5,∴m2﹣5m=﹣2,n=5﹣m∴m+(n﹣2)2=m+(3﹣m)2=m2﹣5m+9=﹣2+9=7.故答案为:7.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.21.【分析】当n=6时,从1,2,3,4,5,6中,取两个数的和大于6,这两个数分别是{6,1},{6,2},{6,3},{6,4},{6,5},{5,2},{5,3},{5,4},{4,3},可得k=5+3+1=9;当n=24时,从1,2,3......22,23,24中,取两个数的和大于24,根据规律可得k=23+21+19+......+3+1=144.【解答】解:当n=6时,从1,2,3,4,5,6中,取两个数的和大于6,这两个数分别是{6,1},{6,2},{6,3},{6,4},{6,5},{5,2},{5,3},{5,4},{4,3},∴k=5+3+1=9;当n=24时,从1,2,3......22,23,24中,取两个数的和大于24,这两个数分别是:{24,1},{24,2}......{24,23},{23,2}{23,3}......{23,22},{22,3},{22,4}......{22,21},......{14,11},{14,12},{14,13},{13,12},∴k=23+21+19+......+3+1=144;故答案为:9,144.【点评】本题考查数字变化规律,解题的关键是读懂题意,找到符合题意的两个数的规律.22.【分析】连接CE,过E作EF⊥BC于F,设BD=x,则BC=x+2,由∠ACB=90°,E为AD中点,可得CE=AE=DE=AD,有∠CAE=∠ACE,∠ECD=∠EDC,证明△ECD∽△BCE,可得=,∠CED=∠CBE,故CE2=CD•BC=2(x+2)=2x+4,再证△ABC∽△BEF,得=,而AC=2EF,即得2EF2=(x+1)(x+2),从而=(2x+4)﹣12,即可解得答案.【解答】解:连接CE,过E作EF⊥BC于F,如图:设BD=x,则BC=BD+CD=x+2,∵∠ACB=90°,E为AD中点,∴CE=AE=DE=AD,∴∠CAE=∠ACE,∠ECD=∠EDC,∴∠CED=2∠CAD,∵BE=BC,∴∠ECD=∠BEC,∴∠BEC=∠EDC,∵∠ECD=∠BCE,∴△ECD∽△BCE,∴=,∠CED=∠CBE,∴CE2=CD•BC=2(x+2)=2x+4,∵AD平分∠CAB,∴∠CAB=2∠CAD,∴∠CAB=∠CED,∴∠CAB=∠CBE,∵∠ACB=90°=∠BFE,∴△ABC∽△BEF,∴=,∵CE=DE,EF⊥BC,∴CF=DF=CD=1,∵E为AD中点,∴AC=2EF,∴=,∴2EF2=(x+1)(x+2),∵EF2=CE2﹣CF2,∴=(2x+4)﹣12,解得x=或x=(小于0,舍去),∴BD=.故答案为:.【点评】本题考查相似三角形的判定与性质,涉及直角三角形斜边上的中线等于斜边的一半、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、解一元二次方程等知识,有一定的难度,熟练掌握三角形相关知识是解答的关键.23.【分析】先求得二次函数的对称轴,再根据二次函数的性质求解即可.【解答】解:∵y=﹣x2+4x﹣1=﹣(x﹣2)2+3,∴二次函数y=﹣x2+4x﹣1图象的对称轴为直线x=2,开口向下,∵0<x1<1,x2>4,∴2﹣x1<x2﹣2,即(x1,y1)比(x2,y2)离对称轴直线的水平距离近,∴y1>y2;∵m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,∴x1<x2<x3,∵对于m<x1<m+1,m+1<x2<m+2,m+2<x3<m+3,存在y1<y3<y2,∴x1<2,x3>2,且A(x1,y1)离对称轴最远,B(x2,y2)离对称轴最近,∴2﹣x1>x3﹣2>|x2﹣2|,∴x1+x3<4,且x2+x3>4,∵2m+2<x1+x3<2m+4,2m+3<x2+x3<2m+5,∴2m+2<4,且2m+5>4,解得﹣<m<1,故答案为:>,﹣<m<1.【点评】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.二、解答题(本大题共3个小题,共30分)24.【分析】(1)设A种水果购进x千克,B种水果购进y千克,利用总价=单价×数量,结合该合作社用17500元从农户处购进A,B两种水果共1500千克,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种水果的销售单价为m元/千克,利用利润=销售单价×销售数量﹣收购单价×购进数量,可列出关于m的一元一次不等式,解之取其中的最小值,即可得出结论.【解答】解:(1)设A种水果购进x千克,B种水果购进y千克,根据题意得:,解得:.答:A种水果购进1000千克,B种水果购进500千克;(2)设A种水果的销售单价为m元/千克,根据题意得:1000×(1﹣4%)m﹣10×1000≥10×1000×20%,解得:m≥12.5,∴m的最小值为12.5.答:A种水果的最低销售单价为12.5元/千克.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.【分析】(1)在y=ax2﹣2ax﹣3a中,令y=0得0=ax2﹣2ax﹣3a,又a>0,可得x=3或x=﹣1,求出A(﹣1,0),B(3,0),AB=4;(2)当a=1时,过D作DM∥y轴交x轴于M,DN∥x轴交AC于N,求出C(1,﹣4),直线AC解析式为y=﹣2x﹣2,设D(n,n2﹣2n﹣3),(0<n<3),可得N(,n2﹣2n﹣3),DN=n=DN•|y A﹣y C|=××4=n2﹣1;根据△ACD的面积与△ABD ﹣=,S△ACD=AB•|y D|=×4×(﹣n2+2n+3)=﹣2n2+4n+6,得n2﹣1=﹣2n2+4n+6,可解得的面积相等,S△ABDD(,﹣),求出BM=3﹣=,DM=,故tan∠ABD===;(3)过D作DM⊥x轴于M,设D(m,am2﹣2am﹣3a),则AM=m+1,DM=﹣am2+2am+3a,由AD =DE,得EM=AM=m+1,而将△ADB沿DE方向平移得到△A'EB',相当于将△ADB向右平移(m+1)个单位,再向上平移|m2﹣2am﹣3a|个单位,可得A'(m,﹣am2+2am+3a),B'(m+4,﹣am2+2am+3a),设抛物线L'解析式为y=ax2+bx+c(a>0),根据点A′,B'都落在抛物线L′上,可得:,抛物线L'解析式为y=ax2+(﹣2am﹣4a)x+6am+3a,由ax2﹣2ax﹣3a=ax2+(﹣2am﹣4a)x+6am+3a 得x=3,从而知抛物线L′与L交于定点(3,0).【解答】解:(1)在y=ax2﹣2ax﹣3a中,令y=0得0=ax2﹣2ax﹣3a,∴a(x﹣3)(x+1)=0,∵a>0,∴x=3或x=﹣1,∴A(﹣1,0),B(3,0),∴AB=4;(2)当a=1时,过D作DM∥y轴交x轴于M,DN∥x轴交AC于N,如图:∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴C(1,﹣4),由A(﹣1,0),C(1,﹣4)得直线AC解析式为y=﹣2x﹣2,设D(n,n2﹣2n﹣3),(0<n<3),在y=﹣2x﹣2中,令y=n2﹣2n﹣3得x=,∴N(,n2﹣2n﹣3),∴DN=n﹣=,=DN•|y A﹣y C|=××4=n2﹣1;∴S△ACD∵△ACD的面积与△ABD的面积相等,=AB•|y D|=×4×(﹣n2+2n+3)=﹣2n2+4n+6,而S△ABD∴n2﹣1=﹣2n2+4n+6,解得n=﹣1(舍去)或n=,∴D(,﹣),∴BM=3﹣=,DM=,∴tan∠ABD===;∴tan∠ABD的值为;(3)抛物线L′与L交于定点,理由如下:过D作DM⊥x轴于M,如图:设D(m,am2﹣2am﹣3a),则AM=m+1,DM=﹣am2+2am+3a,∵AD=DE,∴EM=AM=m+1,将△ADB沿DE方向平移得到△A'EB',相当于将△ADB向右平移(m+1)个单位,再向上平移|am2﹣2am ﹣3a|个单位,又A(﹣1,0),B(3,0),∴A'(m,﹣am2+2am+3a),B'(m+4,﹣am2+2am+3a),设抛物线L'解析式为y=ax2+bx+c(a>0),∵点A′,B'都落在抛物线L′上,∴解得:,∴抛物线L'解析式为y=ax2+(﹣2am﹣4a)x+6am+3a,由ax2﹣2ax﹣3a=ax2+(﹣2am﹣4a)x+6am+3a得:(m+1)x=3m+3,解得:x=3,∴抛物线L′与L交于定点(3,0).【点评】本题主要考查二次函数的性质、两点之间的距离、一次函数的性质、求正切值、二次函数的平移、等腰三角形的性质和抛物线过定点,解题的关键是熟悉二次函数的性质和平移过程中数形结合思想的应用.26.【分析】(1)证明△ADE≌△ABC(SAS),求出AC=AE=5,可得∠DAE=∠BAC,故∠CAE=∠BAD,又==1,可得ΔADB∽△AEC,从而==;(2)连接CE,延长BM交CE于点Q,连接AQ交EF于P,延长EF交BC于N,由ΔADB ∽△AEC,得∠ABD=∠ACE,求出BM=AM=CM=AC=,证明AB∥CE,即可得△BAM≌△QCM(AAS),BM=QM,从而四边形ABCQ矩形,有AB=CQ=3,BC=AQ=4,∠AQC=90°,PQ∥CN,得EQ==3,可得PQ是△CEN的中位线,PQ=CN,设PQ=x,证明△EQP≌△ADP(AAS),得EP=AP=4﹣x,故(4﹣x)2=x2+32,x=,AP=,CN=,由△APF∽ΔCNF,得=,可得=,CF=;(3)分四种情况分别画出图形解答即可.【解答】解:(1)∵AB=AD=3,BC=DE=4,∠ABC=∠ADE=90°,∴△ADE≌△ABC(SAS),AC=AE==5,∴∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC即∠CAE=∠BAD,∵==1,∴△ADB∽△AEC,∴=,∵AB=3,AC=5,(2)连接CE,延长BM交CE于点Q,连接AQ交EF于P,延长EF交BC于N,如图:同(1)得△ADB∽△AEC,∴∠ABD=∠ACE,∵BM是中线,∴BM=AM=CM=AC=,∴∠MBC=∠MCB,∵∠ABD+∠MBC=90°,∴∠ACE+∠MCB=90°,即∠BCE=90°,∴AB∥CE,∴∠BAM=∠QCM,∠ABM=∠CQM,又AM=CM,∴△BAM≌△QCM(AAS),∴BM=QM,∴四边形ABCQ是平行四边形,∵∠ABC=90°∴四边形ABCQ矩形,∴AB=CQ=3,BC=AQ=4,∠AQC=90°,PQ∥CN,∴EQ===3,∴EQ=CQ,∴PQ是△CEN的中位线,∴PQ=CN,设PQ=x,则CN=2x,AP=4﹣x,∵∠EPQ=∠APD,∠EQP=90°=∠ADP,EQ=AD=3,∴△EQP≌△ADP(AAS),∴EP=AP=4﹣x,∵EP2=PQ2+EQ2,∴(4﹣x)2=x2+32,∴AP=4﹣x=,CN=2x=,∵PQ∥CN,∴△APF∽△CNF,∴=,∴==,∵AC=5,∴=,∴CF=;方法2:∵BM是Rt△ABC斜边AC上的中线,∴AM=BM=CM=AC=,∴∠ABM=∠BAM,∵AB=AD,∴∠ABM=∠ADB,∴∠BAM=∠ADB,∵∠ABM=∠DBA,∴△ABM∽△DBA,∴=,即=,∴BD=,∴DM=BD﹣BM=﹣=,∵∠EAD=∠CAB=∠ABD=∠ADB,∴DM∥AE,∴△FDM∽△FEA,∴=,即=,解得FM=,∴CF=CM﹣FM=﹣=;(3)C,D,E三点能构成直角三角形,理由如下:①当AD在AC上时,DE⊥AC,此时△CDE是直角三角形,如图,=CD•DE=×(5﹣3)×4=4;∴S△CDE②当AD在CA的延长线上时,DE⊥AC,此时△CDE是直角三角形,如图,=CD•DE=×(5+3)×4=16;∴S△CDE③当DE⊥EC时,△CDE是直角三角形,过点A作AQ⊥EC于点Q,如图,∵AQ⊥EC,DE⊥EC,DE⊥AD,∴四边形ADEQ是矩形,∴AD=EQ=3,AQ=DE=4,∵AE=AC=5,∴EQ=CQ=CE,∴CE=3,∴CE=6,=AQ•CE=×4×6=12;∴S△CDE④当DC⊥EC时,△CDE是直角三角形,过点A作AQ⊥EC于点Q,交DE于点N,如图,∵DC⊥EC,AQ⊥EC,∴AQ∥DC,∵AC=AE,AQ⊥EC,∴EQ=CQ,∴NQ是△CDE的中位线,∴ND=NE=DE=2,CD=2NQ,∵∠AND=∠ENQ,∠ADN=∠EQN=90°,∴∠DAN=∠QEN,∴tan∠DAN=tan∠QEN,∴=,∴=,∴NQ=EQ,∵NQ2+EQ2=NE2,∴(EQ)2+EQ2=22,解得EQ=,∴CE=2EQ=,NQ=EQ=,∴CD=2NQ=,=CD•CE=××=.∴S△CDE综上所述,直角三角形CDE的面积为4或16或12或.【点评】本题考查三角形相似的综合应用,涉及旋转的性质,三角形中位线定理,三角形全等的判定和性质,三角函数的应用,勾股定理等知识,熟练掌握三角函数的应用,三角形相似的判定和性质,矩形的判定和性质,中位线定理是解题的关键。
2024年四川省成都市中考数学预测试卷(一)及答案解析

2024年四川省成都市中考数学预测试卷(一)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,把序号涂在答题卡上)1.(4分)在﹣2,,0,﹣2.5四个数中,最小的数是()A.﹣2B.C.0D.﹣2.52.(4分)2023年上半年我国新能源汽车取得显著成绩,新能源汽车使用环境持续优化,截至6月底,全国累计建成各类充电桩超过660万台.将数据“660万”用科学记数法表示为()A.6.6×106B.6.6×105C.660×105D.66×105 3.(4分)下列计算正确的是()A.x+x=x2B.(x+y)2=x2+y2C.(﹣x+3)(x+3)=9﹣x2D.3(x﹣2y)=3x﹣2y4.(4分)2023年7月28日至8月8日,第31届世界大学生夏季运动会在四川省成都市举行,为此,成都市共建成49个场馆,其中新建场馆13处,改造场馆36处.大运村设在成都大学,依托现有校区和建设发展规划,新建生活服务中心、医疗中心、国际教育交流中心、实训楼等单体建筑22栋.数据49,13,36,22的中位数为()A.13B.24.5C.29D.365.(4分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O.若要使平行四边形ABCD成为矩形,需要添加的条件是()A.AC⊥BD B.OA=OB C.AB=BC D.∠ABD=∠DBC 6.(4分)川剧由昆腔、高腔、胡琴、弹戏、灯调五种声腔组成,其中,除灯调系源于本土外,其余均.由外地传入.如果小曦要选择其中一种声腔来学习,那么选中外地传入声腔的概率为()A.B.C.1D.7.(4分)小明仿照我国古算题编写了一道题:“今有九百元可得鸡兔共十又一只,一百八十元鸡两只,二百四十元兔四只.问鸡兔各几何?”设鸡有x只,兔有y只,则可列方程组为()A.B.C.D.8.(4分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(5,0),与y轴交于点C,其对称轴为直线x=2,M是抛物线的顶点,则下列说法正确的是()A.abc<0B.b+3a>0C.当x>0时,y的值随x值的增大而增大D.若CM⊥AM,则二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)因式分解:3x2y﹣27y=.10.(4分)已知反比例函数图象上的两点(﹣2,y1),(3,y2),且y1>y2,则k 的取值范围是.11.(4分)如图,△ABC≌△DEF,AE=2,AD=3,则AB=.12.(4分)在平面直角坐标系xOy中,点M(﹣2,5)关于x轴对称的点的坐标是.13.(4分)如图,△ABC为锐角三角形,点D在边BC上,∠B=∠BAD=∠CAD.分别以点A,C为圆心、大于的长为半径作弧,两弧相交于点E,F,作直线EF交AD于点P.若,△ABC的面积为8,则△CDP的面积为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解不等式组:15.(8分)成都市某中学为2024年“尤伯杯”预热,组织全校学生参加了“尤伯杯羽毛球比赛”知识竞赛,为了解全校学生竞赛成绩x(单位:分)的情况,随机抽取了一部分学生的成绩,分成四组:A.70分以下(不包括70);B.70≤x<80;C.80≤x<90;D.90≤x≤100,并绘制了如下两幅不完整的统计图.根据上述信息,解答下列问题.(1)被抽取的学生成绩在C组的有人,请补全条形统计图;(2)被抽取的学生成绩在B组的对应扇形圆心角的度数是,若该中学全校共有3600人,则成绩在A组的大约有人;(3)现从D组前四名(2名男生和2名女生)中任选2名代表发表感言,请用列表或画树状图的方法,求选中1名男生和1名女生的概率.16.(8分)屏风是一种古老的家具,它作为一种灵活的空间元素、装饰元素和设计元素,具有实用和艺术欣赏两方面的功能,能通过自身形状、色彩、质地、图案等特质融于丰富多元的现代空间环境,传达着新中式的意味,演绎出中国传统文化韵味,因此至今仍然被广泛地运用.小曦在房间墙角摆放了一架双面屏风,俯视图如图所示,两面屏风AC,BC与墙角AOB围成了一个独立空间用来堆放杂物,经测量AC=BC=1m,∠CAO=∠CBO=60°,请算出这个独立空间的面积.(结果精确到0.01m2.参考数据:,)17.(10分)如图,在Rt△ABC中,∠ACB=90°,AB与⊙O相切于点F,点C为⊙O上一点,CF平分∠ACB,AC和BC分别与⊙O相交于点E,D,DG⊥AB于点G.(1)求证:DG是⊙O的切线;(2)若,⊙O的半径为,求AF的长.18.(10分)如图,在平面直角坐标系中,一次函数y=3x+b的图象与坐标轴交于点A,B,与反比例函数的图象交于点C(1,a),D是反比例函数图象上的一个动点,过点D向y轴作垂线与一次函数图象交于点E,其中点A的坐标为(﹣3,0).(1)求反比例函数的表达式;(2)连接DB,DC,当△DCE的面积等于△DBC面积的2倍时,求点E的坐标;(3)若P是x轴上的一个动点,连接EP,DP,当△DPE与△AOB相似时,求点D的纵坐标.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)已知非零实数a,b满足a+3b+2ab=0,则=.20.(4分)已知一元二次方程x2﹣6x+m=0的一个根为,则m的值为.21.(4分)“不倒翁”玩具的主视图如图所示,PA,PB分别与不倒翁底部所在的⊙O相切于点A,B,若⊙O的半径为5cm,∠P=50°,则劣弧AB的长为.(结果保留π)22.(4分)一个直角三角形的边长都是整数,则称这种直角三角形为“完美勾股三角形”,k为其面积和周长的比值.当k=2时,满足条件的“完美勾股三角形”的周长为;当0<k≤1时,若存在“完美勾股三角形”,则k =.23.(4分)如图,在正方形ABCD中,O是BC的中点,P是边CD上一动点,将△OCP 沿OP翻折得△OC′P,连接C′D,在C′D左侧有一点E,使得△C′DE为等腰直角三角形,且∠DC′E=90°,连接CE.若正方形ABCD的边长为6,则CE的最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2024年世界园艺博览会将在成都举行,某社区决定采购甲、乙两种盆栽美化环境,若购买20盆甲种盆栽和10盆乙种盆栽,则需要130元;若购买30盆甲种盆栽和20盆乙种盆栽,则需要220元.(1)甲、乙两种盆栽的单价各是多少元?