1.一元二次方程根的性质

合集下载

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。

当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。

判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。

正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。

举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。

对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。

对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。

对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。

解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。

对判别式进行变形的基本方法有因式分解、配方法等。

在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。

当Δ≥0时,方程有实数根,反之也成立。

例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。

一元二次方程有什么特点

一元二次方程有什么特点

一元二次方程有什么特点一元二次方程是数学中的一种重要方程,具有鲜明的特点。

它在各个领域中有着广泛的应用,如物理、化学、工程等领域。

接下来,我们将详细探讨一元二次方程的特点,以及它在实际问题中的应用。

一、一元二次方程的定义及形式一元二次方程是指只含有一个未知数,且该未知数的最高次数为2的方程。

它的一般形式为:ax²+bx+c=0其中,a、b、c为已知常数,且a≠0。

二、一元二次方程的特点1.二次项系数不为零:在一元二次方程中,二次项系数a不为零,这是它与一元一次方程的主要区别。

二次项系数a的正负性决定了方程的性质。

2.图像特征:一元二次方程的解可以表示为抛物线。

通过分析二次项系数a、一次项系数b和常数项c,可以确定抛物线的开口方向、对称轴和顶点坐标。

3.根的判别式:一元二次方程的根的判别式为Δ=b²-4ac。

根据判别式的值,可以判断方程的根的情况:-Δ>0:方程有两个不相等的实根;-Δ=0:方程有两个相等的实根,即两个相同的实根;-Δ<0:方程无实根,但有两个共轭复根。

4.解的求法:一元二次方程有三种求解方法,分别是直接开平方法、配方法和解根公式法。

求解过程中,需要根据方程的特点和根的判别式选择合适的方法。

三、一元二次方程在实际问题中的应用1.物理学:在一元二次方程中,引力定律、简谐振动等问题中涉及到物体运动轨迹的解析,可以通过一元二次方程来描述。

2.工程学:在建筑、机械等领域,一些构件的尺寸和形状可以通过一元二次方程来表示,如抛物线、椭圆等。

3.经济学:在经济学中,一元二次方程可以用来描述成本、收益等函数关系,如成本函数、收益函数等。

4.生物学:在生物学中,一元二次方程可以用来描述种群增长模型,如Logistic曲线。

总之,一元二次方程具有独特的特点,它在各个领域的应用十分广泛。

通过深入理解和掌握一元二次方程的性质,我们可以更好地解决实际问题。

人教课标版(B版)高中数学必修1一元二次方程根的分布

人教课标版(B版)高中数学必修1一元二次方程根的分布

一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容。

这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。

函数与方程思想:若y =()f x 与x 轴有交点0x ⇔f (0x )=0 若y =f (x )与y =g (x )有交点(0x ,0y )⇔()f x =()g x 有解0x 。

下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。

一.一元二次方程根的基本分布——零分布所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。

比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。

设一元二次方程02=++c bx ax (0≠a )的两个实根为1x ,2x ,且21x x ≤。

【定理1】01>x ,02>x (两个正根)⇔212124000b ac bx x a c x x a ⎧∆=-≥⎪⎪⎪+=->⎨⎪⎪=>⎪⎩, 推论:01>x ,02>x ⇔⎪⎪⎩⎪⎪⎨⎧<>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧><=<≥-=∆00)0(042b c f a ac b 上述推论结合二次函数图象不难得到。

【例1】若一元二次方程0)1(2)1(2=-++-m x m x m 有两个正根,求m 的取值范围。

分析:依题意有24(1)4(1)02(1)0101m m m m m mm ⎧⎪∆=++-≥⎪+⎪->⎨-⎪-⎪>⎪-⎩0<m <1。

【定理2】01<x ,02<x ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+≥-=∆000421212a c x x ab x x ac b ,推论:01<x ,02<x ⇔⎪⎪⎩⎪⎪⎨⎧>>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧<<=<≥-=∆00)0(0042b c f a ac b 由二次函数图象易知它的正确性。

一元二次方程的根的判别式

一元二次方程的根的判别式
课题:一元二次方程的根的判别式 执教者:七一龙安中学 王可
回顾与思考:
平方根的性质
用公式法求下列方程的根:
1) 2 x x 2 0;
2
用公式法解 一元二次方程 的一般步骤:
1 2 2) x x 1 0; 4 2 3) x x 1 0.
1)把方程化为一般形式 2)确定 a, b, c 的值 3)计算 b 2 4ac,并判断 其值与 0的关系
思考题
1、 m取什么值时,方程 x2+(2m+1)x+m2-4=0
有两个相等的实数解
2、关于x的一元二次方程ax2+bx+c=0 (a≠0)。 当a,b,c 满足什么条件时,方程的两根为 互为相反数?

