4—简单的线性规划基本不等式

4—简单的线性规划基本不等式
4—简单的线性规划基本不等式

4—简单的线性规划、基本不等式知识块一:求目标函数的最值

归纳起来常见的命题角度有:(1)求线性目标函数的最值;(2)求非线性目标的最值;

(3)求线性规划中的参数、

角度一:求线性目标函数的最值

1.设x,y满足约束条件

??

?

??x+y-7≤0

x-3y+1≤0

3x-y-5≥0

则z=2x-y的最大值为()

A.10

B.8

C.3

D.2

解析:选B作出可行域如图中阴影部分所示,由z=2x-y得y=2x-z,作出直线

y=2x,平移使之经过可行域,观察可知,当直线经过点A(5,2)时,对应的z值最大.故z max

=2×5-2=8、

2.若x,y满足

??

?

??y≤1

x-y-1≤0

x+y-1≥0

则z=3x+y的最小值为________、

解析:根据题意画出可行域如图,由于z=3x+y对应的直线斜率为-3,且z与x正相关,结合图形可知,当直线过点A(0,1)时,z取得最小值1、

答案:1

角度二:求非线性目标的最值

3.在平面直角坐标系xOy中,M为不等式组

?

?

?2x-y-2≥0

x+2y-1≥0

3x+y-8≤0

所表示的区域上一动点,则直线OM斜率的最小值为()

A.2

B.1

C.-

1

3 D.-

1

2

解析:选C已知的不等式组表示的平面区域如图中阴影所示,显然当点M与点

A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0与3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13

4.

设实数x ,y 满足不等式组???

x +y ≤2

y -x ≤2

y ≥1

则x 2+y 2的取值范围就是( )

A.[1,2]

B.[1,4]

C.[2,2]

D.[2,4]

解析:选B 如图所示,不等式组表示的平面区域就是△ABC 的内部(含边界),x 2+y 2表示的就是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围就是[1,4].

角度三:求线性规划中的参数 5.若x ,y 满足???

??

x +y -2≥0kx -y +2≥0

y ≥0且z =y -x 的最小值为-4,则k 的值为( )

A.2

B.-2 C 、1

2

D.-12

解析:选D

作出线性约束条件????

?

x +y -2≥0kx -y +2≥0

y ≥0

的可行域.当k >0时,如图①所示,此时可行域为y 轴上

方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.

当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.

当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ? ?????

-2k 0,C (0,2)所围成的三角形区域,当直线z =y -x

经过点B ? ??

?

??-2k 0时,有最小值,即-????-2k =-4?k =-1

2、故选D 、

6.x ,y 满足约束条件???

x +y -2≤0

x -2y -2≤0

2x -y +2≥0、

若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )

A 、

12或-1 B.2或1

2

C.2或1

D.2或-1

解析:选D 法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B

=-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2、

法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2、

一、选择题

1.已知点(-3,-1)与点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A.(-24,7) B.(-7,24)

C.(-∞,-7)∪(24,+∞)

D.(-∞,-24)∪(7,+∞)

解析:选B

根据题意知(-9+2-a )·(12+12-a )<0、 即(a +7)(a -24)<0,解得-7<a <24、

2.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件?

????

x +|y |≤1

x ≥0则z =OA ·

OP 的最大值为( ) A.-2 B.-1 C.1 D.2

解析:选D 如图作可行域,

z =OA ·

OP =x +2y ,显然在B (0,1)处z max =2、故选D 、

3.设动点P (x ,y )在区域Ω:???

x ≥0

y ≥x

x +y ≤4

上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,

则以AB 为直径的圆的面积的最大值为( )

A.π

B.2π

C.3π

D.4π

解析:选D 作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π

×????422

=4π,故选D 、

4.变量x ,y 满足约束条件???

??

y ≥-1

x -y ≥2

3x +y ≤14若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取

值集合就是( )

A.{-3,0}

B.{3,-1}

C.{0,1}

D.{-3,0,1}

解析:选B 作出不等式组所表示的平面区域,如图所示.