(2)若该社区联合附近社区购买甲、乙两种盆栽共1000盆,设购买m盆(500≤m≤700)乙种盆栽,总费用为W元,请你帮社区设计一种购买方案,使总花费最少,并求出最少费用.25.(10分)如图,在平面直角坐标系中,已知一抛物线经过原点,与x轴交于另一点A,顶点坐标为(2,﹣1),过点G(2,0)的直线y=kx+b(k≠0)与抛物线交于点B,C,且点B在点C的左侧.(1)求抛物线的函数表达式;(2)连接AB,AC,当△ABG的面积与△ACG的面积之比为1:2时,求直线的函数表达式;(3)若有直线l:y=﹣2,点B到直线l的距离为BD,点C到直线l的距离为CE,求证:.26.(12分)如图,已知△ABC为等边三角形,D,E分别是边BC,AC上一点,AD与BE 相交于点F,点G是射线AD上一点,且BD=BG=CE,CF与EG相交于点H.(1)求∠AFE的度数;(2)求证:H是EG的中点;(3)若BD=4,AF=6,求△ABC的边长.2024年四川省成都市中考数学预测试卷(一)参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,把序号涂在答题卡上)1.【分析】根据负数小于零小于正数得到答案即可.【解答】解:,故选:D.【点评】本题主要考查有理数比较大小,熟练掌握有理数大小比较是解题的关键.2.【分析】确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值小于1时,n 是负整数.据此求解即可.【解答】解:660万=6600000=6.6×106,故选:A.【点评】本题考查科学记数法,关键是熟记科学记数法的一般形式为a×10n,其中1≤|a|<10,n为整数.3.【分析】根据运算法则和完全平方公式、平方差公式逐项判断即可.【解答】解:A、x+x=2x,原计算错误,不符合题意;B、(x+y)2=x2+2xy+y2,原计算错误,不符合题意;C、(﹣x+3)(x+3)=9﹣x2,原计算正确,符合题意;D、3(x﹣2y)=3x﹣6y,原计算错误,不符合题意;故选:C.【点评】本题考查整式的混合运算,关键是完全平方公式的应用.4.【分析】根据中位数的定义,先将数据从小到大排序,中间两数的平均数就是这组数据的中位数.【解答】解:将数据49,13,36,22从小到大排序为13,22,36,49,所以这组数据的中位数为.故选:C.【点评】本题考查了求中位数,正确理解中位数的定义是解题的关键.5.【分析】根据矩形的判定方法逐项判断即可.【解答】解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意;B、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,即AC=BD,∴平行四边形ABCD是矩形,符合题意;C、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意;D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABD=∠BDC,∵∠ABD=∠DBC,∴∠BDC=∠DBC,∴BC=CD,∴平行四边形ABCD是菱形,不能判定是矩形,不符合题意,故选:B.【点评】本题考查矩形的判定,涉及到平行四边形的性质、菱形的判定、等腰三角形的判定等知识,熟知矩形的判定是解答的关键.6.【分析】根据概率公式直接求解即可.【解答】解:五种声腔中,外地传入的声腔有四种,故中外地传入声腔的概率,故选:D.【点评】本题主要考查了概率的求法,熟练掌握概率公式是解题的关键.7.【分析】根据题目中的等量关系列出方程即可.【解答】解:根据题意可得:,故选:A.【点评】本题主要考查由实际问题抽象出二元一次方程组,读懂题意是解题的关键.8.【分析】根据抛物线的位置判断即可;利用对称轴公式,可得b=﹣4a,可得结论;应该是x>2时,y随x的增大而增大;设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,可得M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x 轴于点K.利用相似三角形的性质,构建方程求出a即可.【解答】解:A.∵抛物线开口向上,∴a>0,∵对称轴是直线x=2,∴,∴b=﹣4a<0∵抛物线交y轴的负半轴,∴c<0,∴abc>0,故不正确,不符合题意,B.∵b=﹣4a,a>0,∴b+3a=﹣a<0,故不正确,不符合题意,C.观察图象可知,当0<x≤2时,y随x的增大而减小,不正确,不符合题意,D.∵抛物线经过(﹣1,0),(5,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣5)=a(x﹣2)2﹣9a,∴M(2,﹣9a),C(0,﹣5a),过点M作MH⊥y轴于点H,设对称轴交x轴于点K.∵AM⊥CM,∴∠AMC=∠KMH=90°,∴∠CMH=∠KMA,∵∠MHC=∠MKA=90°,∴△MHC∽△MKA,∴,∴,∴,∵a>0,∴,故正确,符合题意;故选:D.【点评】本题考查二次函数的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】首先提取公因式3y,再利用平方差进行二次分解即可.【解答】解:原式=3y(x2﹣9)=3y(x+3)(x﹣3),故答案为:3y(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.【分析】利用反比例函数的增减性求参数,分类讨论即可求解.【解答】解;若2k+1>0,∵﹣2<0<3,∴y1<0<y2,与y1>y2矛盾,∴2k+1<0,解得:.故答案为:.【点评】本题考查了已知反比例函数的增减性求参数,分类讨论即可求解.11.【分析】根据全等三角形的性质求解即可.【解答】解:∵AE=2,AD=3,∴DE=AD+AE=5,∵△ABC≌△DEF,∴AB=DE=5,故答案为:5.【点评】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.12.【分析】根据平面直角坐标系中对称点的规律解答.【解答】解:根据平面直角坐标系中对称点的规律可知,点M(﹣2,5)关于x轴的对称点为(﹣2,﹣5).故答案为:(﹣2,﹣5).【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.【分析】根据角平分线的性质得到S△ABD:S△ADC=5:3,进而,,设BD=5x,CD=3x,根据等腰三角形的判定与性质,结合三角形的外角性质得到BD=AD=5x,CD=CP=AP=3x,则DP=2x,进而得到S△CDP:S△CAP=DP:AP=2:3即可求解.【解答】解:设点D到AB、AC的距离为a,b,∵∠BAD=∠CAD,∴a=b,∵,:S△ADC=5:3,又△ABC的面积为8,∴S△ABD∴,,设BD=5x,CD=3x,∵∠B=∠BAD,∴BD=AD=5x,∠PDC=2∠B,由作图痕迹得PE垂直平分AC,则PA=PC,∴∠CAP=∠ACP,则∠CPD=2∠CAD=2∠B,∴∠CPD=∠CDP,∴CD=CP=AP=3x,则DP=2x,:S△CAP=DP:AP=2:3,∴S△CDP∴,故答案为:.【点评】本题考查等腰三角形的判定与性质、线段垂直平分线的画法及其性质、三角形的外角性质、角平分线的性质等知识,解题的关键是掌握相关知识的灵活运用.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)先根据二次根式的性质、特殊角的三角函数值、负整数指数幂以及绝对值的性质计算,再加减运算即可求解;(2)先求得每个不等式的解集,再求它们的公共部分即为该不等式组的解集.【解答】解:(1)﹣2tan60°﹣=﹣2×﹣4+4﹣2=;(2)不等式组,解不等式①,得x≥2,解不等式②,得x<4,∴该不等式组的解集为2≤x<4.【点评】本题考查实数的混合运算、解一元一次不等式组,涉及二次根式的化简、绝对值的化简、特殊角的三角函数值、负整数指数幂的运算,正确求解是解答的关键.15.【分析】(1)先由D组人数除以其所占的百分比求出抽取总人数,进而可求得C组人数,进而补全条形统计图即可;(2)用360°乘以B组人数所占的百分比即可求得其对应的圆心角的度数,用全校总人数乘以样本中A组人数所占的比例求解即可;(3)画树状图得到所有等可能的结果数,选出满足条件的结果数,然后利用概率公式求解即可.【解答】解:(1)抽查总人数为18÷30%=60(人),C组人数为60﹣6﹣12﹣18=24(人),故答案为:24,补全条形统计图如图:(2)被抽取的学生成绩在B组的对应扇形圆心角的度数是,成绩在A组的大约有(人),故答案为:72°,360;(3)画树状图:共有12种等可能的结果,其中选中1名男生和1名女生的有8种结果,故选中1名男生和1名女生的概率为.【点评】本题考查扇形统计图和条形统计图的关联、用样本估计总体、用列表或画树状图法求概率,理解题意,能从统计图中获取信息是解答的关键.16.【分析】过C作CE⊥OA于E,CF⊥OB于F,利用锐角三角函数分别求得AE,CE,CF,BF,利用三角形的面积和矩形的面积公式求解即可.【解答】解:过C作CE⊥OA于E,CF⊥OB于F,则四边形CEOF是矩形,在Rt△AEC中,,,在Rt△CFB中,,,+S△CFB+S矩形CEOF∴这个独立空间的面积为S△AEC==≈1.18m2.【点评】本题考查解直角三角形的应用,解题的关键是掌握其知识的灵活运用.17.【分析】(1)连接OF,OD,分别根据圆周角定理、切线的性质及垂直定义得到∠DGF=∠OFG=∠DOF=90°,证得四边形OFGD是矩形,则∠ODG=90°,根据切线的判定可得结论;(2)连接OE,过E作EH⊥AB于H,证明四边形EHFO是正方形得到,利用正切定义求得,进而可求解.【解答】(1)证明:连接OF,OD,∵CF平分∠ACB,∠ACB=90°,∴,则∠DOF=2∠BCF=90°,∵AB与⊙O相切于点F,∴∠OFG=∠OFA=90°,∵DG⊥AB,∴∠DGF=90°,则∠DGF=∠OFG=∠DOF=90°,∴四边形OFGD是矩形,∴∠ODG=90°,即OF⊥AB,∵OF是⊙O的半径,∴DG是⊙O的切线;(2)解:连接OE,过E作EH⊥AB于H,则∠EHF=∠EHA=90°,∵∠EOF=2∠ACF=90°,∴∠EOF=∠EHF=∠OFH=90°,∴四边形EHFO是矩形,∵OE=OF,∴四边形EHFO是正方形,∴,∵,∴,∴.【点评】本题考查切线的判定与性质、矩形的判定与性质、正方形的判定与性质、圆周角定理、角平分线的定义、锐角三角函数等知识,综合性强,熟练掌握相关知识的联系与运用是解答的关键.18.【分析】(1)先把(﹣3,0)代入y=3x+b求出一次函数解析式,再求出交点C(1,a),最后代入反比例函数解析式即可.=2S△BDE,表示出D、E (2)当△DCE的面积等于△DBC面积的2倍时即可得到S△CDE坐标,再计算即可;(3)表示出D、E、P坐标,根据△DPE与△AOB相似计算即可,注意分情况讨论:△AOB∽△PED;△AOB∽△DEP;△AOB∽△PDE;△AOB∽△EDP;△AOB∽△EPD;△AOB∽△DPE等情况分别解答即可.【解答】解:(1)一次函数y=3x+b的图象与坐标轴交于点A,B,其中点A的坐标为(﹣3,0).代入得:0=3×(﹣3)+b,解得b=9,∴y=3x+9,∴B(0,9);一次函数y=3x+9的图象与反比例函数的图象交于点C(1,a),代入得:a=3+9=12,∴C(1,12),把C(1,12)代入y=(x>0)得:12=,解得:k=12,∴y=(x>0),∴反比例函数的表达式为y=(x>0);(2)如图1,D是反比例函数图象上的一个动点,过点D向y轴作垂线与一次函数图象交于点E,连接CD、BD,∴DE∥x轴,∴设D(m,),把纵坐标代入一次函数y=3x+9得:∴y=3x+9=,解得x=﹣3,∴点E的坐标为(﹣3,),=2S△BDE,∵S△CDE∴(12﹣)•DE=2×(9﹣)•DE,解得m=2,∴点E的坐标为(﹣1,6);(3)设P(n,0),由(2)可得,,其中m>0,P是x轴上的一个动点,连接EP,DP,当△DPE与△AOB相似时,分以下几种情况:当△AOB∽△PED时,当PE⊥x轴时,如图2,点E、P的横坐标相等,故点P的坐标为,∴PE=,DE=m﹣(﹣3),∴==,当==时,△AOB∽△PED,∴=,解得m1=﹣8,m2=5,∴m=5,∴,当==3时,△AOB∽△DEP,∴=3,解得m=,∴m=,∴,同理,当PD⊥x轴时,如图3,点P的横坐标与点D的横坐标相等,故点P的坐标为P (m,0),∴,,∴==,当==时,△AOB∽△PDE,∴点D的坐标为,当==3时,△AOB∽△EDP,∴点D的坐标为,当PD⊥PE时,作EM⊥x于M,DN⊥x于N,则△EPM∽△PDN,∴==,此时EM=DN=,DE=MN=PM+PN=m﹣+3,当△AOB∽△EPD时,==,∴===,∴PN=3EM=,PM=DN=,∴=,解得或(不合题意,舍去),∴=,∴点D的坐标为(,),同理当△AOB∽△DPE时,==3,∴====3,∴,,∴,解得或(不合题意,舍去),∴=,∴点D的坐标为(,),综上所述,当△DPE与△AOB相似时,求点D的纵坐标为,,.【点评】本题考查反比例函数与一次函数综合,相似三角形的判定与性质,解答本题的关键是分类讨论思想的运用.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.【分析】先根据分式的混合计算法则化简所求式子,再根据已知条件式得到a+3b=﹣2ab,据此代值计算即可.【解答】解:===,∵a+3b+2ab=0,∴a+3b=﹣2ab,∴原式=,故答案为:﹣2.【点评】本题主要考查了分式的化简求值,掌握约分是关键.20.【分析】将根为代入方程即可得到答案.【解答】解:将代入一元二次方程x2﹣6x+m=0,得,解得m=6,故答案为:6.【点评】本题主要考查一元二次方程的解,明确方程的解一定适合方程是解题的关键.21.【分析】连接OB,由切线的性质得∠PAO=∠PBO=90°,求出∠AOB=130°,然后利用弧长公式求解即可.【解答】解:连接OB.∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∴∠PAO=∠PBO=90°,∴∠AOB=180°﹣∠P=130°,劣弧AB的长为:;故答案为:.【点评】本题考查由三视图,切线的性质,弧长公式,解题的关键是掌握切线的性质,属于中考常考题型.22.【分析】利用a=3,b=4,c=5的直角三角形来研究,对三边同时扩大1,2,3,⋯倍数来计算,看是否满足题意即可求解.【解答】解:设直角三角形的边长分别为a,b,c,其中a,b为直角边,且a<b,由题意知:,利用特殊的勾三股四直角三角形来研究,当a=3,b=4,c=5,周长=12,面积=6,k=,上式不成立,依次将a=3,b=4,c=5扩大相同的倍数,当都扩大2倍时:a=6,b=8,c=10,周长=24,面积=24,k=1,等式不成立,当都扩大3倍时:a=9,b=12,c=15,周长=36,面积=54,k=1.5,等式不成立,当都扩大4倍时:a=12,b=16,c=20,周长=48,面积=96,k=2,等式成立,故此时满足条件的“完美勾股三角形”的周长为:48;当a=10,b=24,c=26,周长=60,面积=120,k=2,等式成立,当0<k≤1时,当a=3,b=4,c=5时,,当a=6,b=8,c=10时,,故答案为:48;或1.【点评】本题考查了勾股定理,关键是注意都是各边长都是整数.23.【分析】构造等腰直角△DOM,即可证明△MDE∽△ODC′,得到,,再证明△MON≌△ODC,得到MN=OC=3,ON=CD=6,求出,最后根据CE≥CM﹣AE得到CE的最小值.【解答】解:连接OD,过O作OD⊥OM,取OD=OM,连接MD,ME,过M作MN ⊥CN,∵OD⊥OM,OD=OM,∴,∠MDO=45°,∵△C′DE为等腰直角三角形,∴,∠EDC′=45°,∴,∠ODC′=∠MDE=45°﹣∠ODE,∴△MDE∽△ODC′,∴,∵正方形ABCD中,O是BC的中点,正方形ABCD的边长为6,∴OC=3,CD=BC=6,∵将△OCP沿OP翻折得△OC′P,∴OC=OC′=3,∴,∵MN⊥CN,∴∠MNO=∠DCO=90°,∵∠MON=∠ODC=90°﹣∠COD,OD=OM,∴△MON≌△ODC,∴MN=OC=3,ON=CD=6,∴CN=9,∴,∴,∴当C、M、E三点共线时CE有最小值,最小值为,故答案为:.【点评】本题考查相似三角形的判定与性质,全等三角形的判定与性质,正确记忆相关知识点是任解题关键.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)设甲种盆栽的单价为x元,乙种盆栽的单价为y元,直接根据题意列方程组求解即可;(2)根据(1)中单价,由费用=单价×数量列函数关系式,利用一次函数性质求解即可.【解答】解:(1)设甲种盆栽的单价为x元,乙种盆栽的单价为y元,根据题意,得,解得,答:甲种盆栽的单价为4元,乙种盆栽的单价为5元;(2)根据题意,得W=4(1000﹣m)+5m=m+4000,∵1>0,500≤m≤700,∴W随m的增大而增大,∴当m=500时,W有最小值,最小值为W=500+4000=4500,1000﹣m=1000﹣500=500(盆),答:当购买甲种盆栽和乙种盆栽各500盆时,总花费最少,最少费用为4500元.【点评】本题考查二元一次方程组的应用、一次函数的应用,理解题意,正确列出方程以及函数关系式是解答的关键.25.【分析】(1)利用待定系数法求解即可;(2)首先将G(2,0)代入直线解析式得到y=kx﹣2k,然后与抛物线联立得到x2﹣(4k+4)x+8k=0,求出x B和x C,然后根据题意得到,代入x B和x C得到,进而求解即可;(3)由(2)求出,,然后根据题意得到BD,CE,然后代入整理求解即可.【解答】解:(1)∵抛物线顶点坐标为(2,﹣1),∴设抛物线解析式为y=a(x﹣2)2﹣1,∵抛物线经过原点,∴将(0,0)代入得,0=a(0﹣2)2﹣1,解得,∴;(2)∵直线y=kx+b(k≠0)过点G(2,0),∴0=2k+b,∴b=﹣2k,∴直线y=kx﹣2k,联立,整理得,x2﹣(4k+4)x+8k=0,解得,,∴x B+x C=4k+4,∵△ABG的面积与△ACG的面积之比为1:2,∴,∴,∴,整理得x C+2x B=6,将,代入x C+2x B=6,整理得,∴9k2=k2+1,∴8k2=1,∴或(舍去),∴直线的函数表达式为;(3)由(2)得,,,∴,,∵有直线l:y=﹣2,点B到直线l的距离为BD,点C到直线l的距离为CE,∴,,∴=======1.【点评】此题考查了二次函数和一次函数综合题,待定系数法求解析式,面积综合题,解一元二次方程等知识,解题的关键是正确表示出点B和点C的坐标.26.【分析】(1)证明△ABD≌△BCE(SAS)得出∠BAD=∠EBC,根据三角形的外角的性质,即可求解;(2)如图所示,将△ABF绕点A逆时针旋转60°得到△ACN,则△ABF≌△ACN,进而证明△BFG≌△CNE(SAS)得出B,E,N三点共线,△AFN是等边三角形,过点E作EM∥NC,根据平行线分线段成比例和相似三角形的性质得出,可得EM=GF,进而证明△EHM≌△GHF,根据全等三角形的性质,即可得证;(3)过点E作ET⊥AG于点T,设TF=x,则,,证明△ENC∽△EFA,得出,解,进而即可求解.【解答】(1)解:∵△ABC为等边三角形,∴AB=BC,∠ABD=∠BCE=60°,又∵BD=EC,∴△ABD≌△BCE(SAS),∴∠BAD=∠EBC,∴∠AFE=∠BAD+∠ABF=∠EBC+∠ABF=∠ABC=60°;(2)证明:如图所示,将△ABF绕点A逆时针旋转60°得到△ACN,连接EN,∴△ABF≌△ACN,∴BF=CN,AF=AN,∠AFB=∠ANC,设∠BAG=α,则∠EBC=∠BAG=α,∵BD=BG,∴∠BDG=∠BGD=∠ABD+∠BAD=60°+α,∵∠AFE=60°,∴∠BFG=60°,∴∠FBG=180°﹣60°﹣(60°+α)=60°﹣α=∠ABF=∠ACN,在△BFG和△CNE中,,∴△BFG≌△CNE(SAS),∴∠BFG=∠CNE=60°,∠BGF=∠CEN=60°+α,∵∠AEB=∠CBE+∠ACB=60°+α,∴∠AEB=∠CEN,∴B,E,N三点共线,∵AF=AN,∠AFE=60°,∴△AFN是等边三角形,∴∠ANF=60°,∵∠AFB=∠ANC=120°,∴∠ENC=60°=∠AFE,∴FG∥CN,过点E作EM∥NC,交CF于点M,∴AG∥EM∥NC,∴△CEM∽△CAF,∴,∴EM=GF,∵EM∥FG,∴∠HEM=∠HGF,在△EHM和△GHF中,,∴△EHM≌△GHF(AAS),∴GH=HE,即H是GE的中点;(3)解:如图所示,过点E作ET⊥AG于点T,∵∠AFE=60°,∴EF=2TF,设TF=x,则,∴AT=AF﹣TF=6﹣x,∴,∵NC∥AG,∴△ENC∽△EFA,∴,∵EC=BG=BD=4,FN=AF=6,EN=6﹣2x,即,∴,,∴,整理得:(x2+9)2﹣9(x2+9)x+14x2=0,即(x2+9﹣7x)(x2+9﹣2x)=0,解得:(舍去)或,∴,∴.【点评】本题是三角形综合题,考查了旋转的性质,相似三角形的性质与判定,等边三角形的性质与判定,勾股定理,平行线分线段成比例,含30度角的直角三角形的性质,熟练掌握旋转的性质是解题的关键。
