第三章 金属自由电子理论

第三章金属自由电子理论

Free Electronic Theory of Metals

3.0

3.1

3.1

3.1

3.2

3.2

3.3

3.3

3.3

3.3

3.3

3.3

3.4

3.4

3.4

3.4

3.5

3.5

3.5

金属自由电子气理论

金属自由电子气理论 特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量 自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率 特鲁德(Paul Drude )模型的基本假设1 1.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似:电子与电子之间的相互作用可以忽略不计。外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。) 特鲁德(Paul Drude )模型的基本假设2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ?==-??=??-?? =+??=????==???=-?? 2.经典模型的另一困难:传导电子的热容 根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故 333 (),222 A B e U U N k T RT C R T ?====? 33/29v ph e C C C R R =+=+≈(卡/molK.) 但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。 4.2 Sommerfeld 的自由电子论 1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论 抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。 量子力学的索末菲模型 1、独立电子近似:所有离子实提供正电背景,忽略电子与电子之间的相互作用。 2、自由电子近似:电子与原子实之间的相互作用也被忽略。 3、采用费米统计以代替玻尔兹曼统计。 传导电子的索末菲模型

固体物理学概念和习题答案

《固体物理学》概念和习题 固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

金属自由电子理论

第四章金属自由电子理论 1.金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k空间的等能面和费米面是何形状?费米能量与哪些因素有关? 解:金属自由电子论在k空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么? 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么?它与哪些因素有关? 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差? 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,

所以这2块金属接触时,会产生接触电势差。 6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?= k 2 …………………………(2) 又由于 m k E 22 2 = 所以 m k dk dE 2 = …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为: E m L E 22)( πρ= …………………………(4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

金属中的电子气的理论

金属中的电子气的理论 金属中的自由电子并非真正自由,而是要受到金属离子的周期势场的作用,因此一些自由电子理论并不能解释金属的全部性质。由F.布洛赫和 .布里渊确立的单电子能带论解释了金属导电性与绝缘体和半导体的差别(见能带理论,半导体),并能定量计算金属的结合能,在考虑了金属离子的热运动的影响后,在描述金属的导电和导热等输运过程方面均取得了很大成功。金属中自由电子之间有很强的相互作用,在低温下考虑了电子通过晶格推动相互耦合就能很好地解释单电子理论无法解释的超导电性。近年来,研究合金中电子运动规律的合金电子理论也是金属电子论中的重要内容。 一、托马斯-费米近似方法 在相互作用强度很大的情况下,相互作用能在系统能量中占主导地位,相比之下,处于基态的系统的粒子由于受到非常强的相互排斥作用,其运动范围受到了限制,因此,动能就会远小于相互作用能。这时候,哈密顿量中的动能就可以忽略掉,被称为托马斯-费米(Thomas-Fermi)近似。一维定态GP 方程变为 则玻色子的密度分布为

同时玻色子密度分布的边界满足,在外势为简谐势的情况 我们得到凝聚体的半径为 则系统的粒子数为 将上式变换一下,得到化学势μ 满足 其中单粒子基态的特征半径为 边界R满足 化学势u和边界R都是随着粒子个数N和相互作用强度U1的增加而增加的。

在处理多电子原子问题中,、通常采用Hartree-Fook近似方法比较好,但是计算比较繁复,工作量大,在电子计算机使用以后,可以帮助人们进行大量的计算,减轻人们的负担,但用电子计算机计算有一个缺点,就是计算机只能进行数值计算,而不能解出一般形式,我们希望能找出一个普遍形式,这样对各种具体问题都能适用。 费米模型认为将金属中电子看作限制在边长为a的立方体盒子中运动.盒子内部势能为0.盒外势能为无限大,这样通过解定态薛定谔方程,可得出金属中电子的许多性质,如电子能级,电子的最高能量,电子的平均能量,电子气的压强,电子气的能级密度和磁化率,而且费米气体模型在固体理论中和原子核结构上也有很大用处,可以推出原子核的质量公式,跟实验结果比较符合得很好。 对于多电子原子应用如下的近似方法,即托马斯——费米方法,这是一个统计方法.它不是直接解薛定愕方程,可得出一些有用结论,其基本思想是在重原子中把正电荷看作连续分布(背景),电子在背景中运动n,这样处理中性原子运动比较成功。 二、哈特利-福克近似方法 通过绝热近似,把电子运动与离子实的运动分开,但系统的薛定谔方程仍然是一个多体方程。由于电子间存在的库伦相互作用,严格求解这种多电子问题是不可能的。通过哈特利-福克(Hartree-Fock)近似,可以将多电子的薛定谔方程简化为单电子有效势方程。 哈特利波函数将多电子波函数表述为每个独立电子波函数的连