例4:求证: (1)关于x的方程x ²+kx+k ² =0没有实数根 +1 (2)关于x的方程(x+a)(x-a)-x=2(x-1)总有两个不相等的 根。
5 5 (2)m= 4 4
(3)m>
5 4
2
看看你做的对不对?
1 (1) 解: x 2 3x 8 0 4
(2) 解:5t 2 7t 5 0
a 5, b 7, c 5 (7) 2 4 5 5 51 0
1 a , b 3, c 8 4 1 (3) 2 4 (8) 4
9 (1).当△>0 ,方程有两个不相等的实根, 8k+9 >0 , 即k 8 9 (2).当△ = 0 ,方程有两个相等的实根, 8k+9 =0 , 即 k 8 9 (3).当△ <0 ,方程有没有实数根, 8k+9 <0 , 即 K< 8

1.一元二次方程概念和根

1.一元二次方程概念和根
2
x=1
2、若a b c 0, 则一元二次方程 ax bx c 0必有一解为 .
2
x=-1
3、若4a 2b c 0, 则一元二次方程
2 ax bx c 0必有一解为 x=.
2
4、根据下表的对应值, 试判断一元二次 方程ax bx c 0的一解的范围是 C
m为一切实数
25
课堂练习
教材P4 练习1、2
26
一元二次方程的解(根)
教学目标
1)理解方程的解的概念;
2)会用方程的解求待定系数。
知识回顾
1.什么是一元二次方程? 整式方程变形后,只含有一个未知数,并 且未知数的次数是二次,这样的整式方程 叫一元二次方程。 2.一元二次方程的一般形式是怎样的? a x 2 + b x + c = 0 (a ≠ 0)
基础练习4:

2

一般形式
二次项 一次项 系 数 系 数
常数 项
3x =5x-1 3 3x2-5 5x+1=0
(x+2)(x 1)=6
3
-5
1
1x2 +1 x- 8 = 0
1
1
0 0
-8
4 -4
-7x2 +4=0 2 2 +0 x+4=0 -7 即- 7x - 7 4-7x =0 或7x2 - 4=0 7
x=-7是方程的解
思考
你能否说出下列方程的解 根? 2 1) 3x 27 0 1.一元一次方程只有一个根 2 2) ( x 6) 0 2.一元二次方程有可能 有两个不相等的实数根; 2 3) x 36 0 有两个相等的实数根;
没有实数根。
一元二次方程的根的情况与一元一次方 程有什么不同吗?

一元二次方程课件

一元二次方程课件
感谢您的观看
计算判别式
02
$Delta = b^2 - 4ac$
判别式Δ的几何意义
03
代表一元二次函数图像与x轴交点的个数
判别式Δ与方程解的关系
当$Delta > 0$时, 方程有两个不相等的 实根
当$Delta < 0$时, 方程无实根,即根为 复数
当$Delta = 0$时, 方程有两个相等的实 根,即一个重根
一元二次方程可能有两个实数解、一个实数解或无实数解,这取决于判别式b²-4ac的值。当b²-4ac>0时,方程有两个不相等 的实数解;当b²-4ac=0时,方程有两个相等的实数解,即一个实数解;当b²-4ac<0时,方程无实数解。
02 一元二次方程解法
直接开平方法
适用情况
注意事项
适用于形如 $(x+a)^2=b$ 的一元二 次方程。
根与系数关系在解题中的应用
利用根与系数的关系可以解决一些与 方程根相关的问题,如判断方程的根 的情况、求方程的根的取值范围等。
VS
例如,已知方程ax^2 + bx + c = 0 (a ≠ 0) 的两个根x1、x2满足x1 < 0, x2 - 2x1 > 0,则可以推断出系数a、 b、c的符号关系。具体推导为:由x1 * x2 = c/a > 0,知c与a同号;由x1 + x2 = -b/a < 0,结合x1 < 0,得a 与b异号;由x2 - 2x1 > 0,得x2 > 2x1,即x2 - x1 > x1,结合x1 + x2 < 0,得x2 - x1 > -(x1 + x2) = b/a > 0,得a与b异号。

第一讲 二次根式及一元二次方程

第一讲 二次根式及一元二次方程【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2⎩⎨⎧<-≥)0()0(a a a a 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0); =(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算6.分母有理化(1)定义:把分母中的根号化去,叫做分母有理化。