2024年四川省成都市成华区中考数学二诊试卷及答案解析

2024年四川省成都市成华区中考数学二诊试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.(4分)在π,﹣2,0,﹣1这四个实数中,最小的数是()A.πB.﹣2C.0D.﹣12.(4分)由一个长方体和一个圆柱组成的几何体如图所示,则这个几何体的俯视图是()A.B.C.D.3.(4分)经国家统计局初步核算,2023年我国国内生产总值1260582亿元,按不变价格计算,比上年增长5.2%.其中数据“1260582亿”用科学记数法表示为()A.1260582×108B.1.260582×1013C.1.260582×1014D.1.260582×10154.(4分)下列运算中,计算正确的是()A.(a2b)3=a6b3B.5a﹣3a=2C.(a+b)2=a2+b2D.a6÷a3=a25.(4分)为了解学生参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们的体育锻炼时间(单位:分钟)分别为:65,60,75,60,80.则这组数据的众数是()A.60B.65C.75D.806.(4分)如图,直线m∥n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140°,则∠2的度数是()A.110°B.105°C.100°D.95°7.(4分)如图,△ABC内接于⊙O,CD是⊙O的直径,若∠DCA=38°,则∠ABC=()A.56°B.52°C.48°D.38°8.(4分)如图,二次函数y=ax2+bx(a<0)的图象过点A(2,0),下列结论错误的是()A.b>0B.a+b>0C.x=2是关于x的方程ax2+bx=0(a<0)的一个根D.若点(x1,y1),(x2,y2)在二次函数的图象上,且x1>x2>2,则y2<y1<0二、填空题(本大题共5个小题,每小题4分,共20分)9.(4分)分解因式:ab2﹣2ab+a=.10.(4分)如图,以正五边形ABCDE的顶点C为旋转中心,按顺时针方向旋转,使得新五边形A′B′CD′E′的顶点D′落在BC的延长线上,则正五边ABCDE旋转的最小度数为.11.(4分)若直线y=x向上平移3个单位长度后经过点(2,m),则m的值为.12.(4分)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是.13.(4分)如图,在▱ABCD中,AB=12,BC=8,AC交BD于点O.以点B为圆心,适当长为半径作弧,分别交AB,BC于点E,F;再分别以点E,F为圆心,大于的长为半径作弧,两弧交于点G;作射线BG交CD于点P.若BP的中点为点M,则OM的长为.三、解答题(本大题共5个小题,共48分)14.(12分)(1)计算:|1﹣|﹣4sin30°+()﹣1+(2024﹣π)0.(2)解不等式组:.15.(8分)《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学一门独立课程.为培养同学们爱劳动的习惯,某校开展了“做好一件家务”主题活动(家务类型为:洗衣、刷碗、做饭、拖地),要求人人参与.9.1班劳动委员将本班同学做家务的信息绘制成了如图两幅尚不完整的统计图,请根据统计图信息,回答下列问题:(1)9.1班学生共有人;扇形统计图中“洗衣”对应扇形的圆心角度数为;若该校共有初中学生1500人,则可估计出该校初中学生中参与“做饭”的人数约有人;(2)9.1班评选出了近期做家务表现优秀的一男三女共四名同学,准备从这四名同学中随机选取两名同学分享体会,请用画树状图或列表的方法求所选同学中有男生的概率.16.(8分)图1是一款手机支架,由托板、支撑板和底座构成,图2是手机放置在托板上后侧面的截面图.量得托板BC长为40mm,支撑板CD长为80mm,手机AB长为120mm,∠DCB=50°,∠CDE=75°,求手机顶端A到底座DE的距离AH的长(结果精确到1mm).参考数据:sin75°≈0.966,cos75°≈0.259,tan75°≈3.732,sin35°=cos55°≈0.574,cos35°=sin55°≈0.819,tan35°≈0.7,tan55°≈1.428.17.(10分)如图,AB为⊙O的直径,C是下半圆弧的中点,D为半径OA(除端点外)上一点,CD的延长线交⊙O于点E,过点E作⊙O的切线交BA的延长线于点F.(1)求证:FD=FE;(2)若BD=7,,求⊙O的半径及tan F的值.18.(10分)如图,一次函数y=x+2的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y 轴交于点B.(1)求反比例函数的解析式;(2)若C为反比例函数y=(x>0)图象上一点,直线AC与x轴交于点D,且满足AD=2AC,求点C的坐标.(3)若点P在反比例函数y=(x>0)图象上,点Q在x轴上,且以点A,B,P,Q为顶点的四边形是平行四边形,请直接写出符合条件的点P的坐标.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)若m、n满足3m﹣n﹣4=0,则8m÷2n=.20.(4分)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,以面积为4的正方形ABCD的中心O为位似中心,作它的位似图形A′B′C′D′,若A′B′:AB=2:1,则四边形A′B′CD′的外接圆的面积为.21.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上一动点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长的最小值为.22.(4分)数学综合与实践活动小组用四个全等的直角三角形(Rt△AHB≌Rt△BEC≌Rt△CFD≌Rt△DGA)拼成如图所示的“赵爽弦图”,得到正方形ABCD和正方形EFGH,连接AC和EG,AC与DF,EG,BH分别相交于点P,O,Q.若,则的值是.23.(4分)若点M(x,y)的坐标满足x2=t﹣5y,y2=t﹣5x,其中x≠y,t为常数,则称点M为“好点”.若双曲线上存在“好点”,则k的取值范围是.二、解答题(本大题共3个小题,共30分)24.(8分)某校为落实立德树人的根本任务,积极探索“五育并举,融合育人”的育人途径,计划组织八年级师生租用客车到成都大熊猫基地开展跨学科主题研学活动.已知每辆60座客车的租费是45座客车租费的1.25倍,花4000元可租45座客车的辆数比租60座客车多2辆.(1)问每辆45座客车租费和每辆60座客车租费分别是多少元?(2)该校八年级师生共有400人,若只租用同一种客车,应该租用哪种客车合算?25.(10分)如图,在平面直角坐标系xOy中,直线y=ax+2a(a>0)与x轴交于点A,与抛物线y=ax2(a>0)交于点B,C(点B在点C的左边).(1)求点A的坐标;(2)作点B关于x轴的对称点B′,若以点A,B′,C为顶点的三角形为直角三角形,求a的值;(3)我们把平面直角坐标系中横坐标与纵坐标均为整数的点叫作格点,如(0,2),(1,1)等均为格点.若直线y=ax+2a(a>0)与抛物线y=ax2(a>0)所围成的封闭图形内部(不包含边界)的格点数有且只有6个,请直接写出a的取值范围.26.(12分)在矩形ABCD中,AB=3,AD=4,点E从点A出发,沿边AD,DC向点C运动,点A,D 关于直线BE的对称点分别为点A′,D′,连接A′D′,BA′,ED′.(1)【初步感知】如图1,当点D′落在BC的延长线上时,求DE的长;(2)【深入探究】当点E运动到AD中点时,连接A′D,求A′D的长;(3)【拓展运用】当直线A′D′恰好经过点C时,求DE的长.2024年四川省成都市成华区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵﹣2<﹣1<0<π,∴在π,﹣2,0,﹣1这四个实数中,最小的数是﹣2.故选:B.【点评】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据从上面看得到的图形是俯视图即可解答.【解答】解:从上面看下边是一个矩形,矩形的内部是一个圆.故选:D.【点评】本题考查了简单组合体的三视图,掌握从上面看得到的图形是俯视图是解答本题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解;1260582亿=126058200000000=1.21×1014.故选:C.【点评】本题考查科学记数法,熟练掌握科学记数法的表示形式为a×10n(1≤a<10,a为整数)的形式,n的绝对值与小数点移动的位数相同是解题的关键.4.【分析】分别根据完全平方公式、合并同类项、幂的乘方与积的乘方、同底数幂的除法运算法则计算即可.【解答】解:A、(a2b)3=a6b3,符合题意;B、5a﹣3a=2a,不合题意;C、(a+b)2=a2+2ab+b2,不合题意;D、a6÷a3=a3,不合题意;故选:A.【点评】此题考查的是完全平方公式、合并同类项、幂的乘方与积的乘方、同底数幂的除法,掌握其运算法则是解决此题的关键.5.【分析】根据众数的定义即可得出结论.【解答】解:∵从该班学生中随机抽取5名同学进行调查,他们的体育锻炼时间(单位:分钟)分别为:65,60,75,60,80,其中60出现的次数最多,∴这组数据的众数是60,故选:A.【点评】本题考查了众数,熟记众数的定义是解题的关键.6.【分析】根据等边三角形性质得∠A=60°,再根据三角形外角定理得∠AEF=∠1﹣∠A=80°,则∠DEB=∠AEF=80°,然后根据平行线的性质得∠DEB+∠2=180°,据此可得∠2的度数.【解答】解:如下图所示:∵△ABC为等边三角形,∴∠A=60°,∵∠1是△AEF的一个外角,∠1=140°,∴∠1=∠A+∠AEF,∴∠AEF=∠1﹣∠A=140°﹣∠A=140°﹣60°=80°,∴∠DEB=∠AEF=80°,∵直线m∥n,∴∠DEB+∠2=180°,∴∠2=180°﹣∠DEB=180°﹣80°=100°.故选:C.【点评】此题主要考查了等边三角形的性质,平行线的性质,熟练掌握等边三角形的性质,平行线的性质是解决问题的关键.7.【分析】连接AD,由CD是⊙O的直径,∠DCA=38°,得∠DAC=90°,∠ADC=52°,得∠ABC =∠ADC=52°.【解答】解:连接AD,由CD是⊙O的直径,∠DCA=38°,得∠DAC=90°,∠ADC=52°,得∠ABC=∠ADC=52°,故选:B.【点评】本题主要考查了圆中角的计算,解题关键是圆周角定理的应用.8.【分析】依据题意,由抛物线开口向下,可得a<0,又抛物线过(2,0),(0,0),从而可得抛物线的对称轴是直线x==1=﹣,故b=﹣2a>0,故可判断A;又a+b=a﹣2a=﹣a>0,故可判断B;又二次函数y=ax2+bx(a<0)的图象过点A(2,0),则x=2是关于x的方程ax2+bx=0(a<0)的一个根,故可判断C;又对称轴是直线x=1,且开口向下,从而当x>1时,y随x的增大而减小,再结合点(x1,y1),(x2,y2),(2,0)在二次函数的图象上,且x1>x2>2时,则y1<y2<0,故可判断D.【解答】解:由题意,∵抛物线开口向下,∴a<0.又抛物线过(2,0),(0,0),∴抛物线的对称轴是直线x==1=﹣.∴b=﹣2a>0,故A正确,不合题意.∴a+b=a﹣2a=﹣a>0,故B正确,不合题意.∵二次函数y=ax2+bx(a<0)的图象过点A(2,0),∴x=2是关于x的方程ax2+bx=0(a<0)的一个根,故C正确,不合题意.∵对称轴是直线x=1,且开口向下,∴当x>1时,y随x的增大而减小.∴当点(x1,y1),(x2,y2),(2,0)在二次函数的图象上,且x1>x2>2时,y1<y2<0,故D错误,符合题意.故选:D.【点评】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关键.二、填空题(本大题共5个小题,每小题4分,共20分)9.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2.故答案为:a(b﹣1)2.【点评】考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.10.【分析】根据旋转的性质,正多边形和圆的性质以及正多边形外角的计算方法进行计算即可.【解答】解:如图,正五边形ABCDE的外角∠DCM==72°,即将正五边形ABCDE的顶点C为旋转中心,按顺时针方向旋转,使得新五边形A′B′CD′E′的顶点D′落在BC的延长线上,则正五边ABCDE旋转的最小度数为72°,故答案为:72°.【点评】本题考查正多边形和圆,旋转的性质,掌握正五边形的性质,正五边形外角的计算方法以及旋转的性质是正确解答的关键.11.【分析】先根据平移规律求出直线y=x向上平移3个单位的直线解析式,再把点(2,m)代入,即可求出m的值.【解答】解:将直线y=x向上平移3个单位,得到直线y=x+3,把点(2,m)代入,得m=2+3=5.故答案为:5.【点评】本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,正确求出平移后的直线解析式是解题的关键.12.【分析】设良马x天追上劣马,根据良马追上劣马所走路程相同可得:240x=150(x+12),即可解得良马20天追上劣马.【解答】解:设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,答:良马20天追上劣马;故答案为:20.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.13.【分析】由作图知,BG平分∠ABC,得到∠ABG=∠CBG,根据平行线的性质得到∠CPB=∠ABP,求得∠CPB=∠CBP,得到CP=BC=8,根据三角形中位线定理即可得到结论.【解答】解:由作图知,BG平分∠ABC,∴∠ABG=∠CBG,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=12,BO=DO,∴∠CPB=∠ABP,∴∠CPB=∠CBP,∴CP=BC=8,∴PD=CD﹣CP=4,∵BP的中点为点M,∴BM=PM,∴OM是△BPD的中位线,∴OM=PD=2,故答案为:2.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作已知角的角平分线).也考查了角平分线的定义和平行四边形的性质以及三角形中位线定理.三、解答题(本大题共5个小题,共48分)14.【分析】(1)按照去绝对值、零指数幂、负整数指数幂、三角函数的性质运算即可;(2)分别解出不等式①②的解集后再确定不等式组的解集即可.【解答】解:(1)|1﹣|﹣4sin30°+()﹣1+(2024﹣π)0.=﹣4×+2+1=﹣1﹣2+2+1=;(2)解不等式①得:x,解不等式②得:x,∴不等式组的解集为:.【点评】本题考查了实数的混合运算和不等式组的解,熟练掌握不等式组的解法是关键.15.【分析】(1)用条形统计图中“刷碗”的人数除以扇形统计图中“刷碗”的百分比可得9.1班的学生人数;用360°乘以“洗衣”的人数所占的百分比,即可得扇形统计图中“洗衣”对应扇形的圆心角度数;求出9.1班参与“做饭”的人数,根据用样本估计总体,用1500乘以“做饭”的人数所占的百分比,即可得出答案.(2)列表可得出所有等可能的结果数以及所选同学中有男生的结果数,再利用概率公式可得出答案.【解答】解:(1)9.1班学生共有20÷40%=50(人).扇形统计图中“洗衣”对应扇形的圆心角度数为360°×=108°.9.1班参与“做饭”的人数为50﹣15﹣20﹣10=5(人),∴估计该校初中学生中参与“做饭”的人数约有1500×=150(人).故答案为:50;108°;150.(2)列表如下:男女女女男(男,女)(男,女)(男,女)女(女,男)(女,女)(女,女)女(女,男)(女,女)(女,女)女(女,男)(女,女)(女,女)共有12种等可能的结果,其中所选同学中有男生的结果有:(男,女),(男,女),(男,女),(女,男),(女,男),(女,男),共6种,∴所选同学中有男生的概率为=.【点评】本题考查列表法与树状图法、条形统计图、扇形统计图、用样本估计总体,能够读懂统计图,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.16.【分析】通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出FH、AF,即可求出点A 到直线DE的距离.【解答】解:如图,过点C作CF⊥AH,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80mm,CD=80mm,∠DCB=50°,∠CDE=75°,在Rt△CDN中,CN=CD•sin∠CDE=80×sin75°=80×0.966≈77(mm),∴FH=CN=77mm,∵CF∥DN,∴∠CDN=∠DCF=75°,∴∠ACF=180°﹣∠DCF﹣∠BCD=55°,在Rt△AFC中,AF=AC•sin55°=80×0.819≈66(mm),AH=AF+FH=77+66=143(mm),答:点A到直线DE的距离约为143mm.【点评】本题考查解直角三角形的应用,解题的关键是作辅助线构造直角三角形.17.【分析】(1)连接OE、OC,如图,根据垂径定理得到OC⊥AB,根据切线的性质得到∠OEF=90°,然后证明∠FED=∠FDE得到FD=FE;(2)设⊙O的半径为r,则OC=r,OD=BD﹣OB=7﹣r,先在Rt△OCD中利用勾股定理得到(7﹣r)2+r2=()2,解方程得到OD=2,OE=5,设FE=FD=x,则OF=x+2,接着在RtOEF中利用勾股定理得到x2+52=(x+2)2,解方程得x=,然后根据正切的定义求解.