易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3、故选B 、

5.设x ,y 满足约束条件?

????

x +y ≥a

x -y ≤-1且z =x +ay 的最小值为7,则a =( )

A.-5

B.3

C.-5或3

D.5或-3

解析:选B 法一:联立方程?????

x +y =a

x -y =-1解得

?

??

x =

a -12

y =

a +12

代入x +ay =7中,解得a =3或-5,当a =

-5时,z =x +ay 的最大值就是7;当a =3时,z =x +ay 的最小值就是7,故选B 、

法二:先画出可行域,然后根据图形结合选项求解.

当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).

图(1)

由?????

x -y =-1x +y =-5

得交点A (-3,-2), 则目标函数z =x -5y 过A 点时取得最大值. z max =-3-5×(-2)=7,不满足题意,排除A,C 选项. 当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分

).

图(2)

由?????

x -y =-1x +y =3

得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意. 答案:4

6.设D 为不等式组???

x ≥02x -y ≤0

x +y -3≤0

所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为

________.

解析:作出可行域,如图中阴影部分所示,则根据图形可知,点B (1,0)到直线2x -y =0的距离最小,d =|2×1-0|22

+1

=255,故最小距离为25

5、

答案:255

7.设x ,y 满足约束条件???

x ≥0

y ≥0

x 3a +y

4a

≤1若z =

x +2y +3x +1

的最小值为3

2,则a 的

值为________.

解析:∵x +2y +3x +1=1+2(y +1)x +1,

y +1

x +1

表示过点(x ,y )与(-1,-1)连线的斜率, 易知a >0,

∴可作出可行域,由题意知y +1x +1的最小值就是14,即? ????y +1x +1min =0-(-1)3a -(-1)=13a +1=1

4?a =1、 答案:1

8.若x ,y 满足约束条件???

x +y ≥1

x -y ≥-1

2x -y ≤2、

(1)求目标函数z =12x -y +1

2

的最值;

(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围.

解:(1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y +1

2=0,过A (3,4)

取最小值-2,过C (1,0)取最大值1、

所以z 的最大值为1,最小值为-2、

(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a

2<2,解得-4<a <2、

故所求a 的取值范围为(-4,2).

知识块二:基本不等式

考点一 利用基本不等式证明不等式

1.基本不等式ab ≤

a +b

2

,成立的条件:一正、二定、三相等 2.几个重要的不等式:(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a

b ≥2(a ,b 同号).(3)ab ≤????a +b 22(a ,b ∈R ). (4)a 2+b 22≥

????a +b 22(a ,b ∈R ).

[典题例析]

设a ,b ,c 都就是正数,求证:bc a +ac b +ab

c ≥a +b +c 、

证明:∵a ,b ,c 都就是正数, ∴bc a ,ca b ,ab

c

都就是正数.

∴bc a +ca

b

≥2c ,当且仅当a =b 时等号成立, ca b +ab

c

≥2a ,当且仅当b =c 时等号成立, ab c +bc

a

≥2b ,当且仅当a =c 时等号成立. 三式相加,得2????

bc a +ca b +ab c ≥2(a +b +c ),

即bc a +ca b +ab

c

≥a +b +c ,当且仅当a =b =c 时等号成立. [类题通法]

利用基本不等式证明不等式的方法技巧

利用基本不等式证明不等式就是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.

[演练冲关]

设a ,b 均为正实数,求证:1a 2+1

b 2+ab ≥22、

证明:由于a ,b 均为正实数, 所以1a 2+1b

2≥2

1a 2·1b 2=2ab

, 当且仅当1a 2=1

b 2,即a =b 时等号成立,

又因为2

ab

+ab ≥2

2ab

·ab =22, 当且仅当2

ab =ab 时等号成立,

所以1a 2+1b 2+ab ≥2

ab

+ab ≥22,

当且仅当?????

1a 2

=1

b 2

2

ab =ab

即a =b =4

2时取等号.