金属中自由电子气体

1)经典定理固体原子作独立的简谐振动+能量均分定理仅在室温和高温范围内符合实验 2)爱因斯坦理论固体原子的振动模满足谐振子解+所有固体原子作同频共振+原子在振动模上服从玻尔兹曼分布在低温上定性符合3)德拜理论(非金属固体)固体原子的振动模式按频率的分布服从驻波条件+固体原子的振动模式的能量满足谐振子解+每一个振动模式只与一个原子的振动相对应+原子在振动模式上服从玻尔兹曼分布在低温时定性符合4)索末菲理(金属固体)对于金属固体:离子振动贡献+自由电子气体贡献。对自由电子气体:电子具有波粒二象性+电子的量子态满足驻波条件+自由电子在量子态上的填充满足费米分布。对离子振动:服从德拜理论,在低温处①金属中的自由电子形成强简并的费米气体,或者说自由电子气体以强简并形式占据量子态。 ②德布罗意假设——电子具有波粒二象性 ③电子自旋为1/2,且电子间为库仑相互作用。金属中的自由电子服从费米分布 ④在体积V 内,能量在的范围内,电子的实际量子态为⑤0K 时费米温度和电子简并压。当T=0K 时,化学势设为,则由费米分布有平均粒子数(体现了占据最低能量态和泡利不相容原理) 一般情况下,,即电子气体的分布与0K 时相差不大,与十分接近。由的分布可知,只有能量在附近,量级为的范围内的电子对热容量有贡献。这部分粒子数为、对能量和热容的贡献为固体的热容量问题 金属中的自由电子气体由自由电子在量子态上的费米分布,总电子数为 费米能级 费米动量费米温度(根据单个粒子的等效热温度概念) 0K 时的自由电子气体的内能 0K 时的自由电子气体的压强 T>0K 时自由电子气体性质自由电子气体的热容量的定量计算 低温下金属固体的实际定容热容量贡献的来源:金属中的离子振动——德拜理论+金属中的自由电子气体——索末菲理论。低温下金属的总定容热容量为自由电子气体

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1 ])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?* 当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

(完整版)第四章金属自由电子理论

第四章 金属自由电子理论 1.金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关? 解:金属自由电子论在k 空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么? 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么?它与哪些因素有关? 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差? 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。 6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?=k 2 ………………………… (2) 又由于 m k E 22 2η= 所以 m k dk dE 2η= …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该 一维金属晶体中自由电子的状态密度为: E m L E 22)(ηπρ= (4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

金属自由电子理论

金属自由电子理论文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

第四章金属自由电子理论 1.金属自由电子论作了哪些假设得到了哪些结果 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k空间的等能面和费米面是何形状费米能量与哪些因素有关 解:金属自由电子论在k空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么它与哪些因素有关 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ (1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?= k 2 (2) 又由于 m k E 22 2 = 所以 m k dk dE 2 = …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为: E m L E 22)( πρ= (4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:

固体物理学概念和习题答案

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。

《固体物理学》基础知识训练题及其参考标准答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一 套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶 格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