(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。

有理化因式确定方法如下:a =ba -与b a -等分别互为有理化因式。

②两项二次根式:利用平方差公式来确定。

如a a分别互为有理化因式。

(3)分母有理化的方法与步骤:(1)先将分子、分母化成最简二次根式;(2)将分子、分母都乘以分母的有理化因式,使分母中不含根式;(3)最后结果必须化成最简二次根式或有理式。

7、一元二次方程:(1)定义:在一个等式中,只含有一个未知数,且未知数的最高项的次数的和是2次的整式方程叫做一元二次方程。

公式法解一元二次方程和根与系数的关系知识点总结和重难点精析

公式法解一元二次方程和根与系数的关系知识点总结和重难点精析一、引言九年级数学中,一元二次方程是一个重要的知识点。

公式法解一元二次方程是求解一元二次方程的一种重要方法,而根与系数的关系也是这个知识点的重要组成部分。

掌握公式法解一元二次方程和根与系数的关系,对于提高学生解决数学问题的能力具有重要意义。

二、知识点总结1.一元二次方程的基本形式为ax²+bx+c=0(a≠0)。

它的解是x= [-b ±√(b²-4ac)] / 2a。

2.根与系数的关系是指一元二次方程的两个根x1和x2与方程的系数a、b、c之间的相互关系。

根据一元二次方程的求根公式,两个根的和为-b/a,两个根的积为c/a。

三、重难点精析1.应用公式法解一元二次方程时,首先需要将方程化为一般形式,并确定a、b、c的值。

难点在于如何找到a、b、c的值,需要根据题目中的条件进行转化。

2.根与系数的关系是难点之一,需要理解两根之和与两根之积的意义。

在解题中,通常利用根与系数的关系来求方程中字母系数的值或用字母代数式表示方程的两个根。

四、练习题1.用公式法解下列一元二次方程:(1)x²-6x+9=0;(2)3x²+4x-7=0;(3)y²+2y-1=0;(4)2x²-5x+3=0;2.已知方程x²-7x+12=0的两个根是x1和x2.求下列各式的值:(1)(x1+1)(x2+1);(2)(x1-1)(x2-1)3.根据下列各组中根与系数的关系,求下列各式的值:(1)已知x1、x2是方程x²-5x+6=0的两个根,求x1²+x2²的值;(2)已知x1、x2是方程x²-7x+12=0的两个根,求x1³-x2³的值。

五、总结本文总结了九年级数学中公式法解一元二次方程和根与系数的关系知识点,包括了一元二次方程的基本形式、解法以及根与系数的关系等重要内容。

一元二次方程求根公式两根之和和两根之差

一元二次方程求根公式两根之和和两根之差下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一元二次方程是代数学中的重要内容,它的一般形式为ax^2 + bx + c = 0,其中a、b、c为实数且a≠0。

一元二次方程根的判别式及根与系数的关系—知识讲解(基础)