考点二 利用基本不等式求最值

已知x >0,y >0,则:

(1)如果积xy 就是定值p ,那么当且仅当x =y 时,x +y 有最小值就是2p 、(简记:积定与最小) (2)如果与x +y 就是定值p ,那么当且仅当x =y 时,xy 有最大值就是p 2

4

、(简记:与定积最大)

[一题多变]

[典型母题]

[题点发散1] 本例的条件不变,则????1+1a ???

?1+1

b 的最小值为________. 解析:????1+1a ????1+1b =? ????1+a +b a ? ????1+a +b b =????2+b a ·????2+a b =5+2????b a +a b ≥5+4=9、当且仅当a =b =12时,取等号.

答案:9

[题点发散2] 本例的条件与结论互换即:已知a >0,b >0,1a +1

b =4,则a +b 的最小值为________.

解析:由1a +1b =4,得14a +1

4b

=1、

∴a +b =????14a +14b (a +b )=12+b 4a +a 4b ≥1

2+2b 4a +a

4b

=1、 当且仅当a =b =1

2时取等号.

答案:1

[题点发散3] 若本例条件变为:已知a >0,b >0,a +2b =3,则2a +1

b 的最小值为________.

解析:由a +2b =3得13a +2

3b =1,

∴2a +1b =????13a +23b ????2a +1b =43+a 3b +4b

3a ≥4

3+2a 3b ·4b 3a =83、当且仅当a =2b =3

2

时,取等号. 答案:83

[题点发散4] 本例的条件变为:已知a >0,b >0,c >0,且a +b +c =1,则1a +1b +1

c 的最小值为________.

解析:∵a >0,b >0,c >0,且a +b +c =1,

∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b

c =3+????b a +a b +????c a +a c +????c b +b c ≥3+2+2+2=9、

当且仅当a =b =c =1

3时,取等号.

答案:9

[题点发散5] 若本例变为:已知各项为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m ·a n =22a 1,则1m +4

n

的最小值为________.

解析:设公比为q (q >0),由a 7=a 6+2a 5?a 5q 2=a 5q +2a 5?q 2-q -2=0(q >0)?q =2、

a m ·a n =22a 1?a 12m -1·a 12n -1=8a 21?2m -1·2n -1

=8?m +n -2=3?m +n =5,则1m +4n =15????1m +4n (m +n )=15????5+

????n m +4m n ≥15(5+24)=95

, 当且仅当n =2m =10

3时等号成立.

答案:95

考点三 基本不等式的实际应用

[典题例析]

某厂家拟在2014年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-

k

m +1

(k 为常数),如果不搞促销活动,则该产品的年销售量只能就是1万件.已知2014年生产该产品的固定投入为8万元.每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1、5倍(产品成本包括固定投入与再投入两部分资金).

(1)将2014年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2014年的促销费用投入多少万元时,厂家的利润最大? 解:(1)由题意知,当m =0时,x =1(万件), ∴1=3-k ?k =2,∴x =3-2

m +1

,

每件产品的销售价格为1、5×8+16x

x (元),

∴2014年的利润y =1、5x ×8+16x

x

-8-16x -m

=-????

??16m +1+(m +1)+29(m ≥0).

(2)∵m ≥0时,16

m +1+(m +1)≥216=8,

∴y ≤-8+29=21,

当且仅当16

m +1

=m +1?m =3(万元)时,y max =21(万元).

故该厂家2014年的促销费用投入3万元时,厂家的利润最大为21万元. 1.已知f (x )=x +1

x -2(x <0),则f (x )有 ( )

A.最大值为0

B.最小值为0

C.最大值为-4

D.最小值为-4

解析:选C ∵x <0,∴f (x )=- ????(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1

-x ,即x =-1时取等

号.

2.已知不等式(x +y )????

1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值就是( ) A.2 B.4 C.6

D.8

解析:选B (x +y )????1x +a y =1+a +y x +ax

y ≥1+a +2a ,∴当1+a +2a ≥9时不等式恒成立,故a +1≥3,a ≥4、

3.若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值就是( ) A.0 B.1 C.2

D 、52

解析:选B ∵a >1,b >1,∴lg a >0,lg b >0、 lg a ·lg b ≤(lg a +lg b )24=(lg ab )2

4=1、

当且仅当a =b =10时取等号.