大学固体物理考试题及答案参考培训课件

固体物理练习题 1.晶体结构中,面心立方的配位数为 12 。 2.空间点阵学说认为 晶体内部微观结构可以看成是由一些相同的点子在三维空间作周期性无限分布 。 3.最常见的两种原胞是 固体物理学原胞、结晶学原胞 。 4.声子是 格波的能量量子 ,其能量为 ?ωq ,准动量为 ?q 。 5.倒格子基矢与正格子基矢满足 正交归一关系 。 6.玻恩-卡曼边界条件表明描述有限晶体振动状态的波矢只能取 分立的值 , 即只能取 Na 的整数倍。 7.晶体的点缺陷类型有 热缺陷、填隙原子、杂质原子、色心 。 8.索末菲的量子自由电子气模型的四个基本假设是 自由电子近似、独立电子近似、无碰撞假设、自由电子费米气体假设 。 9.根据爱因斯坦模型,当T→0时,晶格热容量以 指数 的形式趋于零。 10.晶体结合类型有 离子结合、共价结合、金属结合、分子结合、氢键结合 。 11.在绝对零度时,自由电子基态的平均能量为 0F 5 3E 。 12.金属电子的 B m ,23nk C V = 。 13.按照惯例,面心立方原胞的基矢为 ???? ?????+=+=+=)(2)(2) (2321j i a a k i a a k j a a ρρρρρρρ ρρ ,体心立方原胞基矢为 ???? ?????-+=+-=++-=)(2)(2) (2321k j i a a k j i a a k j i a a ρρρρρρρρρ ρρρ 。 14 .对晶格常数为a 的简单立方晶体,与正格矢k a j a i a R ???22++=正交的倒格子晶面族的面

指数为 122 , 其面间距为 a 32π 。 15.根据晶胞基矢之间的夹角、长度关系可将晶体分为 7大晶系 ,对应的只有14种 布拉伐格子。 16.按几何构型分类,晶体缺陷可分为 点缺陷、线缺陷、面缺陷、体缺陷、微缺陷 。 17. 由同种原子组成的二维密排晶体,每个原子周围有 6 个最近邻原子。 18.低温下金属的总摩尔定容热容为 3m ,bT T C V +=γ 。 19. 中子非弹性散射 是确定晶格振动谱最有效的实验方法。 1.固体呈现宏观弹性的微观本质是什么? 原子间存在相互作用力。 2.简述倒格子的性质。 P29~30 3. 根据量子理论简述电子对比热的贡献,写出表达式,并说明为什么在高温时可以不考虑电子对比热的贡献而在低温时必须考虑? 4.线缺陷对晶体的性质有何影响?举例说明。 P169 5.简述基本术语基元、格点、布拉菲格子。 基元:P9组成晶体的最小基本单元,整个晶体可以看成是基元的周期性重复排列构成。 格点:P9将基元抽象成一个代表点,该代表点位于各基元中等价的位置。 布拉菲格子:格点在空间周期性重复排列所构成的阵列。 6.为什么许多金属为密积结构?

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都就是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:就是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴就是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可瞧作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可瞧作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ= 几何结构因子:对于一定的入射方向,晶胞所有原子或离子沿某一方向的散射波动幅

固体物理试题分析及答案

固体物理试题分析及答案

1 简述Drude模型的基本思想? 2 简述Drude模型的三个基本假设并解释之. ? 独立电子近似:电子与电子无相互作用; ? 自由电子近似:除碰撞的瞬间外电子与离子无相互作用; ? 弛豫时间近似:一给定电子在单位时间内受一次碰撞的几率为1/τ。 3 在drude模型下,固体如何建立热平衡? 建立热平衡的方式——与离子实的碰撞 ? 碰撞前后速度无关联; ? 碰撞后获得速度的方向随机; ? 速率与碰撞处的温度相适应。 4 Drude模型中对金属电导率的表达式。 5 在自由电子气模型当中,由能量均分定理知在特定温度T下,电子的动能为 。 6 在Drude模型当中,按照理想气体理论,自由电子气的密度为n·cm-3,比热Cv=(见上图)。 7 1853年维德曼和弗兰兹在研究金属性质时发现一个定律,即在给定温度下金属的热导系数和电导率的比值为常数。 8 简述Drude模型的不足之处? 、Drude模型的局限性 ? 电子对比热的贡献与温度无关,过大(102) ? 电子速度,v2,太小(102) ? 什么决定传导电子的数目?价电子? ? 磁化率与温度成反比?实际无关 ? 导体?绝缘体?半导体? 9 对于自由电子气体,系统的化学势随温度的增大而降低。 10 请给出Fermi-Dirac统计分布中,温度T下电子的能量分布函数,并进一步解释电子能量分布的特点。 在温度T下,能量为E的状态被占据的几率。式中E F是电子的化学势,是温度的函数。当温度 为零时,电子最高占据状态能量,称为费米能级。