一元二次方程根的判别式及根与系数的关系—知识讲解(基础)责编:常春芳【学习目标】1. 会用一元二次方程根的判别式判别方程根的情况,由方程根的情况能确定方程中待定系数的取值范围;2. 掌握一元二次方程的根与系数的关系以及在各类问题中的运用.【要点梳理】知识点一、一元二次方程根的判别式1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.要点诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况.2. 一元二次方程根的判别式的逆用在方程()002≠=++a c bx ax 中, (1)方程有两个不相等的实数根⇒ac b 42-﹥0; (2)方程有两个相等的实数根⇒ac b 42-=0; (3)方程没有实数根⇒ac b 42-﹤0.要点诠释: (1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件;(2)若一元二次方程有两个实数根则 ac b 42-≥0.知识点二、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根;(2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-; ②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+; ④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k x x k =+++;⑦12||x x -== ⑧22212121222222121212()211()x x x x x x x x x x x x ++-+==;⑨12x x -==⑩12||||x x +===(4)已知方程的两根,求作一个一元二次方程;以两个数为根的一元二次方程是.(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围;(6)利用一元二次方程根与系数的关系可以进一步讨论根的符号.设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数;当△≥0且120x x >,120x x +<时,两根同为负数.②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.要点诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a +a a ,b 为有理数).【典型例题】类型一、一元二次方程根的判别式的应用1.不解方程,判断下列方程的根的情况:(1)???2x 2+3x-4=0 (2)ax 2+bx=0(a≠0)【答案与解析】(1) 2x 2+3x-4=0a=2, b=3, c=-4,? ∵Δ=b 2-4ac=32-4×2×(-4)=41>0? ∴方程有两个不相等的实数根.(2)∵a≠0, ∴方程是一元二次方程,此方程是缺少常数项的不完全的一元二次方程,将常数项视为零,? ∵Δ=b 2-4·a·0=b 2,? ∵无论b 取任何关数,b 2均为非负数,∴Δ≥0, 故方程有两个实数根.【总结升华】根据ac b42-的符号判定方程根的情况. 举一反三:【高清ID 号:388522 关联的位置名称(播放点名称):判别含字母系数的方程根的情况---例2(1)】【变式】不解方程,判别方程根的情况:2210x ax a -++= .【答案】无实根.2.(2015?本溪)关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【思路点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0.【答案】k <2且k≠1; 【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0,解得:k <2且k ≠1.故答案为:k <2且k≠1.【总结升华】不能忽略二次项系数不为0这一条件.举一反三:【高清ID 号:388522 关联的位置名称(播放点名称):证明根的情况---例3】 【变式】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根.【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 类型二、一元二次方程的根与系数的关系的应用3.已知方程2560x kx +-=的一个根是2,求另一个根及k 的值.【思路点拨】根据方程解的意义,将x =2代入原方程,可求k 的值,再由根与系数的关系求出方程的另外一个根.【答案与解析】方法一:设方程另外一个根为x 1,则由一元二次方程根与系数的关系, 得125k x +=-,1625x =-,从而解得:135x =-,k =-7. 方法二:将x =2代入方程,得5×22+2k -6=0,从而k =-7. 设另外一根为x 1,则由一元二次方程根与系数的关系,得1725x +=,从而135x =-, 故方程的另一根为35-,k 的值为-7. 【总结升华】根据一元二次方程根与系数的关系12b x x a +=-,12c x x a=易得另一根及k 的值. 举一反三:【高清课堂:一元二次方程根的判别式及根与系数的关系(二)---例2】【变式】已知方程220x x c -+=的一个根是3,求它的另一根及c 的值.【答案】另一根为-1;c 的值为-3.4.(2015?咸宁)已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.【答案与解析】解:(1)△=(m+2)2﹣8m=m2﹣4m+4=(m﹣2)2,∵不论m为何值时,(m﹣2)2≥0,∴△≥0,∴方程总有实数根;(2)解方程得,x=,x1=2m,x2=1,∵方程有两个不相等的正整数根,∴m=1或2,m=2不合题意,∴m=1.【总结升华】本题考查的是一元二次方程根的判别式和求根公式的应用,此外要掌握整数根的意义及正确求解适合条件的整数根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节:一元二次方程根的性质
解一元二次方程的三种方法:配方法,公式法,十字相乘法。

1.解下列方程,并计算1212,x x x x +的值。

()21210x x -+= ()22560x x -+=
()()2232305210x x x x -+=+-= ()()22
4450
63520
x x x x -+=--=
2.设一元二次方程()2
00ax bx c a ++=≠的两根分别为12,x x ,证明:
1212,b c x x x x a a
+=-=
3.给出一元二次方程20ax bx c ++=的两根,试写出这个方程
()()()12121211,2
31,0115,23
x x x x x x =====
= ()()()12121221,3
41,11
6,22
x x x x x x =-=-=-==-
=
4.求证:若方程20x bx c ++=的两根为12,x x ,则该方程必可以写成
()212120x x x x x x -++=的形式。

5.一直一元二次方程210x mx ++=的一个根如下,确定m 的值。

()()(
)11;22;3x x x ==-=
6.已知方程220x x a ++=的一个根如下,确定a 的值。

()()()1
13;20;32
x x x ===
7.已知方程2
20x x m -+=有两个正的实数根,求实数m 的取值范围。

8.已知方程220x x m -+=有两负的实数根,求实数m 的取值范围。

9.已知方程220x x m -+=有两根异号,求实数m 的取值范围。

10.已知方程2250x x k -+=的两个实数根12,x x 满足122
3
x x =,求实数k 的值。

11.设12,x x 是方程()29260x m x m ++++=的两个实数根,且22
1224x x +=,求实数m
的值。

12. 设12,x x 是方程230x x m -+=的两个实数根,且122x x =,求实数m 的值。

13.已知方程2560x x -+=的两实根是12,x x ,利用韦达定理计算:
()()
()2
1212
12
1113x x x x x x +-+
()()22
1222
12
2114x x x x ++
14.设()2
,f x x x m =++若函数()f x 在()0,1的范围内恒有()0f x >,求实数m 的取值
范围。

相关文档
最新文档