4.设OA =(1,-2),OB =(a ,-1),OC =(-b,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1

b 的最

小值就是( ) A.4 B 、9

2

C.8

D.9

解析:选D ∵AB =OB -OA =(a -1,1), AC =OC -OA =(-b -1,2),

若A ,B ,C 三点共线, 则有AB ∥AC ,

∴(a -1)×2-1×(-b -1)=0, ∴2a +b =1,

又a >0,b >0,

∴2a +1b =????

2a +1b ·(2a +b )

=5+2b a +2a

b

≥5+2

2b a ×2a b

=9, 当且仅当??

?

2b a =2a b

2a +b =1

即a =b =1

3

时等号成立.故选D 、

5.函数y =x 2+2

x -1(x >1)的最小值就是( )A.23+2 B.23-2C.2 3 D.2

解析:选A ∵x >1,∴x -1>0、

∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1

=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2

≥2

(x -1)? ??

??

3x -1+2=23+2、

当且仅当x -1=3

x -1

,即x =1+3时,取等号.

6.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值就是________.

解析:依题意得a ,b 同号,于就是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值就是20、

答案:20

7.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________.

解析:因为x >1,所以x -1>0、又x +1x -1=x -1+1x -1

+1≥2+1=3,当且仅当x =2时等号成立,所以a 的最大值为3、

答案:3

8.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解:(1)由2x +8y -xy =0,

得8x +2y =1, 又x >0,y >0, 则1=8x +2y ≥2

8x ·2y =8xy

, 得xy ≥64,

当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64、 (2)由2x +8y -xy =0,得8x +2

y =1,

则x +y =????8x +2y ·(x +y )=10+2x y +8y x ≥10+2

2x y ·8y

x

=18、 当且仅当x =12且y =6时等号成立, ∴x +y 的最小值为18、

不等式经典题型专题练习(含答案)-

不等式经典题型专题练习(含答案) :__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 25 233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21{ 23x a x b -<->的解集为-1

5.解不等式组:并写出它的所有的整数解. 6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,数a的取 值围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解. 8.已知关于x的不等式组的整数解共有5个,求a的取值围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值围.

10.解不等式组5134122 x x x x ->-???--??≤并求它的整数解的和. 11.已知x ,y 均为负数且满足:232x y m x y m +=-?? -=?①②,求m 的取值围. 12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225 x y m x y m +=+??-=-?的解是一对正数,则: (1)求m 的取值围 (2)化简:42m m -++ 15.我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

4 第4讲 基本不等式

第4讲 基本不等式 1.基本不等式:ab ≤ a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. (3)其中a +b 2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤???? a + b 22 (a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥ ????a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 2 4 .(简记:和定积最大) 判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1 x 的最小值是2.( ) (2)ab ≤???? a + b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +y x ≥2”的充要条件.( ) (4)若a >0,则a 3+1 a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× (教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析:选C.xy ≤????x +y 22 =???? 1822 =81,当且仅当x =y =9时等号成立,故选C.

高考数学一轮复习第六篇不等式第4节基本不等式训练理新人教版

第4节基本不等式 知识点、方法题号 利用基本不等式比较大小、证明2,3 利用基本不等式求最值1,4,7,9,11,13 基本不等式的实际应用6,12,14 基本不等式的综合应用5,8,10 基础巩固(时间:30分钟) 1.已知f(x)=x2(x<0),则f(x)有( C ) (A)最大值0 (B)最小值0 (C)最大值4 (D)最小值4 解析:因为x<0,所以f(x)=(x)2≤=4,当且仅当x=,即x=1时取等号. 选C. 2.下列不等式一定成立的是( C ) (A)lg(x2)>lg x(x>0) (B)sin x≥2(x≠kπ,k∈Z) (C)x21≥2|x|(x∈R) (D)>1(x∈R) 解析:当x>0时,x2≥2·=x,所以lg(x2)≥lg x(x>0),故选项A不正确当2kππ