【解答】(1)证明:连接OE、OC,如图,∵C是下半圆弧的中点,∴OC⊥AB,∴∠COA=90°,∵EF为⊙O的切线,∴OE⊥EF,∴∠OEF=90°,∵OE=OC,∴∠OEC=∠OCE,∵∠OEC+∠FED=90°,∠OCE+∠ODC=90°,∴∠FED=∠ODC,∵∠ODC=∠FDE,∴∠FED=∠FDE,∴FD=FE;(2)解:设⊙O的半径为r,则OC=r,OD=BD﹣OB=7﹣r,在Rt△OCD中,(7﹣r)2+r2=()2,解得r1=2(舍去),r2=5,∴OD=2,OE=5,设FE=FD=x,则OF=x+2,在RtOEF中,x2+52=(x+2)2,解得x=,即FE=,∴tan F===.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理和解直角三角形.18.【分析】(1)先求出a值,再用待定系数法求出反比例函数解析式即可;(2)分两种情况进行解答,①如图1当点C在A点下方时,②如图2当C在A点上方时解出点C坐标即可;(3)分两种情况进行解答,①当AB为平行四边形的边时,ABQ′P′是平行四边形,②当AB为平行四边形的对角线时,ABQP是平行四边形,分别求出点P坐标即可.【解答】解:(1)∵点A(a,3)在直线y=x+2的图象上,∴,解得a=2,∴A(2,3),∵A(2,3)在反比例函数y=(x>0)的图象上,∴k=2×3=6,∴反比例函数的解析式为:y=;(2)分两种情况,①如图1,当点C在A点下方时,∵AD=2AC,A(2,3),∴点C为AD中点,∴点C纵坐标为,当y=时,x=6×=4,∴C(4,),②如图2,当C在A点上方时,∵AD=2AC,A(2,3),∴,即,解得y C=,将yC代入反比例函数解析式得:x=,∴C(,).综上分析,点C坐标为(4,)或(,).(3)∵直线AB解析式为y=x+2,∴B(0,2),A(2,3),分两种情况讨论:如图3:①当AB为平行四边形的边时,ABQ′P′是平行四边形,y Q′﹣y B=y P′﹣y A,即0﹣2=y P′﹣3,解得y P′=1,∵P′在反比例函数y=图象上,∴当y=1时,x=6,∴P′(6,1),②当AB为平行四边形的对角线时,APBQ是平行四边形,∵B(0,2),A(2,3),又Q点纵坐标为0,∴y P=2+3﹣0=5,∵点P在反比例函数y=图象上,当y=5时,x=,∴P(,5).综上分析,P(,5)或P(6,1).【点评】本题考查了反比例函数的综合应用,熟练掌握分类讨论是解答本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19.【分析】直接利用幂的乘方运算法则将原式变形,进而计算得出答案.【解答】解:∵3m﹣n﹣4=0,∴3m﹣n=4,∴8m÷2n=23m÷2n=23m﹣n=24=16.故答案为:16.【点评】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.20.【分析】如图,连接B′D′.利用相似多边形的性质求出正方形A′B′C′D′的面积,求出边长,再求出B′D′可得结论.【解答】解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的面积=8π,故答案为:8π.【点评】本题考查位似变换,相似多边形的性质,圆的周长等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【分析】设AC与PQ交于点O,过点O作OD⊥BC于点D,先求出AC=4,根据平行四边形性质得PQ=2OP,OC=AC=2,证△ODC∽△BAC相似得OD=,然后根据PQ=2OP得当OP为最小时,PQ为最小,根据“垂线段最短”得OP≥OD=,由此可得OP的最小值,进而可得PQ的最小值.【解答】解:设AC与PQ交于点O,过点O作OD⊥BC于点D,如下图所示:在Rt△ABC中,AB=3,BC=5,由勾股定理得:AC==4,∵四边形PAQC为平行四边形,∴点O为AC,PQ的中点,∴PQ=2OP,OC=AC=2,∵OD⊥BC,∠BAC=90°,∴∠ODC=∠BAC=90°,∠OCD=∠BCA,∴△ODC∽△BAC,∴OD:AB=OC:BC,即OD:3=2:5,∴OD=,∵PQ=2OP,∴当OP为最小时,PQ为最小,根据“垂线段最短”得:OP≥OD,即OP≥,∴OP的最小值为,∴PQ的最小值为.故答案为:.【点评】此题主要考查了平行四边形的性质,线段的性质,相似三角形的判定和性质,勾股定理,理解平行四边形的性质,线段的性质,熟练掌握相似三角形的判定和性质并利用相似三角形的性质及勾股定理进行计算是解决问题的关键.22.【分析】设EC=x(x>0),EQ=15a(a>0),则BE=14a,证明△AHQ∽△CEQ,利用相似三角形的性质求出EC=BH=35a,可得QH=6a,EH=21a,利用勾股定理求出BC和AQ,进而可得OQ的长,再证明△QEO≌△PGO,可得OP=OQ=a,然后根据正方形的性质求出OE,即可得出答案.【解答】解:设EC=x(x>0),BE=14a(a>0),则QE=15a,∵∠AHQ=∠CEQ=90°,∠AQH=∠CQE,∴△AHQ∽△CEQ,∴=,∵Rt△AHB≌Rt△BEC,∴AH=BE=14a,BH=EC=x,∴QH=BH﹣BE﹣EQ=x﹣29a,∴=,整理得:x2﹣29ax﹣210a2=0,解得:x1=35a,x2=﹣6a(不合题意,舍去),即EC=BH=35a,∴QH=EH﹣EQ=35a﹣29a=6a,EH=BH﹣BE=35a﹣14a=21a,∴BC==7a,AQ==2a,∴AC=BC=7a,∴OA=AC=a,∴OQ=OA﹣AQ=a,∵四边形HEFG是正方形,∴∠QEO=∠PGO,OE=OG,又∵∠QOE=∠POG,∴△QEO≌△PGO(SAS),∵OP=OQ=a,又∵EG=EH=21,∴OE=EG=,∴==,故答案为:.【点评】本题考查了正方形的性质,勾股定理,相似三角形的判定和性质,全等三角形的判定和性质,解一元二次方程以及二次根式的混合运算等知识,证明△AHQ∽△CEQ,求出EC的长是解题的关键.23.【分析】根据题意列出方程组,解方程组得到(x﹣)(x+﹣5)=0,依据条件得到x+=0,整理出k的代数式按照自变量取值范围确定k的范围即可.【解答】解:∵双曲线上存在“好点”,∴,①﹣②得:(x﹣)(x+)=5(x﹣),∴(x﹣)(x+﹣5)=0,∵x≠y,∴x+=0,整理得:k=5x﹣x2=﹣x2+5x=﹣(x2﹣5x)=﹣(x﹣)2+,∵,∴≤k<.故答案为:≤k<.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握图象上点的坐标满足函数解析式是关键.二、解答题(本大题共3个小题,共30分)24.【分析】(1)设每辆45座客车租费是x元,则每辆60座客车租费是1.25x元,根据花4000元可租45座客车的辆数比租60座客车多2辆.列出分式方程,解方程即可;(2)求出租用45座客车9辆的租费和租用60座客车7辆的租费,再比较即可.【解答】解:(1)设每辆45座客车租费是x元,则每辆60座客车租费是1.25x元,由题意得:﹣=2,解得:x=400,经检验,x=400是原方程的解,且符合题意,∴1.25x=1.25×400=500,答:每辆45座客车租费是400元,每辆60座客车租费是500元;(2)∵400÷45=8,400÷60=6,∴租用45座客车9辆,租费为9×400=3600(元),租用60座客车7辆,租费为7×500=3500(元),∵3500<3600,∴租用60座客车合算.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.【分析】(1)当y=0时,求A点坐标即可;(2)分别求出B'、C坐标,可得AC2=16+16a2,B'C2=9+25a2,AB'2=1+a2,再分三种情况,利用勾股定理建立方程求a的值即可;(3)画出图象,结合图象,当直线y=ax+2a经过点(0,3)时,a=,此时有5个格点;当直线y=ax+2a经过点(1,5)时,a=,此时有6个格点;当a=2时,此时有6个格点;即可求<a≤或a=2时,有6个格点.【解答】解:(1)当y=0时,x=﹣2,∴A(﹣2,0);(2)当ax+2a=ax2时,解得x=2或x=﹣1,∴B(﹣1,a),C(2,4a),∵B'与B关于x轴对称,∴B'(﹣1,﹣a),∴AC2=16+16a2,B'C2=9+25a2,AB'2=1+a2,①当AC为斜边时,16+16a2=9+25a2+1+a2,解得a=或a=﹣(舍);②当B'C为斜边时,9+25a2=16+16a2+1+a2,解得a=1或a=﹣1(舍);③当AB'为斜边时,1+a2=16+16a2+9+25a2,此时a无解;综上所述:a的值为或1;(3)如图:当直线y=ax+2a经过点(0,3)时,a=,此时有5个格点;当直线y=ax+2a经过点(1,5)时,a=,此时有6个格点;当a=2时,此时有6个格点;综上所述:<a≤或a=2时,有6个格点.【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,直角三角形的性质,勾股定理,数形结合是解题的关键.26.【分析】(1)连接BD,设DE=x,则EC=3﹣x,由对称性得ED'=ED=x,由勾股定理求出BD=5,列出方程(3﹣x)2+12=x2,可得出答案;(2)连接AA',交BE于点F,由对称性得AA'⊥BE,证明△AEF∽△BEA,得出,求出EF的长,由三角形中位线定理可得出答案;(3)分两种情况,由矩形的性质,相似三角形的性质及勾股定理可得出答案.【解答】解:(1)如图1,连接BD,设DE=x,则EC=3﹣x,由对称性得ED'=ED=x,∵四边形ABCD是矩形,∴AB=DC=3,AD=BC=4,∠A=90°,∴在Rt△BAD中,,由对称性得BD'=BD=5,∴CD'=5﹣4=1,在△ECD'中,EC2+CD'2=ED'2,∴(3﹣x)2+12=x2,解得,即,(2)如图1,连接AA',交BE于点F,由对称性得AA'⊥BE,∵点E是AD中点,∴AE=DE=2,在Rt△ABE中,,在△ABE中,∠EAB=90°,AF⊥BE,∴∠AEF=∠AEB,∠AFE=∠EAB,∴△AEF∽△BEA,∴,∴,由对称性得A′E=AE,∴A′E=AE=DE,∴∠AA'D=90°,∴AA′⊥A′D,∴A′D∥FE,∵点E是AD的中点,∴点F是AA′的中点,∴FE是△AA'D的中位线,∴;(3)分以下两种情况讨论:①如图,当点E在边AD上时,A'D'恰好经过点C,∴由对称性得∠1=∠A=90°,BA'=BA=CD=3,∴∠2=∠1=90°,∴在Rt△BCA′中,,∵在矩形ABCD中,AD∥BC,∠D=90°,∴∠3=∠4,∠2=∠D,在△BCA′和△CED中,,∴△BCA′≌△CED(AAS),∴;②如图3,当点E在边CD上时,A′D恰好经过点C,∴由对称性得∠A'=∠A=90°,∠D'=∠D=90°,BA'=BA=3,A'D'=AD=4,∴∠A'=∠D'=90°,在Rt△BCA′中,,∴,∵A'D'恰好经过点C,∴∠5+∠6+∠BCD=180°,∵在矩形ABCD中,∠BCD=90°,∴∠5+∠6=90°,∵∠A'=90°,∴∠7+∠6=90°,∴∠5=∠7,在△ECD'和△CBA′中,∠D'=∠A',∠5=∠7,∴△ECD'∽△CBA',∴,∴,解得,即,综上所述,DE的长为或.【点评】本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,熟练掌握以上知识是解题的关键。
2024年四川省成都市中考数学真题卷及答案解析

2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15- D. 152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( )A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4--B. ()1,4-C. ()1,4D. ()1,4-5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D.ACB ACD∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C DE DF = D. 53BE EF =第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.10. 分式方程132x x=-解是____.11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______..的12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48的园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD中点,的连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将的其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A.3. 下列计算正确的是()A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4-- B. ()1,4- C. ()1,4 D. ()1,4-【答案】B【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 64【答案】B【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A AB AD = B. AC BD ⊥ C. AC BD = D. ACB ACD∠=∠【答案】C【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C. DE DF = D. 53BE EF =【答案】D【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AE EF DF ED==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10. 分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO ' 中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒--4212=+-+-5=+-5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.的【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan AB ADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠,即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠=EBC DBF∴ ∽EC CBDF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF ∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CBACCF BC ∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=5CB ===不妨设EF y =,那么AE AF EF y BE=-=-=在Rt CEB △中,CE EF CF y =+=+5CB =,BE y=-222(5)y y ∴+=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF∴==DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =- (3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004ts +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BDBE AB=,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x ky x =+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5bm n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5bm n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CBCD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BCBF EF =∴221m x x m+=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①.> ②. 112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<, ∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .的(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克 (2)A 种水果的最低销售单价为12.5元/kg 【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB = (2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DHABD BH ∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为是()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a--=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,。
年四川省成都市中考数学试卷及解析

