最新-2018年全国各地中考数学压轴题专集 3反比例函数
专题8 一次函数和反比例函数综合问题-2018年中考数学压轴题精品练习(解析版)

专题8 一次函数和反比例函数综合问题-2018年中考数学压轴题精品练习(解析版)一、选择题1.(2017山东省日照市,第8题,3分)反比例函数kbyx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.【答案】D.【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.点睛:此题主要考查了反比例函数以及一次函数的图象,正确得出k ,b 的符号是解题关键.考点:反比例函数的图象;一次函数的图象.2.(2017滨州,第12题,3分)在平面直角坐标系内,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y =x 和双曲线1y x=相交于点A 、B ,且AC +BC =4,则△OAB 的面积为( )A .3或3B 11C .3D 1【答案】A .【分析】根据题意表示出AC ,BC 的长,进而得出等式求出m 的值,进而得出答案.【解析】如图所示:设点C 的坐标为(m ,0),则A (m ,m ),B (m ,1m ),所以AC =m ,BC =1m .∵AC +BC =4,∴可列方程m +1m=4,解得:m =2A (22,B (22A(22,B (22,∴AB =∴△OAB 的面积=12×(2=3.故选A .点睛:此题主要考查了反比例函数与一次函数的交点,正确表示出各线段长是解题关键.考点:反比例函数与一次函数的交点问题.3.(2017山东省青岛市,第8题,3分)一次函数y =kx +b (k ≠0)的图象经过A (﹣1,﹣4),B (2,2)两点,P 为反比例函数xkb y =图象上一动点,O 为坐标原点,过点P 作y 轴的垂线,垂足为C ,则△PCO 的面积为( )A .2B .4C .8D .不确定【答案】A .【分析】根据待定系数法,可得k ,b ,根据反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k |的一半,可得答案.【解析】将A (﹣1,﹣4),B (2,2)代入函数解析式,得:422k b k b -+=-⎧⎨+=⎩,解得:22k b =⎧⎨=-⎩,P 为反比例函数x kb y =图象上一动点,反比例函数的解析式4y x =-,P 为反比例函数xkb y =图象上一动点,O 为坐标原点,过点P 作y 轴的垂线,垂足为C ,则△PCO 的面积为12|k |=2,故选A . 点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k |的一半考点:反比例函数系数k 的几何意义;一次函数图象上点的坐标特征.学科@网4.(2017广西桂林市,第11题,3分)一次函数y =﹣x +1(0≤x ≤10)与反比例函数1y x=(﹣10≤x <0)在同一平面直角坐标系中的图象如图所示,点(x 1,y 1),(x 2,y 2)是图象上两个不同的点,若y 1=y 2,则x 1+x 2的取值范围是( )A .﹣8910≤x ≤1B .﹣8910≤x ≤899C .﹣899≤x ≤8910D .1≤x ≤8910【答案】B .【分析】由x 的取值范围结合y 1=y 2可求出y 的取值范围,根据y 关于x 的关系式可得出x 关于y 的关系式,利用做差法求出x =1﹣y +1y 再﹣9≤y ≤﹣110中的单调性,依此单调性即可求出x 1+x 2的取值范围. 【解析】当x =﹣10时,1y x ==﹣110;点睛:本题考查了反比例函数图象上点的坐标特征以及一次函数图象上点的坐标特征,找出x=1﹣y+1y在﹣9≤y≤﹣110中的单调性是解题的关键.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.5.(2017新疆乌鲁木齐市,第10题,4分)如图,点A(a,3),B(b,1)都在双曲线3yx=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.【答案】B.【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A 点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x轴、y轴于C点、D点,根据两点之间线段最短得此时四边形P ABQ的周长最小,然后利用两点间的距离公式求解可得.【解析】分别把点A(a,3)、B(b,1)代入双曲线3yx=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB==,故选B.点睛:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.考点:反比例函数图象上点的坐标特征;轴对称﹣最短路线问题;最值问题;动点型;综合题.6.