解析:由ab=1,可得a2bab=1, 因为2ab≤a2b2,当且仅当a=b时取等号. 所以2ab2≥1, 则a2b2≥. 当a,b异号时,不妨取a=1,b=2,易知A,C,D都不正确. 故选B. 4.导学号 38486112(2017·枣庄一模)若正数x,y满足=1,则3x4y的最小值是( C ) (A)24 (B)28 (C)25 (D)26 解析:因为正数x,y满足=1, 则3x4y=(3x4y)( )=13≥133×2=25, 当且仅当x=2y=5时取等号. 所以3x4y的最小值是25. 故选C. 5.导学号 38486113(2017·平度二模)若直线2mxny2=0 (m>0,n>0)过点(1,2),则最小值 ( D ) (A)2 (B)6 (C)12 (D)32 解析:因为直线2mxny2=0(m>0,n>0)过点(1,2), 所以2m2n2=0,即mn=1, 因为=()(mn)=3≥32, 当且仅当=,即n=m时取等号, 所以的最小值为32, 故选D. 6.(2017·河北邯郸一模)已知棱长为的正四面体ABCD(四个面都是正三角形),在侧棱AB 上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则的最小值为( C ) (A) (B)4 (C) (D)5 解析:由题意可得, a·S△BCD bS△ACD=h·S△BCD,其中S△BCD=S△ACD,h为正四面体ABCD的高. h==2, 所以ab=2.

高二数学不等式练习题及答案

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1 +a ≥2 (a ≠0) (C )a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

6-4第四节 基本不等式练习题(2015年高考总复习)

第四节 基本不等式 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.设a ,b ∈R ,已知命题p :a 2+b 2≤2ab ;命题q :? ?? ??a +b 22≤a 2+b 2 2,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 解析 命题p :(a -b )2≤0?a =b ;命题q :(a -b )2≥0.显然,由p 可得q 成立,但由q 不能推出p 成立,故p 是q 的充分不必要条件. 答案 B 2.已知f (x )=x +1 x -2(x <0),则f (x )有( ) A .最大值为0 B .最小值为0 C .最大值为-4 D .最小值为-4 解析 ∵x <0,∴-x >0. ∴x +1 x -2=-? ?? ??-x +1-x -2≤-2 (-x )·1 -x -2=-4, 当且仅当-x =1 -x ,即x =-1时,等号成立. 答案 C 3.下列不等式:①a 2 +1>2a ;②a +b ab ≤2;③x 2 +1x 2+1≥1,其 中正确的个数是( ) A .0 B .1

C .2 D .3 解析 ①②不正确,③正确,x 2 +1x 2+1=(x 2 +1)+1x 2+1-1≥2 -1=1. 答案 B 4.(2014·云南师大附中模拟)已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t 的值为( ) A .2 B .4 C .2 2 D .2 5 解析 当a >0,b >0时,有ab ≤(a +b )24=t 24,当且仅当a =b =t 2时取等号.∵ab 的最大值为2,∴t 2 4=2,t 2=8,∴t =8=2 2. 答案 C 5.(2014·山东师大附中模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5 D .6 解析 由x +3y =5xy ,可得x xy +3y xy =5,即1y +3x =5,∴15y +3 5x =1,∴3x +4y =(3x +4y )? ????15y +35x =95+45+3x 5y +12y 5x ≥135+23x 5y ×12y 5x = 135+12 5=5. 答案 C 6.(2014·湖北八校联考)若x ,y ∈(0,2]且xy =2,使不等式a (2x +y )≥(2-x )(4-y )恒成立,则实数a 的取值范围为( )

不等式练习题(带答案)