2018年四川省成都市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()第7题第9题A.极差是8℃B.众数是28℃C.中位数是24℃ D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC 的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意12 10%满意54 m比较满意n 40%不满意 6 5%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,四、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.第22题第24题第25题23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB 沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.五、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?\27.(10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】2A:实数大小比较;29:实数与数轴.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题考查实数大小比较,关键是根据实数的大小比较解答.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.万=10000=104.【解答】解:40万=4×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U1:简单几何体的三视图.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点解答.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.5.(3分)【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【点评】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6.(3分)【考点】KD:全等三角形的判定与性质.【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.7.(3分)【考点】VD:折线统计图;W1:算术平均数;W4:中位数;W5:众数;W6:极差.【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:=℃,故选项D错误,故选:B.【点评】本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8.(3分)【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【点评】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.(3分)【考点】H3:二次函数的性质;H7:二次函数的最值.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)【考点】KH:等腰三角形的性质;K7:三角形内角和定理.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.【点评】本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.(4分)【考点】X4:概率公式.【分析】直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13.(4分)【考点】S1:比例的性质.【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.【点评】此题主要考查了比例的性质,正确表示出各数是解题关键.14.(4分)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;LB:矩形的性质.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6个小题,共54分)15.(12分)【考点】6C:分式的混合运算;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣1【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17.(8分)【考点】VC:条形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为120.45%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定.【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(10分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.(10分)【考点】MR:圆的综合题.【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题。
2024年四川省成都市中考数学试题含参考答案
数学A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.5−的绝对值是( ) A.5B.5−C.15D.15−2.如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3.下列计算正确的是( ) A.()2233x x =B.336x y xy +=C.()222x y x y +=+D.()()2224x x x +−=−4.在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A.()1,4−−B.()1,4−C.()1,4D.()1,4−5.为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A.53B.55C.58D.646.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A.AB AD =B.AC BD ⊥C.AC BD =D.ACB ACD ∠∠=7.中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A.14,2133y x y x =+ =+B.14,2133y x y x =− =+C.14,2133y x y x =− =−D.14,2133y x y x =+ =−8.如图,在ABCD □中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A.ABE CBE ∠∠=B.5BC =C.DE DF =D.53BE EF = 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.若m ,n 为实数,且()240m +=,则()2m n +的值为______. 10.分式方程132x x=−的解是______. 11.如图,在扇形AOB 中,6OA =,120AOB ∠°=,则 AB 的长为______.12.盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______. 13.如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1()02sin6020242π°−−.(2)解不等式组:231,11.23x x x+≥−−−<①② 15.(本小题满分8分)2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路 人数 国风古韵观赏线 44世界公园打卡线 x亲子互动慢游线 48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______: (2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数. 16.(本小题满分8分)中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=°,26.6ADB ∠=°,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45°≈,cos26.60.89°≈,tan26.60.50°≈,sin73.40.96°≈,cos73.40.29°≈,tan73.4 3.35°≈)17.(本小题满分10分)如图,在Rt ABC △中,90C ∠=°,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF . (1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠∠=,tan BFC ∠=,AF =CF 的长和O 的直径.18.(本小题满分10分)如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0kyk x=<图象上. (1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE △相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.如图,ABC CDE ≌△△,若35D ∠=°,45ACB ∠=°,则DCE ∠的度数为______.20.若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______.21.在综合实践活动中,数学兴趣小组对1n ∼这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22.如图,在Rt ABC △中,90C ∠=°,AD 是ABC △的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.23.在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______. 二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg. (1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价. 25.(本小题满分10分)如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点. (1)求线段AB 的长;(2)当1a =时,若ACD △的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB △沿DE 方向平移得到A EB ′′△.将抛物线L 平移得到抛物线L ′,使得点A ′,B ′都落在抛物线L ′上.试判断抛物线L ′与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.(本小题满分12分)数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3ABAD ==,4BC DE ==,90ABC ADE ∠∠==°.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BDCE的值. 【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC △的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.数学参考答案A 卷(共100分) 第I 卷(选择题,共32分)一、选择题题号 1 2 3 4 5 6 7 8 答案 A A D B B C B D第II 卷(非选择题,共68分)二、填空题9.110.3x =11.4π12.3513.5.三、解答题14.(1)5;(2)29x −≤<. 15.(1)160,40; (2)99°; (3)385.16.春分和秋分时日影长度约为9.2尺. 17.(1)略;(2)CF =;O 的直径为.18.(1)4a =,6m =,6b =;(2)点C 的坐标为()4,4−或()4,4−,16k =−; (3)1k =−.B 卷(共50分)一、填空题19.100° 20.721.9;14423.>;112m −<<. 二、解答题24.(1)A 种水果购进1000千克,B 种水果购进500千克; (2)A 种水果的最低销售单价为12.5元/kg. 25.(1)4AB =; (2)10tan 3ABD ∠=; (3)抛物线L ′与L 交于定点()3,0. 26.(1)BD CE 的值为35;(2)7039 CF=;(3)直角三角形CDE的面积分别为4,16,12,48 13.。
2023年四川省成都市中考数学真题(含答案)
2023年成都市中考试卷数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.在3,,0,四个数中,最大的数是( )A.3B.C.0D.2.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星.北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式. 目前,某地图软件调用的北斗卫星日定位量超3000亿次. 将数据3000亿用科学记数法表示为( )A. B. C. D.3.下列计算正确的是( )A. B.C. D.4.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局. 如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI ):33,27,34,40,26,则这组数据的中位数是( )A.26B.27C.33D.345.如图,在中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A. B. C. D.6.为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目. 把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是( )A.B.C. D.7.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长7-197-198310⨯9310⨯10310⨯11310⨯()2239x x-=-27512x x x+=()22369x x x -=-+()()22224x y x y x y-+=+ABCD AC BD =OA OC =AC BD ⊥ADC BCD∠=∠12131416短. 引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为()A.B.C. D.8.如图,二次函数的图象与x 轴交于,B 两点,下列说法正确的是()A.抛物线的对称轴为直线B.抛物线的顶点坐标为C.A ,B 两点之间的距离为5D.当时,y 的值随x 值的增大而增大第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.因式分解:.10.若点,都在反比例函数的图象上,则 (填“>”或“<”).11.如图,已知,点B ,E ,C ,F 依次在同一条直线上. 若,,则CF 的长为.12.在平面直角坐标系xOy 中,点关于y 轴对称的点的坐标为.13.如图,在中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点;③以点为圆心,以MN 长为半径作弧,在内部交前面的弧于点;④过点作射线交BC 于点E . 若与四边()14.512x x +=-()14.512x x +=+()11 4.52x x +=-()11 4.52x x -=+26y ax x =+-()3,0A -1x =1,62⎛⎫-- ⎪⎝⎭1x <-23m m -=()13,A y -()21,B y -6y x=1y 2y ABC DEF △≌△8BC =5CE =()5,1P -ABC △'M 'M BAC ∠'N 'N 'DN BDE △形ACED 的面积比为4:21,则的值为 .三、解答题(本大题共5个小题,共48分)14.(1;(2)解不等式组:15.文明是一座城市的名片,更是一座城市的底蕴. 成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数;(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.16.为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB 长为5米,与水平面的夹角为16°,且靠墙端离地高BC 为4米,当太阳光线AD 与地面CE 的夹角为45°时,求阴影CD 的长.(结果精确到0.1米;参考数据:,,)BECE()02sin 4532π︒---()225,411.3x x x x +-≤⎧⎪⎨+>-⎪⎩①②sin160.28︒≈cos160.96︒≈tan160.29︒≈17.如图,以的边AC 为直线作,交BC 边于点D ,过点C 作交于点E ,连接AD ,DE ,.(1)求证:;(2)若,,求AB 和DE 的长.18.如图,在平面直角坐标系xOy 中,直线与y 轴交于点A ,与反比例函数的图象的一个交点为,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且的面积为5,求点C 的坐标;(3)P 是直线l 上一点,连接PA ,以P 为位似中心画,使它与位似,相似比为m .若点D ,E 恰好都落在反比例函数图象上,求点P 的坐标及m 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.若,则代数式的值为 .20.一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有个.ABC △O CE AB ∥O B ADE =∠∠AC BC =tan 2B =3CD =5y x =-+ky x=(),4B a ABC △PDE △PAB △23320ab b --=22221ab b a b a a b⎛⎫---÷ ⎪⎝⎭21.为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出. 该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(取3.141.73)22.如图,在中,,CD 平分交AB 于点D ,过D 作交AC 于点E ,将沿DE 折叠得到,DF 交AC 于点G . 若,则 .23.定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且,则称这个正整数为“智慧优数”.例如,,16就是一个智慧优数,可以利用进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 ;第23个智慧优数是 .二、解答题(本大题共3个小题,共30分)24.2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行. “当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃. 已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元.(1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用.25.如图,在平面直角坐标系xOy 中,已知抛物线经过点,与y 轴交于点,直线与抛物线交于B ,C 两点.πRt ABC △90ABC ∠=︒ACB ∠DE BC ∥DEC △DEF △73AG GE =tan A =1m n ->221653=-()()22m n m n m n -=+-2y ax c =+()4,3P -()0,1A ()0y kx k =≠(1)求抛物线的函数表达式;(2)若是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E . 试探究:是否存在常数m ,使得始终成立?若存在,求出m 的值;若不存在,请说明理由.26.探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在中,,,D 是AB边上一点,且(n 为正整数),E 是AC 边上的动点,过点D 作DE 的垂线交直线BC 于点F .【初步感知】(1)如图1,当时,兴趣小组探究得出结论:,请写出证明过程.【深入探究】(2)①如图2,当,且点F 在线段BC 上时,试探究线段AE ,BF ,AB 之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE ,BF ,AB 之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF ,设EF 的中点为M . 若,求点E 从点A 运动到点C 的过程中,点M 运动的路径长(用含n 的代数式表示).ABP △()0,M m OD OE ⊥Rt ABC △90C ∠=︒AC BC =1AD BD n=1n =AE BF AB +=2n =AB =数学参考答案A 卷(共100分)第I 卷(选择题,共32分)一、选择题题号12345678答案ADCCBBAC第Ⅱ卷(非选择题,共68分)二、填空题9.10.>11.312.13.三、解答题14.(1)3;(2).15.(1)300,图略;(2)144°;(3)360.16.阴影CD 的长约为2.2米.17.(1)略;(2)18.(1)点A 的坐标为,反比例函数的表达式为;(2)点C 的坐标为或;(3)点P 的坐标为;m 的值为3.B 卷(共50分)一、填空题19.20.621.18423.15;57二、解答题24.(1)A 种食材单价是每千克38元,B 种食材单价是每千克30元;(2)A 种食材购买24千克,B 种食材购买12千克时,总费用最少,为1272元.25.(1)抛物线的函数表达式为;()3m m -()5,1--2341x -<≤AB =DE =()05,4y x=()69,()4,1--111,44⎛⎫-⎪⎝⎭232114y x =-+(2)点B 的坐标为或或;(3)当m 的值为2或时,始终成立.26.(1)略.(2)①,证明过程略;②当点F 在射线BC 上时,,当点F 在CB 延长线上时,.(3)点M.()4,3--(25----(25-+-+23OD OE ⊥12AE BF AB +=1AE BF AB n +=1AE BF AB n -=。