(2017江苏省泰州市,第6题,3分)如图,P为反比例函数kyx=(k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2B.4C.6D.8【答案】D.【分析】作BF⊥x轴,OE⊥AB,CQ⊥AP,易证△BOE∽△AOD,根据相似三角形对应边比例相等的性质即可求出k的值.【解析】作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n,kn),∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,P A⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°.∵PB∥OG,P A∥OC,∴∠PBA=∠OGC=45°,∠P AB=∠OCG=45°,∴P A=PB,∵P点坐标(n,kn),∴OD=CQ=n,∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=DQ=4,GE=OE=2OC=;同理可证:BGPD=n,∴BE=BG+EG=n+∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,在△BOE和△AOD中,∵∠DAO=∠OBE,∠BEO=∠ADO,∴△BOE∽△AOD;∴OE BEOD AD=4nn+=+;整理得:nk+2n2=8n+2n2,化简得:k=8.故选D.点睛:本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;综合题.7.(2017湖北省十堰市,第10题,3分)如图,直线6y=-分别交x轴,y轴于A,B,M是反比例函数kyx=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=则k的值为()A.﹣3B.﹣4C.﹣5D.﹣6【答案】A.【分析】过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,然后求出OA与OB的长度,即可求出∠OAB的正弦值与余弦值,再设M(x,y),从而可表示出BD与AC的长度,根据AC•BD=出k的值.点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是根据∠OAB的锐角三角函数值求出BD、AC,本题属于中等题型.考点:反比例函数与一次函数的交点问题.8.(2017湖南省岳阳市,第8题,3分)已知点A在函数11yx=-(x>0)的图象上,点B在直线y2=kx+1+k (k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对【答案】A.【分析】根据“友好点”的定义知,函数y1图象上点A(a,1a-)关于原点的对称点B(a,1a-)一定位于直线y2上,即方程ka2﹣(k+1)a+1=0有解,整理方程得(a﹣1)(ka﹣1)=0,据此可得答案.【解析】设A(a,1a-),由题意知,点A关于原点的对称点B((a,1a-),)在直线y2=kx+1+k上,则1a=﹣ak +1+k ,整理,得:ka 2﹣(k +1)a +1=0 ①,即(a ﹣1)(ka ﹣1)=0,∴a ﹣1=0或ka ﹣1=0,则a =1或ka ﹣1=0,若k =0,则a =1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k ≠0,则a =1k,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选A .点睛:本题主要考查直线和双曲线上点的坐标特征及关于原点对称的点的坐标,将“友好点”的定义,根据关于原点对称的点的坐标特征转化为方程的问题求解是解题的关键.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;关于原点对称的点的坐标;新定义.学科@网9.(2017甘肃省兰州市,第11题,4分)如图,反比例函数k y x =(k <0)与一次函数y =x +4的图象交于A 、B 两点的横坐标分别为﹣3,﹣1.则关于x 的不等式4k x x<+(x <0)的解集为( )A .x <﹣3B .﹣3<x <﹣1C .﹣1<x <0D .x <﹣3或﹣1<x <0【答案】B .【分析】把A 的横坐标代入一次函数的解析式可求出其纵坐标,再把A 的横纵坐标代入反比例函数的解析式即可求出k 的值,由此可知求关于x 的不等式4k x x<+(x <0)的解集可转化为一次函数的图象在反比例函数图象的上方所对应的自变量x 取值范围,问题得解.【解析】 ∵反比例函数ky x=(k <0)与一次函数y =x +4的图象交于A 点的横坐标为﹣3,∴点A 的纵坐标y =﹣3+4=1,∴k =xy =﹣3,∴关于x 的不等式4k x x <+(x <0)的解集即不等式34x x-<+(x <0)的解集,观察图象可知,当﹣3<x <﹣1时,一次函数的图象在反比例函数图象的上方,∴关于x 的不等式4k x x <+(x <0)的解集为:﹣3<x <﹣1.故选B .