不等式基本性质练习 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)( (b a b a ++ 的最小值是 ( ) A .2 B .22 C .24 D .4 2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的 ( ) A .必要条件 B .充分条件 C .充要条件 D .必要或充分条件 3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是 ( ) A . 111<+ b a B .111≥+b a C . 211<+ b a D . 211≥+b a 4.已知a 、b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是 ( ) A .a c ≥b B .a b ≥c C .bc ≥a D .a b ≤c 5.设a =2,b=37- ,26- = c ,则a 、b 、c 间的大小关系是 ( ) A .a >b>c B .b>a >c C .b>c>a D .a >c>b 6.已知a 、b 、m 为正实数,则不等式 b a m b m a >++ ( ) A .当a < b 时成立 B .当a > b 时成立 C .是否成立与m 无关 D .一定成立 7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是 ( ) A .P ≥Q B .P ≤Q C .P>Q D . P b 且a + b <0,则下列不等式成立的是 ( ) A . 1>b a B . 1≥b a C . 1

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理 一、选择题 1.若x >0,则x +4 x 的最小值为( ). A .2 B .3 C .2 2 D .4 解析 ∵x >0,∴x +4 x ≥4. 答案 D 2.已知a >0,b >0,a +b =2,则y =1a +4 b 的最小值是( ). A.72 B .4 C.9 2 D .5 解析 依题意得1a +4b =12? ????1a +4b (a +b )=12??????5+? ????b a +4a b ≥12? ? ???5+2 b a ×4a b =9 2 , 当且仅当????? a + b =2b a = 4a b a >0,b >0 ,即a =2 3 , b =4 3时取等号,即1a +4b 的最小值是9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a 和b (a a 2 -a 2 a + b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4

C.a +b 有最大值 2 D .a 2+b 2 有最小值 22 解析 由基本不等式,得ab ≤ a 2+ b 2 2 = a +b 2 -2ab 2,所以ab ≤14,故B 错;1a +1b = a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2 -2ab =1-2ab ≥1-2×14=12,故D 错. 答案 C 5.已知x >0,y >0,且2x +1y =1,若x +2y >m 2 +2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ?? ??2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2 +2m 恒成立, 只需(x +2y )min >m 2 +2m 恒成立, 即8>m 2 +2m ,解得-40),l 1与函数y =|log 2x |的图象从左至右相 交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,b a 的最小值为 ( ). A .16 2 B .8 2 C .83 4 D .434 解析 如图,作出y =|log 2x |的图象,由图可 知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -

3.4基本不等式(第一课时)

3.4 基本不等式: 2b a a b + ≤(第一课时) 教学设计 一、教学内容解析 (一)教材的地位和作用 本节课是人教版《数学》必修5第三章第四节(第一课时),基本不等式是高中数学中一个非常重要的不等式,它是解决一些简单的最大(小)值问题的最基本也是最重要的方法。在前几节课刚刚学习了不等式的性质、一元二次不等式、二元一次不等式组与线性规划问题,这些内容为本节课打下了坚实的基础,同时基本不等式的学习为今后解决最值问题提供了新的方法。 本节内容是在系统的复习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。教材通过赵爽弦图回顾基本不等式,在代数证明的基础上,通过“探究”引导学生回顾基本不等式的几何意义,并给出在解决函数最值和实际问题中应用,在知识体系中起着承上启下的作用;从知识的应用价值上看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法(如数形结合、抽象归纳、演绎推理、分析法证明等)在各种不等式的研究中均有着广泛的应用;从内容的人文价值上看,基本不等式的探究、推导和应用需要学生观察、分析、猜想、归纳和概括等,有助于培养学生思维能力和探索精神,是培养学生数形结合意识和提高数学能力的良好载体. (二)教学目标 1. 通过实例探究,引导学生从几何图形中获得重要不等式,并通过类比的和代换的思想得到基本不等式,让体会数形结合的思想,经历从特殊到一般的思维过程,进一步提高学生学习数学、研究数学的兴趣; 2. 从结构、形式等方面进一步认识基本不等式; 3. 经历由实际问题推导出基本不等式,在回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程。 (三)教学重点与难点 重点:应用数形结合的思想理解不等式,并从不同角度认识基本不等式。 难点:在几何背景下抽象出基本不等式的过程;使用基本不等式解决求最值问题时的条件的认识。 二、学生学情分析: 在初中阶段,学生学习了平方、开方、勾股定理、圆、射影定理等概念,高中阶段学生学习了基本初等函数及其性质,加上刚学过的不等关系与不等式的性质,学生对不等式有了初步的了解和应用,但本节内容,变换灵活,应用广泛,条件有限制,考察了学生属性结合、转化化归等数学思想,对学生能灵活应用数