【解析版二】2013年四川省成都市中考数学试卷及答案
四川省成都市2013年中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)2.(3分)(2013•成都)如图所示的几何体的俯视图可能是()B2013•成都)要使分式有意义,则x的取值范围是()3.(3分)(分式4.(3分)(2013•成都)如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()B×(﹣3)=1×6.(3分)(2013•成都)参加成都市今年初三毕业会考的学生约有13万人,将13万用科学7.(3分)(2013•成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()y=210.(3分)(2013•成都)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2013•成都)不等式2x﹣1>3的解集是x>2.12.(4分)(2013•成都)今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾.某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是10元.13.(4分)(2013•成都)如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD=60度.14.(4分)(2013•成都)如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为100米.BC=三、解答题(本大题共6个小题,共54分)15.(12分)(2013•成都)(1)计算:(2)解方程组:.=4+×=4,.16.(6分)(2013•成都)化简.×17.(8分)(2013•成都)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A 顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.=18.(8分)(2013•成都)“中国梦”关乎每个人的幸福生活,为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求请根据上表提供的信息,解答下列问题:(1)表中的x的值为4,y的值为0.7(2)将本次参赛作品获得A等级的学生一次用A1,A2,A3,…表示,现该校决定从本次参赛作品中获得A等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率.=0.7P=19.(10分)(2013•成都)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.的坐标代入:2==20.(10分)(2013•成都)如图,点B在线段AC上,点D,E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A,B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)相似可得=,然后求出相似可得=,最后利用相似三角形对应边成比例可得=,从而得解;∴==∴==BF=,∴=AP×=BQ=的中点所经过的路径(线段)长为四、填空题(本大题共5个小题,每小题4分,共20分,)21.(4分)(2013•成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为﹣.==.22.(4分)(2013•成都)若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位均不产生进位现象,则称n为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为..故答案为:.23.(4分)(2013•成都)若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为1或0.恰有三个整数解,可得出,联立方程组xa+=,24.(4分)(2013•成都)在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=x2﹣2交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=时,BP2=BO•BA;④△PAB面积的最小值为.其中正确的是③④.(写出所有正确说法的序号)=2y=得:x,),轴的交点坐标为(,((∵+==0∴=﹣OA∴PA﹣﹣(﹣OA(﹣k=(m+16=mn+16=m++16=﹣•﹣﹣时,联立方程组:,得(,﹣OP OP OP=2,面积有最小值,最小值为25.(4分)(2013•成都)如图,A,B,C为⊙O上相邻的三个n等分点,=,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p=c+b;当n=12时,p=c+b.(参考数据:,),得到p=c+2cosACB=×=ACB=2cos∴=2cos∴∵∴••••b=c+bb bp=c+2cos四、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(8分)(2013•成都)某物体从P点运动到Q点所用时间为7秒,其运动速度v(米每秒)关于时间t(秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB的面积.由物理学知识还可知:该物体前n(3<n≤7)秒运动的路程在数值上等于矩形AODB的面积与梯形BDNM的面积之和.根据以上信息,完成下列问题:(1)当3<n≤7时,用含t的式子表示v;(2)分别求该物体在0≤t≤3和3<n≤7时,运动的路程s(米)关于时间t(秒)的函数关系式;并求该物体从P点运动到Q总路程的时所用的时间.然后将其代入解析式就,,×=30×=21点总路程的时所用的时间为27.(10分)(2013•成都)如图,⊙O的半径r=25,四边形ABCD内接圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.ADB=,可设PA=HC=(4[4k+(25ADB=4PH=4=,([4k+(﹣k=4(25=AC=252428.(12分)(2013•成都)在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.的距离为的距离为PQ=取最小值时,∴y=y=解方程组:,PQ=的距离为=y=解方程组,得:的距离为的距离为y=解方程组,得:,,﹣2+),﹣2+﹣)存在最大值.理由如下:PQ=取最小值时,=最小,最小值为∴的最大值为。
2024年四川省成都市天府新区中考数学二诊试卷及答案解析
2024年四川省成都市天府新区中考数学二诊试卷一、选择题(本大题共8个小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.2.(4分)位于天府新区湖畔路北侧的天府智能港产业园是天府新区产业兴城的点位之一,该项目占地约147亩,总建筑面积约36万m2.项目涵盖独栋办公、小高层办公、高层办公、滨湖商业、产业公寓等多类产品.将数据36万用科学记数法表示为()A.36×104B.3.6×105C.3.6×106D.3.6×1073.(4分)下列运算中,计算结果正确的是()A.x6y÷x2=x3y B.2a+3b=5abC.(a4)2=a6D.(1﹣2a)2=4a2﹣4a+14.(4分)在平面直角坐标系中,点P(﹣3,﹣5)关于y轴对称点的坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)5.(4分)《感动中国》是中央电视台每年举办一次的盛大颁奖典礼,它以评选出当年度具有震撼人心、令人感动的人物为主要内容,最近一届5位获奖者获奖时的年龄(单位:岁)分别为:96,51,26,60,89,这组数据的中位数是()A.26B.51C.89D.606.(4分)如图,在菱形ABCD中,E,F分别是AB和BC上的点,添加以下条件仍不能判定△ADE≌△CDF的是()A.∠ADE=∠CDF B.∠AED=∠CFD C.DE=DF D.BE=BF7.(4分)《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A.B.C.D.8.(4分)如图,二次函数y=﹣x2+bx+3的图象与x轴相交于点A(﹣1,0)和点B,下列说法正确的是()A.B.点B的坐标为(4,0)C.当时,y的值随x值的增大而减小D.抛物线的顶点坐标为(1,4)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)因式分解:a2﹣9b2=.10.(4分)已知反比例函数的图象在第二、四象限,则m的取值范围是.11.(4分)关于x的方程的解为.12.(4分)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,AD=3BD,△ABC的面积为32,则△ADE的面积为.13.(4分)如图,在Rt△ABC中,∠A=90°,AB=6,AC=8.按以下步骤作图:①以点A为圆心,适当长为半径画弧,分别交AB,AC于点M,N;②分别以M,N为圆心,大于的长为半径画弧,两弧在∠BAC内交于点E;③作射线AE交BC于点D;④以点A为圆心,AC长为半径画弧,交AB 的延长线于点H,连接DH,则△BDH的周长为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解不等式组:.15.(8分)2023年2月20日,成都市教育局、成都市体育局等四家单位联合举办了以“共青春,享未来”为主题的运动天府城市共享课堂课程推介会.在推介会现场,展示了比较新颖的4个体育项目:A(OP 级帆船),B(越野滑雪),C(垒球),D(马术).某校为了解学生对以上体育项目的喜爱程度,随机抽取了部分学生进行调查,并根据调查数据绘制成下面两幅不完整的统计图.(1)本次被调查的学生总人数为;B项目对应的人数为;(2)求扇形统计图中B项目对应的扇形圆心角的度数;(3)已知该校有1500名学生,请你根据样本估计全校喜欢马术的人数.16.(8分)天府新区秦皇湖,有天府新区小“泸沽湖”之称,在湖畔对面是天府国际会议中心,该中心以“天府之檐”为主题,沿秦皇湖东侧展开以中国古建筑“佛光寺大殿”抬梁式木结构为原型,建构了亚洲最大单体木结构建筑.天府新区某学校开展综合实践活动,测量该建筑物顶端到地面的高度.如图,AB为建筑物,在地面观测点C处测得该建筑物顶端A的仰角为45°,然后沿BC方向走6.5米到点D 处,即CD=6.5米,在位于点D正上方的观光台点E处测得建筑物顶端A的仰角为37°,已知DE=3米,AB⊥BC,DE⊥BC,根据以上测量数据,请求出该建筑物顶端到地面的高度,即AB的长.(结果精确到1米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)17.(10分)如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线交BA的延长线于点D,过点A作AE⊥CD于点E,延长EA交⊙O于点F,连接BF.(1)求证:AC平分∠BAE;(2)若,求tan∠ADE的值.18.(10分)如图1,已知四边形AOCB为矩形,且点B坐标为(6,12),反比例函数的图象与矩形交于点D和点E,且BE=2CE,连接DE.(1)求反比例函数的表达式;(2)点P是第一象限内在反比例函数图象上的一个动点,作点P关于原点对称的点P′,以PP′为斜边作等腰直角三角形MPP′,点M在第四象限.①如图2,当点P与点E重合时,求点M的坐标;②在同一平面内,若等腰直角三角形的一边所在的直线与一条直线垂直,则称此等腰直角三角形为这条直线的关联三角形.在点P的运动过程中等腰直角三角形MPP′是否能成为直线DE的关联三角形?若能,请求出此时点P坐标;若不能,请说明理由.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)比较大小:1.(用“>”,“<”,“=”填空)20.(4分)若方程x2﹣x﹣1=0的两个实数根分别为a,b,则代数式a2+b﹣1的值为.21.(4分)一款飞镖游戏板由如图所示的正方形ABCD制成,游戏板白色区域是分别以AB,CD为直径的半圆,小东向游戏板随机投掷一枚飞镖,则击中阴影部分的概率是.22.(4分)如果一个三角形的三边长a,b,c均为偶数,且满足a<b≤c,则称该三角形为“幸运三角形”.当b=6时,则“幸运三角形”有个;当b=2n(n为不小于2的正整数)时,则“幸运三角形”有个.(用含n的代数式表示)23.(4分)已知在正方形ABCD中,点E为CD边上的一个动点(点E不与点C,D重合),作射线AE,过点C作射线AE的垂线,垂足为F,则的最大值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)随着新能源汽车的普及,天府新区公交公司拟再采购一批新能源公交车,若购买A型公交车2辆,B型公交车3辆,共需490万元;若购买A型公交车3辆,B型公交车2辆,共需460万元.(1)求A型公交车和B型公交车每辆售价分别为多少万元?(2)该公司计划今年购进A,B两种公交车共6辆,预计A型和B型公交车每辆车年均载客量分别为12万人次和15万人次.若该公司购买A型和B型公交车的总费用不超过540万元,则该公司如何安排购车才能使年载客量总量最多,最多为多少?25.(10分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2(a≠0)经过点P(2,1),直线y=kx+1(k≠0)与抛物线交于A,B两点(点A在y轴左侧,点B在y轴右侧),与y轴交于点M.(1)求抛物线的函数表达式;(2)若△AMP与△BMP的面积之比是1:4,求k的值;(3)若作点P关于y轴的对称点P′,直线AP′与直线BP相交于点Q,试探究:点Q的纵坐标为定值吗?若为定值,请求出点Q的纵坐标;若不为定值,请说明理由.26.(12分)如图,在等腰△ABC中,AB=AC,点D为△ABC内一点,∠ADB=90°,E为BD上一点,连接AE,∠BAE=∠ACD.(1)如图1,若AE=CD,求证:AB⊥AC;(2)如图2,若点E为BD的中点,①探究∠EAD与∠ABC的数量关系并说明理由;②过点E作AB的垂线,垂足为点F,连接DF,若DF=3,BC=8,根据题意补全图形,并求出DE的长度.2024年四川省成都市天府新区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题4分,共32分,在每小题给出的四个选项中,只有一项符合题目要求,答案涂在答题卡上)1.【分析】有理数大小比较的法则:①正数>0>负数,②两个负数比较大小,绝对值大的其值反而小,据此判断即可.【解答】解:因为|﹣3|=3,|﹣1|=1,而3>1,所以﹣3<﹣1<0<,故选:A.【点评】本题考查了有理数大小比较,掌握有理数大小比较的法则是解答本题的关键.2.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:36万=360000=3.6×105,故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.3.【分析】根据单项式的除法可以判断A;根据合并同类项的方法可以判断B;根据幂的乘方可以判断C;根据完全平方公式可以判断D.【解答】解:x6y÷x2=x4y,故选项A错误,不符合题意;2a+3b不能合并,故选项B错误,不符合题意;(a4)2=a8,故选项C错误,不符合题意;(1﹣2a)2=4a2﹣4a+1,故选项D正确,符合题意;故选:D.【点评】本题考查整式的混合运算,熟练掌握运算法则是解答本题的关键.4.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点P(﹣3,﹣5)关于y轴对称点的坐标为(3,﹣5),故选:C.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.5.【分析】根据中位数的概念,解答即可.【解答】解:将5位获奖者的年龄从小到大排列为:26、51、60、89、96,据此,可看出一共5个数据,第三个数据为60,根据中位数的概念,可知这组数据的中位数为60.故答案为:D.【点评】本题考查了中位数,理解并掌握中位数的定义是解题的关键.6.【分析】由菱形的性质得AD=CD=AB=CB,∠A=∠C,当∠ADE=∠CDF,可根据“ASA”证明△ADE≌△CDF,可判断A不符合题意;当∠AED=∠CFD时,可根据“AAS”△ADE≌△CDF,可判断B不符合题意;当DE=DF时,由DE=DF,AD=CD,∠A=∠C这三答条件不符合全等三角形的判定定理,可判断C符合题意;当BE=BF时,则AE=CF,可根据“SAS”证明△ADE≌△CDF,可判断D不符合题意,于是得到问题的答案.