11 比较分析经典Maxwel-Boltzman统计分布与Fermi-Dirac统计分布对解释自由电子气能量分布的不同之处. ? 基态,零度时,电子都处于费米能级以下 ? 温度升高时,即对它加热,将发生什么情况? ? 某些空的能级将被占据,同时,原来被占据的某些能级空了出来。 12 在自由电子气模型当中若电子的能量为E, 则波矢的大小为K= 。 13 若金属的体积为V,那么在k空间中,k的态密度为。 14 掌握费米半径和电子密度的关系。 15 若费米半径为,其中n为电子密度,那么费米能级EF= 。 16 当T=0K时,系统的每个电子的平均能量为。并能证明之。 17 在晶体中,能量为E的电子态单位体积地能态密度g(E)= 。 18 若能量为E的电子态,单位体积的能态密度g(ε)= 19 体积为V的晶体内含有N个自由电子,在基态T=0K时,压强P=,体弹性模量为B= 20 在索墨菲模型当中,自由电子气的密度为n·cm-3,比热Cv= 。 21 结合Fermi-Dirac统计分布和Pauli不相容原理解释为什么只有费米球表面附近的允许电子被激发? 只有费米球面向球外有空的k点,能够参与导电,费米球内的k点都被电子占据着,没有空的k点。

固体物理概念答案(可编辑修改word版)

1.基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3 全部端点的集合,A1,A2,A3 分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2.晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4 , 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/ n 与沿转轴方向平移t = j T 的复合操作n 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3.晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示;密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4.倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5.布拉格方程,劳厄方程,几何结构因子。 劳厄方程R m ? (s-s0 ) =S m 布拉格方程2d hkl sin=m 几何结构因子:对于一定的入射方向,晶胞所有原子或离子沿某一方向的散射波动

固体物理包括答案.doc

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003 级 2006 年 6 月

第一章晶体结构 1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个 Na+和一个 Cl -组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C 原子组成的C原子对。 由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: a1 a k) ( j 2 a2 a (k i) 2 a3 a ( i j) 2 相应的晶胞基矢都为: a a i , b a j, c a k. 2.六角密集结构可取四个原胞基矢 a ,a , a 与 a ,如图所示。试写出O A A 、 1234 1 3 A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数h k l m 。 解: (1).对于 O A1A3面,其在四个原胞基矢上的截 矩分别为:1,1,1 ,1。所以,其晶面2 指数为 1121 。 (2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1, 1 ,。 2 所以,其晶面指数为1120 。 (3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,1,,。 1

所以,其晶面指数为1100。 (4) .对于A1A2A3A4A5A6面,其在四个原胞基矢上的截矩分别为:,,,1。所以,其晶面指数为0001 。 3.如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为: 简立方:;体心立方:3 ;面心立方: 2 ;六角密集: 2 ;金刚石: 6 8 6 6 3 。 16 证明: 由于晶格常数为 a,所以: (1).构成简立方时,最大球半径为R m a ,每个原胞中占有一个原子,2 4 a 3 V m a3 3 2 6 V m a3 6 (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4R m 3a ,每个晶胞中占有两个原子, 3 2V m 4 3 3 3 2 a a 3 4 8 2V m 3 a3 8 (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4R m 2a ,每个晶胞占有4个原子, 3 4V m 4 2 2 3 4 a a 3 4 6 4V m 2 a3 6 (4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢 c 的长度的一半,由几何知识易知 c 4 6 R m。原胞底面边长为2R m。每个晶胞占有两个原子,3 2

相关文档
最新文档