高中不等式的基本知识点和练习题(含答案)

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则不等式的解的各种情况 如下表: 2、简单的一元高次不等式的解法: 标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3 3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥?? ≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < ()f x

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

高中数学 3.4 基本不等式(第1课时)练习

【成才之路】2015版高中数学 3.4 基本不等式(第1课时)练习 一、选择题 1.函数f(x)=x x +1的最大值为 ( ) A.2 5 B .1 2 C.2 2 D .1 [答案] B [解析] 令t =x (t≥0),则x =t2, ∴f(x)=x x +1=t t2+1. 当t =0时,f(x)=0; 当t>0时,f(x)=1t2+1t =1t +1t . ∵t +1t ≥2,∴0<1t +1t ≤1 2. ∴f(x)的最大值为1 2. 2.若a≥0,b≥0,且a +b =2,则 ( ) A .ab≤1 2 B .ab≥1 2 C .a2+b2≥2 D .a2+b2≤3 [答案] C [解析] ∵a≥0,b≥0,且a +b =2, ∴b =2-a(0≤a≤2), ∴ab =a(2-a)=-a2+2a =-(a -1)2+1. ∵0≤a≤2,∴0≤ab≤1,故A 、B 错误; a2+b2=a2+(2-a)2=2a2-4a +4 =2(a -1)2+2. ∵0≤a≤2,∴2≤a2+b2≤4.故选C. 3.设0<a <b ,且a +b =1,则下列四个数中最大的是 ( ) A.1 2 B .a2+b2 C .2ab D .a [答案] B [解析] 解法一:∵0<a <b ,∴1=a +b >2a ,∴a <1 2, 又∵a2+b2≥2ab ,∴最大数一定不是a 和2ab ,

∵1=a +b >2ab , ∴ab <14, ∴a2+b2=(a +b)2-2ab =1-2ab >1-12=12, 即a2+b2>12.故选B. 解法二:特值检验法:取a =13,b =23,则 2ab =49,a2+b2=59, ∵59>12>49>13,∴a2+b2最大. 4.(2013·湖南师大附中高二期中)设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小 值为 ( ) A .8 B .4 C .1 D .14 [答案] B [解析] 根据题意得3a·3b =3,∴a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥4. 当a =b =12时“=”成立.故选B. 5.设a 、b ∈R +,若a +b =2,则1a +1b 的最小值等于 ( ) A .1 B .3 C .2 D .4 [答案] C [解析] 1a +1b =12??? ?1a +1b (a +b) =1+12??? ?b a +a b ≥2,等号在a =b =1时成立. 6.已知x>0,y>0,x 、a 、b 、y 成等差数列,x 、c 、d 、y 成等比数列,则 a + b 2cd 的最小值是 ( ) A .0 B .1 C .2 D .4 [答案] D [解析] 由等差、等比数列的性质得 a + b 2cd =x +y 2xy =x y +y x +2≥2y x ·x y +2=4.当且仅当x =y 时取等号,∴所求最小值为4. 二、填空题

不等式计算专项练习及答案

不等式计算专项练习 一、解答题 1.解不等式组,并且把解集在数轴上表示出来. 2.求不等式组的整数解. 3.计算下列不等式(组): (1)x-<2-. (2)-2≤≤7 (3); (4) 4.已知:y1=x+3,y2=-x+2,求满足下列条件时x的取值范围:(1)y1<y2 (2)2y1-y2≤4 5.解不等式组: 6.求下列不等式组的解集 7.(1)计算:(-2)-2×|-3|-()0 (2)解不等式组: 8.解不等式组,并指出它的所有整数解. 9.解不等式组:,并写出该不等式组的整数解.