【解答】解:∵四边形ABCD是菱形,∴AD=CD=AB=CB,∠A=∠C,∵∠ADE=∠CDF,AD=CD,∠A=∠C,∴△ADE≌△CDF(ASA),故A不符合题意;∵∠AED=∠CFD,∠A=∠C,AD=CD,∴△ADE≌△CDF(AAS),故B不符合题意;∵DE=DF,AD=CD,∠A=∠C这三答条件不符合全等三角形的判定定理,∴添加条件DE=DF仍不能判定△ADE≌△CDF,故C符合题意;∵BE=BF,AB=CB,∴AB﹣BE=CB﹣BF,∴AE=CF,∵AE=CF,∠A=∠C,AD=CD,∴△ADE≌△CDF(SAS),故D不符合题意,故选:C.【点评】此题重点考查菱形的性质、全等三角形的判定与性质等知识,适当选择全等三角形的判定定理证明△ADE≌△CDF是解题的关键.7.【分析】根据题意可得等量关系:人数×8﹣3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.【解答】解:设有x人,物品价值y元,由题意得:,故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.8.【分析】先把A点坐标代入y=﹣x2+bx+3中可求出b=2,则可对A选项进行判断;抛物线解析式为y =﹣x2+2x+3,再解方程﹣x2+2x+3=0得B点坐标为(3,0),于是可对B选项进行判断;把二次函数的一般式化为顶点式,然后根据二次函数的性质可对C、D选项进行判断.【解答】解:把A(﹣1,0)代入y=﹣x2+bx+3得﹣1﹣b+3=0,解得b=2,所以A选项不符合题意;∴抛物线解析式为y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,∴B点坐标为(3,0),所以B选项不符合题意;∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,抛物线的顶点坐标为(1,4),所以D选项符合题意;∴当x>1时,y的值随x值的增大而减小,所以C选项不符合题意.故选:D.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.【分析】直接利用平方差公式进行分解即可.【解答】解:原式=(a﹣3b)(a+3b).故答案为:(a﹣3b)(a+3b).【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).10.【分析】反比例函数的图象在二四象限,让比例系数小于0列式求值即可.【解答】解:∵反比例函数的图象在第二、四象限,∴m+2<0,解得m<﹣2,故答案为m<﹣2.【点评】考查反比例函数的性质;用到的知识点为:对于反比例函数(k≠0),k<0,反比例函数图象在第二、四象限内.11.【分析】观察可得最简公分母是(2x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以2x﹣3,得x﹣5=4(2x﹣3),解得x=1.检验:当x=1时,2x﹣3=2×1﹣3=﹣1≠0,∴x=1是原方程的根.故答案为:x=1.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.12.【分析】由题意易得,△ADE∽△ABC,于是利用相似三角形的面积比等于相似比的平方求解即可.【解答】解:∵AD=3BD,∴AB=4BD,即,∵DE∥BC,∴△ADE∽△ABC,∴==,即,=18.∴S△ADE故答案为:18.【点评】本题主要考查相似三角形的判定与性质,熟记相似三角形的面积比等于相似比的平方是解题关键.13.【分析】利用基本作图得到AD平分∠BAC,AH=AC,再证明△ADC≌△ADH得到DH=DC,接着利用勾股定理计算出BC=10,然后利用等线段代换得到△BDH的周长=BC+AC﹣AB.【解答】解:由作法得AD平分∠BAC,AH=AC,∴∠CAD=∠HAD,在△ADC和△ADH中,,∴△ADC≌△ADH(SAS),∴DH=DC,∵∠BAC=90°,AB=6,AC=8,∴BC==10,∴△BDH的周长=DH+DB+BH=DC+DB+BH=BC+AC﹣AB=10+8﹣6=12.故答案为:12.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了全等三角形的判定与性质.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.【分析】(1)先化简各式,然后再进行计算即可解答;(2)按照解一元一次不等式组的步骤进行计算,即可解答.【解答】解:(1)=3+3×﹣1+2﹣=3+﹣1+2﹣=4;(2),解不等式①得:x>﹣4,解不等式②得:x≤5,∴原不等式组的解集为:﹣4<x≤5.【点评】本题考查了解一元一次不等式组,实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.15.【分析】(1)用类别A的人数除以其所占的百分比可求调查人数,再用总人数分别减去其它三个项目的人数,可得B项目对应的人数;(2)用360°乘B项目所占的百分比即可;(3)用1500乘样本中喜欢马术的学生人数的占比即可求解.【解答】解:(1)本次被调查的学生总人数为:22÷44%=50(人),B项目对应的人数为:50﹣22﹣4﹣14=10(人),故答案为:50人,10人;(2)扇形统计图中B项目对应的扇形圆心角的度数为:360°×=72°;(3)1500×=420(人),答:估计全校喜欢马术的人数大约为420人.【点评】本题考查条形统计图,用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.【分析】过点E作EF⊥AB,垂足为F,根据题意可得:ED=BF=3米,EF=BD,然后设BC=x米,则EF=BD=(x+6.5)米,分别在Rt△ABC和△AFE中,利用锐角三角函数的定义求出AB和AF的长,从而列出关于x的方程,进行计算即可解答.【解答】解:过点E作EF⊥AB,垂足为F,由题意得:ED=BF=3米,EF=BD,设BC=x米,∵CD=6.5米,∴EF=BD=CD+BC=(x+6.5)米,在Rt△ABC中,∠ACB=45°,∴AB=BC•tan45°=x(米),在Rt△AFE中,∠AEF=37°,∴AF=EF•tan37°≈0.75(x+6.5)米,∵AF+BF=AB,∴0.75(x+6.5)+3=x,解得:x=31.5,∴AB=31.5≈32(米),∴该建筑物顶端到地面的高度约为32米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17.【分析】(1)连接OC,如图,根据切线的性质得到OC⊥CD,则根据平行线的判定方法得到OC∥AE,再利用平行线的性质得到∠CAE=∠OCA,加上∠OAC=∠OCA,从而得到∠OAC=∠CAE;(2)根据圆周角定理得∠AFB=90°,再证明△ADE∽△ABF,利用相似思想家的性质得到==,则AD=AO,接着利用正弦的定义得到∠D=30°,然后根据特殊角的三角函数值求解.【解答】(1)证明:连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠CAE=∠OCA,∵AC=AO,∴∠OAC=∠OCA,∴∠OAC=∠CAE,∴AC平分∠BAE;(2)解:∵AB是⊙O的直径,∴∠AFB=90°,∵∠DAE=∠BAF,∠AED=∠F,∴△ADE∽△ABF,∴==,∴AD=AO,在Rt△OCD中,∵sin D==,∴∠D=30°,∴tan∠ADE=tan30°=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和解直角三角形.18.【分析】(1)求出E(6,4),即可求反比例函数的解析式;(2)①过点E作EG⊥x轴,过点M作HG∥x轴,交EG于点G,过点P'作P'H⊥HG交于H点,则△EGM≌△MHP'(AAS),设M(x,y),由﹣4﹣y=6﹣x,x+6=4﹣y,可求M(4,﹣6);②当PP'⊥DE时,直线PP'的直线解析式为y=x,直线PP'与反比例函数的交点为P点;当P'M⊥DE时,过点M作LK⊥x轴,过点P作PL⊥LK交于L点,过点P'作P'K⊥LK交于K点,则△PLM≌△MKP'(AAS),设P(t,),则P'(﹣t,﹣),设M(x,y),根据x+t=﹣y,y+=x﹣t,可求M(,﹣t),再由MP∥DE,建立方程=﹣2,从而求出P点坐标.【解答】解:(1)∵点B坐标为(6,12),∴CB=12,∵BE=2CE,∴CE=4,∴E(6,4),∴反比例函数的解析式为y=;(2)①如图2,过点E作EG⊥x轴,过点M作HG∥x轴,交EG于点G,过点P'作P'H⊥HG交于H 点,∵∠EPP'=90°,∴∠P'MH+∠EMG=90°,∵∠P'MH+∠MP'H=90°,∴∠EMG=MP'H,∵EM=P'M,∴△EGM≌△MHP'(AAS),∴HM=EG,P'H=MG,设M(x,y),∵E(6,4),∴P'(﹣6,﹣4),∴﹣4﹣y=6﹣x,x+6=4﹣y,解得x=4,y=﹣6,∴M(4,﹣6);②能成为直线DE的关联三角形,理由如下:∵D(2,12),E(6,4),∴直线DE的解析式为y=﹣2x+16,当x=时,解得x=4或x=﹣4(舍),∴P(4,2);如图4,当P'M⊥DE时,过点M作LK⊥x轴,过点P作PL⊥LK交于L点,过点P'作P'K⊥LK交于K点,由①可知△PLM≌△MKP'(AAS),∴P'K=LM,PL=MK,设M(x,y),∴x+t=﹣y,y+=x﹣t,解得x=,y=﹣t,∴M(,﹣t),设直线MP的解析式为y=kx+b,∴,∵MP∥DE,∴=﹣2,解得t=2或t=﹣2(舍),∴P(2,6);【点评】本题考查反比例函数的图象及性质,熟练掌握反比例函数的图象及性质,三角形全等的判定及性质,等腰直角三角形的性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19.【分析】根据被开方数越大算术平方根越大,根据不等式的性质,可得答案.【解答】解:>3,﹣1>2>1.故答案为:>.【点评】本题考查了实数大小比较,利用被开方数越大算术平方根越大得出>3是解题关键,又利用了不等式的性质:不等式的两边都加(或减)同一个数(或整式),结果不变,不等式的两边都除以同一个正数,不等号的方向不变.20.【分析】根据方程解的定义和根与系数的关系作答即可.【解答】解:∵方程x2﹣x﹣1=0的两个实数根分别为a,b,∴a2﹣a﹣1=0,a+b=1.∴a2﹣1=a.∴a2+b﹣1=a+b=1.故答案为:1.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.21.【分析】用阴影部分的面积除以正方形的面积即可求得答案.【解答】解:设正方形的边长为2a,则S阴影=S正方形﹣S圆=4a2﹣a2π,∴击中阴影部分的概率是=,故答案为:.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.22.【分析】当b=6时,a=2或4,再分类讨论即可;当b=2n时,让n分别为2,3,4,5,寻找规律即可.【解答】解:当b=6时,a=2或4,当a=2时,6﹣2<c<6+2,即4<c<8,故c=6;当a=4时,6﹣4<c<6+4,即2<c<10,故c=6或8;∴三角形三边长分别为:2,6,6或4,6,6或4,6,8.故答案为:3.n=2时,“幸运三角形”是2,4,4,共1个;n=3时,“幸运三角形”是2,6,6或4,6,6或4,6,8,共3个;3=1+2;n=4时,“幸运三角形”是2,8,8或4,8,8或4,8,10或6,8,8或6,8,10或6,8,12,共,6个;6=1+2+3;n=5时,“幸运三角形”是2,10,10或4,10,10或4,10,12或6,10,10或6,10,12或6,10,14或8,10,10或8,10,12或8,10,14或8,10,16,共10个;10=1+2+3+4;∴“幸运三角形”的个数为:1+2+3+••••••+(n﹣1)=(1+n﹣1)(n﹣1)=n2﹣n.故答案为:n2﹣n.【点评】本题考查了列代数式的知识,找到“幸运三角形”的个数的规律是解题关键.23.【分析】通过证明△ADE∽△FNE,可得=,通过证明点A,点C,点F,点D四点共圆,可得当点F是的中点时,有最大值,即可求解.【解答】解:如图,连接AC,BD交于点O,连接OF,过点F作FN⊥CD于N,∵,∴当有最大值时,有最大值,∵∠ADC=∠FNE=90°,∠AED=∠FEN,∴△ADE∽△FNE,∴=,∵∠ADC=∠AFC=90°,∴点A,点C,点F,点D四点共圆,∴当点F是的中点时,有最大值,∴OF⊥CD,∴OF=AD,ON=AD,∴FN=﹣AD,∴==,∴的最大值为1+=,故答案为:.【点评】本题考查了正方形的性质,相似三角形的判定和性质,确定点F 的位置是解题的关键.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.【分析】(1)设A 型公交车每辆售价为x 万元,B 型公交车每辆售价为y 万元,根据“购买A 型公交车2辆,B 型公交车3辆,共需490万元;购买A 型公交车3辆,B 型公交车2辆,共需460万元”,可列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设该公司计划今年购进m 辆A 型公交车,年载客量总量为w 万人次,则购进(6﹣m )辆B 型公交车,利用年载客量总量=每辆A 型公交车年均载客量×购进A 型公交车数量+每辆B 型公交车年均载客量×购进B 型公交车数量,可找出w 关于m 的函数关系式,由该公司购买A 型和B 型公交车的总费用不超过540万元,可列出关于m 的一元一次不等式,解之可得出m 的取值范围,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设A 型公交车每辆售价为x 万元,B 型公交车每辆售价为y 万元,根据题意得:,解得:.答:A 型公交车每辆售价为80万元,B 型公交车每辆售价为110万元;(2)设该公司计划今年购进m 辆A 型公交车,年载客量总量为w 万人次,则购进(6﹣m )辆B 型公交车,根据题意得:w =12m +15(6﹣m ),即w =﹣3m +90.∵该公司购买A 型和B 型公交车的总费用不超过540万元,∴80m +110(6﹣m )≤540,解得:m ≥4.∵k =﹣3<0,∴w 随m 的增大而减小,∴当m =4时,w 取得最大值,最大值为﹣3×4+90=78(万人次),此时6﹣m =6﹣4=2(辆).答:该公司今年购进4辆A 型公交车,2辆B 型公交车时年载客量总量最多,最多为78万人次.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.25.【分析】(1)将点P的坐标代入抛物线表达式即可求解;(2)若△AMP与△BMP的面积之比是1:4,则AM:BM=1:4,点A、M、B在同一直线上,则x M ﹣x A=x B﹣x M,即可求解;(3)求出直线PB的表达式为:y=(n+2)(x﹣2)+1,P′A的表达式为:y=(m﹣2)(x+2)+1,即可求解.【解答】解:(1)将点P的坐标代入抛物线表达式得:1=4a,解得:a=,则抛物线的表达式为:y=x2;(2)若△AMP与△BMP的面积之比是1:4,则AM:BM=1:4,∵点A、M、B在同一直线上,则4(x M﹣x A)=x B﹣x M,即x B=﹣4x A,联立抛物线和直线AB的表达式得:kx+1=x2,整理得:x A+x B=4k,x A•x B=﹣4①,而x B=﹣4x A②,联立①②并解得:x A=﹣1,k=;(3)点Q的纵坐标为﹣1为定值,理由:点P关于y轴的对称点P′(﹣2,1),直线y=kx+1与y轴交于点M,则点M(0,1),设点A、B的坐标分别为:(m,m2)、(n,n2),由点A、B的坐标得,直线AB的表达式为:y=(m+n)(x﹣m)+m2,将点M(0,1)的坐标代入上式得:1=(m+n)(0﹣m)+m2,整理得:mn=﹣4,由点P、B的坐标得,直线PB的表达式为:y=(n+2)(x﹣2)+1,同理可得,P′A的表达式为:y=(m﹣2)(x+2)+1,联立上述两式得:(n+2)(x﹣2)+1=(m﹣2)(x+2)+1,解得:x=,∵mn=﹣4,则y=(m﹣2)(,+2)+1=×+1=﹣×+1=﹣1,即点Q的纵坐标为﹣1为定值.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系,解决相关问题.26.【分析】(1)可证明△ABE≌△CAD,从而∠CAD=∠ABE,进一步得出结论;(2)①作∠DAF=∠BAC,截取AF=AD,连接BF并延长交DA的延长线于点G,连接DF,可证明△BAF≌△CAD,从而∠ABF=∠ACD,进而得出∠ABF=∠BAE,从而AE∥BG,进而证得AF=AD=AG,从而∠DFG=90°,进而得出AE⊥DF,可证得∠ADF=∠AFD=∠ABC=∠ACB,进一步得出结果;②可证得∠BCD=∠ABE,∠BAE=∠CBD,点A、F、E、D共圆,从而∠BDF=∠BAE,从而得出∠BDF=∠CBD,从而得出△BDF∽△CBD,故,进而得出BD的长,进一步得出DE的值.【解答】(1)证明:∵AB=AC,∠BAE=∠ACE,AE=CD,∴△ABE≌△CAD(SAS),∴∠CAD=∠ABE,∴∠CAD+∠BAD=∠ABE+∠BAD,∴∠BAC=∠ABE+∠BAD,∵∠ADB=90°,∴∠ABE+∠BAD=90°,∴∠BAC=90°,∴AB⊥AC;(2)解:①如图1,∠DAE+∠ABC=90°,理由如下:作∠DAF=∠BAC,截取AF=AD,连接BF并延长交DA的延长线于点G,连接DF,∴∠DAF﹣∠BAD=∠BAC﹣∠BAD,∠ADF=∠AFD,∴∠BAF=∠CAD,∵AB=AC,∴△BAF≌△CAD(SAS),∠ABC=∠ACB,∴∠ABF=∠ACD,∠ADF=∠AFD=∠ABC=∠ACB,∵∠BAE=∠ACD,∴∠ABF=∠BAE,∴AE∥BG,∴,∵E是BD的中点,∴DE=BE,∴AF=AD=AG,∴∠DFG=90°,∴DF⊥BG,∴AE⊥DF,∴∠DAE+∠ADF=90°,∴∠DAE+∠ABC=90°;②如图2,由①知:∠DAE+∠ABC=90°,∵∠ADB=90°,∴∠DAE+∠AED=90°,∴∠AED=∠ABC=∠ACB,∵∠AED=∠BAE+∠ABE,∠BAE=∠ACD,∴∠ABC=∠ACB=∠ACD+∠ABE,∵∠ACB=∠ACD+∠BCD,∴∠BCD=∠ABE,同理可得:∠BAE=∠CBD,∵EF⊥AB,∴∠AFE=90°,∵∠ADB=90°,∴∠AFE+∠ADB=180°,∴点A、F、E、D共圆,∴∠BDF=∠BAE,∴∠BDF=∠CBD,∴△BDF∽△CBD,∴,∴BD2=DF•BC=3×8=24,∴BD=2,∵E是BD的中点,∴DE=.【点评】本题是几何变换综合题,考查了等腰三角形性质,全等三角形的判定和性质,相似三角形的判定和性质,确定圆的条件等知识,解决问题的关键是作辅助线,构造全等三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年四川省成都市中考数学试卷1.一、选择题:(每小题3分,共30分)1. 2cos45°的值等于(A(B(C(D)2.化简( - 3x2)·2x3的结果是(A)- 6x5(B)- 3x5 (C)2x5 (D)6x53.北京奥运会火炬传递以“和谐之旅”为主题,以“点燃激情传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学计数法表示为(A)13.7×104千米(B)13.7×105千米(C)1.37×105千米(D)1.37×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)6 (D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一张电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上6.在函数中,自变量x的取值范围是(A)x≥ - 3 (B)x≤ - 3 (C)x≥ 3 (D )x≤ 37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF8.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A )12πcm 2(B )15πcm 2(C )18πcm 2(D )24πcm 210. 有下列函数:①y = - 3x ;②y = x – 1:③y = -x1 (x < 0);④y = x 2+ 2x + 1.其中当x 在各自的自变量取值范围内取值时,y 随着x 的增大而增大的函数有(A )①② (B )①④ (C )②③(D )③④第Ⅱ卷(非选择题,共70分)注意事项:1. A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
2. 答卷前将密封线内的项目填写清楚。
二、填空题:(每小题4分,共16分) 将答案直接写在该题目中的横线上.11. 现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分别为2甲S =0.32,2乙S =0.26,则身高较整齐的球队是 队.12. 已知x = 1是关于x 的一元二次方程2x 2+ kx – 1 = 0的一个根,则实数k 的值是 . 13. 如图,已知PA 是⊙O 的切线,切点为A ,PA = 3,∠APO = 30°,那么OP = .14. 如图,在平面直角坐标系中,△PQR 是△ABC 经过某种变换后得到的图形,观察点A 与点P ,点B 与点Q ,点C 与点R 的坐标之间的关系.在这种变换下,如果△ABC 中任意一点M 的坐标为(x ,y ),那么它们的对应点N 的坐标是 .三、(第15题每小题6分,第16题6分,共18分) 15. 解答下列各题:(1)计算:231)2008(41-+⎪⎭⎫ ⎝⎛--+- .(2)化简:).4(2)12(22-⋅-+-x xx x x x16. 解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整式解.四、(每小题8分,共16分)17. 如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)18. 如图,已知反比例函数y =xm的图象经过点A (1,- 3),一次函数y = kx + b 的图象经过点A 与点C (0,- 4),且与反比例函数的图象相交于另一点B. (1)试确定这两个函数的表达式;(2)求点B 的坐标.五、(每小题10分,共20分)19. 一不透明纸箱中装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4. (1)从纸箱中随机地一次取出两个小球,求这两个小球上所标的数字一个是奇数另一个是偶数的概率; (2)先从纸箱中随机地取出一个小球,用小球上所标的数字作为十位上的数字;将取出的小球放回后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,则组成的两位数恰好能被3整除的概率是多少?试用树状图或列表法加以说明.20. 已知:在梯形ABCD 中,AD ∥BC ,AB = DC ,E 、F 分别是AB 和BC 边上的点.(1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC.若AD =4,BC=8,求梯形ABCD 的面积ABCD S 梯形的值;(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果FG=k ·EF (k 为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.B 卷 (共50分)一、填空题:(每小题4分,共20分) 将答案直接写在该题目中的横线上. 21. 已知y =31x – 1,那么31x 2– 2xy + 3y 2– 2的值是 . 22. 某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是 .23. 如图,已知点A 是锐角∠MON 内的一点,试分别在OM 、ON 上确定点B 、点C ,使△ABC 的周长最小.写出你作图的主要步骤并标明你所确定的点 (要求画出草图,保留作图痕迹)24. 如果m 是从0,1,2,3四个数中任取的一个数,n 是从0,1,2三个数中任取的一个数,那么关于x 的一元二次方程x 2– 2mx + n 2= 0有实数根的概率为 . 25. 如图,已知A 、B 、C 是⊙O 上的三个点,且AB=15cm ,AC=33cm ,∠BOC=60°.如果D 是线段BC 上的点,且点D 到直线AC 的距离为2,那么BD= cm.二、(共8分)26. 金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的32;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元.工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.三、(共10分)27. 如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧AB上的一个动点(不与点A、点B重合).连结AC、BC,分别与⊙M相交于点D、点E,连结DE.若(1)求∠C的度数;(2)求DE的长;(3)如果记tan∠ABC=y,ADDC=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y.四、(共12分)28. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且ABsin ∠OAB=5.(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式; (2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积Q NR S ∆,求QMN S ∆∶Q NR S ∆的值.(含成都市初三毕业会考)数学参考答案及评分意见A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:(每小题3分,共30分) 1.B ; 2.A ; 3.D ; 4.B ; 5.C ; 6.C ; 7.D ; 8.A ; 9.B ; 10.C .第Ⅱ卷(共70分)二、填空题:(每小题4分,共16分) 11.乙;12.1-13. 14.()x y --,.三、(第15题每小题6分,第16题6分,共18分)15.(1)解:原式2132=+-+ ························ 4分2=. ···························· 2分(2)解:原式21(2)(2)(2)xx x x x x =-++-- ················· 4分212x x =-++31x =+. ·································· 2分 16.解:解不等式10x +>,得1x >-. ···················· 2分解不等式223x x -+≤,得2x ≤. ······················· 2分 ∴不等式组的解集为12x -<≤.························ 1分 ∴该不等式组的最大整数解是2. ························ 1分四、(每小题8分,共16分)17.解:如图,由已知,可得60ACB ∠=,45ADB ∠=.············ 2分∴在Rt ABD △中,BD AB =. 又在Rt ABC △中,tan 60ABBC=,AB BC ∴=3BC AB =. BD BC CD =+,3AB AB CD ∴=+. ·················· 3分180CD AB AB ∴==-180=-(米). ····························· 2分 答:小岛C D ,间的距离为180- ··················· 1分18.解:(1)反比例函数my x=的图象经过点(13)A -,, ABCD31m∴-=,即3m =-. ∴反比例函数的表达式为3y x=-. ······················· 3分一次函数y kx b =+的图象经过点(13)(04)A C --,,,,34k b b +=-⎧∴⎨=-⎩,.解得14k b =⎧⎨=-⎩,. ∴一次函数的表达式为4y x =-. ······················· 3分 (2)由34y x y x ⎧=-⎪⎨⎪=-⎩,消去y ,得2430x x -+=.即(1)(3)0x x --=.1x ∴=或3x =.可得3y =-或1y =-.于是13x y =⎧⎨=-⎩,或31x y =⎧⎨=-⎩,.而点A 的坐标是(13)-,,∴点B 的坐标为(31)-,. ··························· 2分 五、(每小题10分,共20分)19.解:(1)从纸箱中随机地一次取出两个小球,所标数字的所有可能结果有:(12)(13)(14)(23)(24)(34),,,,,,,,,,,,共6种;而所标数字一个是奇数另一个是偶数的有4种. ·················· 3分4263P ∴==. ································ 2分(2)画树状图:或用列表法:第一次 第二次组成的两位数开始1 21 2 3 4 (11) (12) (13) (14) 1 4 (21) (22) (23) (24) (31) 3 41 23 4 14(32) (33) (34) (41) (42)(43) (44)··················· 3分所有可能出现的结果共有16种,其中能被3整除的有5种.516P ∴=. ································· 2分 20.(1)解:由题意,有BEF DEF △≌△.BF DF ∴=. ················· 1分 如图,过点A 作AG BC ⊥于点G . 则四边形AGFD 是矩形.4AG DF GF AD ∴===,.在Rt ABG △和Rt DCF △中,AB DC =,AG DF =, Rt Rt ABG DCF ∴△≌△.(HL )BG CF ∴=. ································ 2分11()(84)222BG BC GF ∴=-=-=.246DF BF BG GF ∴==+=+=. ····················· 2分11()(48)63622ABCD S AD BC DF ∴=+=⨯+⨯=梯形. ············· 1分(2)猜想:CG k =BE (或1BE CG k=). ·················· 1分 证明:如图,过点E 作EH CG ∥,交BC 于点H . 则FEH FGC ∠=∠. 又EFH GFC ∠=∠, EFH GFC ∴△∽△. EF EH GF GC∴=. 而FG k EF =,即GFk EF=. 1EH GC k∴=.即CG k EH =. ······· 2分EH CG ∥,EHB DCB ∴∠=∠.而ABCD 是等腰梯形,B DCB ∴∠=∠.B EHB ∴∠=∠.BE EH ∴=. CG k BE ∴=. ············· 1分B 卷(共50分)一、填空题:(每小题4分,共20分)B FG C D A EH21.1; 22.4;23.分别作点A 关于OM ON ,的对称点A A ''',;连结A A ''',,分别交OM ON ,于点B 、点C ,则点B 、点C 即为所求.(2分)如图所示(2分); 24.34; 25. 二、(共8分)26.解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天. 根据题意,得10113012233x x x ⎛⎫ ⎪++= ⎪ ⎪⎝⎭.解得90x =.经检验,90x =是原方程的根. ························· 3分 22906033x ∴==. 答:甲、乙两队单独完成这项工程各需要60天和90天. ·············· 1分 (2)设甲、乙两队合作完成这项工程需要y 天.则有1116090y ⎛⎫+= ⎪⎝⎭. 解得36y =. ································· 2分 需要施工费用:36(0.840.56)50.4⨯+=(万元). ················ 1分50.450>,∴工程预算的施工费用不够用,需追加预算0.4万元. ··············· 1分三、(共10分)27.解:(1)连结OB OM ,. 则在Rt OMB △中,2OB =,MB ,1OM ∴=.12OM OB =,30OBM ∴∠=.60MOB ∴∠=.连结OA .则120AOB ∠=.1602C AOB ∴∠=∠=. ··························· 3分 [或:延长BO 与O 相交于点F ,连结AF .则有ACB AFB ∠=∠,且90FAB ∠=. 在Rt ABF △中,2BO =,2224BF BO ∴==⨯=.又sin 42AB AFB BF ∠===, 60AFB ∴∠=.AFB ACB ∠=∠,60C ∴∠=.](2)在CDE △和CBA △中,CDE CBA ∠=∠,ECD ACB ∠=∠,CDE CBA ∴△∽△. DE DC AB BC∴=. 连结BD .则90BDC ADB ∠=∠=. 在Rt BCD △中,60BCD ∠=,30CBD ∴∠=.2BC DC ∴=. 12DC BC ∴=.即12DE AB =. 1122DE AB ∴==⨯=. ························ 3分[或:点C 在AB 上移动,C ∴∠恒为60,DE 长始终不变.当点C 移动到BO 延长线与O 交点处时,可求得1sin 30232DE AB ===] (3)连结AE .AB 是M 的直径,90AEB AEC ∴∠=∠=.由ADx DC=,可得AD x DC =,(1)AC AD DC x DC =+=+. 在Rt ACE △中,cos CE ACE AC ∠=,sin AEACE AC∠=,1cos (1)cos 60(1)2CE AC ACE x DC x DC ∴=∠=+=+;3sin (1)sin 60(1)AE AC ACE x DC x DC =∠=+=+. 又由(2),知2BC DC =.112(1)(3)22BE BC CE DC x DC x DC ∴=-=-+=-. ············ 3分在Rt ABE △中,1)3(2tan 1(3)2x DCAE ABC BE x DC +∠===- 3)y x ∴=<<. ························· 1分[或:由(2),知CDE CBA △∽△,DC CE DEBC AC AB∴==. 又由(2),知12DE AB =,2BC DC ∴=,12CEAC =. 连结AE .在Rt ACE △中,由勾股定理,得4AE AC ===.又AD x DC =,即111AD x AC x DC DC +=⇒=. 而2tan122ACAE AE y ABEBE BC CE DC AC =∠===--1)1)2(03)1141324121x x x DC x x AC x ++====<<-----+]四、(共12分)28.解:(1)如图,过点B作BD OA ⊥于点D . 在Rt ABD △中,AB=sin OAB ∠=sin 3BDAB OAB ∴=∠==. 又由勾股定理, 得6AD ===.1064OD OA AD ∴=-=-=.点B 在第一象限内,∴点B 的坐标为(43),. ∴点B 关于x 轴对称的点C 的坐标为(43)-,. ·················· 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ·········· 2分(2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-. 对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,. 而点(43)C -,,1(63)P ∴-,. 在四边形1PAOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ························ 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =.将点(43)C -,代入,得143k =-.134k ∴=-.∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=.11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,; 而点(100)A ,,2(612)P ∴-,.过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点. ························ 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+. 将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =. 由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,. 而点(00)O ,,3(147)P ∴,. 过点3P 作3P Fx ⊥轴于点F ,则37P F =.在3Rt OP F △中,由勾股定理,得3OP ==而CA AB ==∴在四边形3POCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ························· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ··················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,, 22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭. 3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△.················· 2分 ②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N . 同理,可得:3:20QNM QNR S S =△△. ······················1分 综上可知,:QNM QNR S S △△的值为3:20. ···················· 1分。