11.解不等式组并写出的所有整数解. 12.(1)解方程:. (2)求不等式组:. 13.求不等式组的整数解. 14.(1)解不等式组:并把解集在数轴上表示出来. (2)解不等式组: 15.求不等式组的非负整数解. 16.解不等式(组),并把它们的解集在数轴上表示出来 (1); (2) 17.(1)解不等式组 (2)在(1)的条件下化简:|x+1|+|x-4| 18.已知关于x,y的方程组的解为正数. (1)求a的取值范围; (2)化简|-4a+5|-|a+4|. 19.(1)解不等式2->+1,并把它的解集在数轴上表示出来; (2)求不等式组的整数解. 20.解不等式组:. 21.解不等式组 22.解不等式组,并把它们解集表示在数轴上,写出满足该不等式组的 所有整数解.

23.解不等式组:;在数轴上表示出不等式组的解集,并写出它的整数 解. 24.解不等式组:. 25.解不等式组 26.解不等式组 ) 27.当x 是不等式组 的正整数解时,求多项式(1﹣3x )(1+3x )+(1+3x ) 2 +(﹣x 2)3÷x 4的值. 28.解方程与不等式组: 解方程:;解不等式组: 29.解不等式组. 30.解不等式组,并写出不等式组的整数解. 31.(1)解不等式组: (2)解方程: 32.解不等式组: . 33.解不等式组,并在数轴上表示它的解集. 34.(1)解方程: ; (2)解不等式组: ,并把解集在数轴上表示出来.

基本不等式(含答案)

§3.4 基本不等式:ab ≤ a + b 2 材拓展 1.一个常用的基本不等式链 设a >0,b >0,则有: min{a ,b }≤21a +1b ≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立. 若a >b >0,则有: b <21a +1b 0,则a b +b a ≥2. 3.利用基本不等式求最值的法则 基本不等式ab ≤a +b 2 (a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时, 等号成立. (2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立. 注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”. 4.函数f (x )=x +k x (k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x (k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x (k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增. 因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x (k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

2021 第7章 第4节 基本不等式

第四节 基本不等式 [最新考纲] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 1.基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)x +y ≥2xy ,若xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). (2)xy ≤? ???? x +y 22 ,若x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值q 24(简记:和定积最大).

[常用结论 ] 重要不等式链 若a ≥b >0,则a ≥ a 2+ b 22≥a +b 2≥ab ≥2ab a + b ≥b . 一、思考辨析(正确的打“√”,错误的打“×”) (1)函数y =x +1 x 的最小值是2. ( ) (2)函数f (x )=cos x +4cos x ,x ∈? ? ???0,π2的最小值等于4. ( ) (3)x >0,y >0是x y +y x ≥2的充要条件. ( ) (4)若a >0,则a 3+1 a 2的最小值为2a . ( ) [答案] (1)× (2)× (3)× (4)× 二、教材改编 1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 C [xy ≤? ???? x +y 22 =81,当且仅当x =y =9时,等号成立.故选C.] 2.若x >0,则x +4 x ( ) A .有最大值,且最大值为4 B .有最小值,且最小值为4 C .有最大值,且最大值为2 2 D .有最小值,且最小值为2 2 B [x >0时,x +4 x ≥2 x ×4 x =4,当且仅当x =2时等号成立.故选B.] 3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是 m 2. 25 [设一边长为x m ,则另一边长可表示为(10-x )m ,

一元一次不等式精选拔高专题及答案

不等式与不等式组专题 一、选择题 1. 如果a 、b 表示两个负数,且a <b ,则( ). (A)1>b a (B)b a <1 (C)b a 11< (D)ab <1 2. a 、b 是有理数,下列各式中成立的是( ). (A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( D ). (A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ). (A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 6. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人 分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人 7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种 出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( B ). (A)11 (B)8 (C)7 (D)5 8. 若不等式组? ??>≤+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ). (A)m ≤2 (B)m ≥2 (C)m ≤1 (D)m ≥1 10. 对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知34 11<

相关文档
最新文档