点睛:本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式,函数的图象的应用,主要考查学生的计算能力和观察图象的能力,用了数形结合思想.考点:反比例函数与一次函数的交点问题.10.(2017四川省德阳市,第12题,3分)当12≤x ≤2时,函数y =-2x +b 的图象上到少有一个点在函数1y x =的图象下方,则b 的取值范围为( )A .b ≥B .b <92 C .b <3 D .b <92【答案】B .【分析】先根据x 的取值,求得直线与双曲线的交点坐标,再根据函数y =﹣2x +b 的图象上至少有一点在函数1y x=的图象下方,即可得到b 的取值范围. 【解析】在函数1y x =中,令x =2,则y =12;令x =12,则y =2; 若直线y =﹣2x +b 经过(2,12),则12=﹣4+b ,即b =92; 若直线y =﹣2x +b 经过(12,2),则2=﹣1+b ,即b =3,∵直线y =﹣2x +92在直线y =﹣2x +3的上方,∴当函数y =﹣2x +b 的图象上至少有一点在函数1y x =的图象下方时,直线y =﹣2x +b 在直线y =﹣2x +92的下方,∴b 的取值范围为b <92.故选B . 点睛:本题主要考查了反比例函数与一次函数交点问题、反比例函数图象上点的坐标特征以及一次函数与系数的关系,解题时注意:由于y =kx +b 与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系;综合题.11.(2016宁夏)正比例函数11y k x =的图象与反比例函数22k y x=的图象相交于A ,B 两点,其中点B 的横坐标为﹣2,当12y y <时,x 的取值范围是( )A .x <﹣2或x >2B .x <﹣2或0<x <2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >2【答案】B.【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.考点:反比例函数与一次函数的交点问题.12.(2016山东省临沂市)如图,直线y=﹣x+5与双曲线kyx=(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是52.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线kyx=(x>0)的交点有()A.0个B.1个C.2个D.0个,或1个,或2个【答案】B.【分析】令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,通过令直线y=﹣x+5中x、y分别等于0,得出线段OD、OC的长度,根据正切的值即可得出∠DCO=45°,再结合做的两个垂直,可得出△OEC与△BFC都是等腰直角三角形,根据等腰直角三角形的性质结合面积公式即可得出线段BC的长,从而可得出BF、CF的长,根据线段间的关系可得出点B的坐标,根据反比例函数图象上点的坐标特征即可得出反比例函数系数k的值,根据平移的性质找出平移后的直线的解析式将其代入反比例函数解析式中,整理后根据根的判别式的正负即可得出结论.【解析】令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,如图所示.令直线y =﹣x +5中x =0,则y =5,即OD =5;令直线y =﹣x +5中y =0,则0=﹣x +5,解得:x =5,即OC =5. 在Rt △COD 中,∠COD =90°,OD =OC =5,∴tan ∠DCO =ODOC=1,∠DCO =45°. ∵OE ⊥AC ,BF ⊥x 轴,∠DCO =45°,∴△OEC 与△BFC 都是等腰直角三角形,又∵OC =5,∴OE .∵S △BOC =12BC •OE =12BC =52,∴BC ,∴BF =FC BC =1,∵OF =OC ﹣FC =5﹣1=4,BF =1,∴点B 的坐标为(4,1),∴k =4×1=4,即双曲线解析式为4y x=. 将直线y =﹣x +5向下平移1个单位得到的直线的解析式为y =﹣x +5﹣1=﹣x +4,将y =﹣x +4代入到4y x=中,得:44x x -+=,整理得:2440x x -+=,∵△=16﹣4×4=0,∴平移后的直线与双曲线4y x=只有一个交点.故选B .考点:反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征;一次函数的应用;反比例函数的应用.13.(2016山东省日照市)正比例函数11y k x =(1k >0)与反比例函数22k y x=(2k >0)图象如图所示,则不等式21k k x x>的解集在数轴上表示正确的是( )A .B .C .D .【答案】B .【分析】由图象可以知道,当x =﹣2或x =2时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k k x x>的解集,即可得出结论. 【解析】两个函数图象的另一个交点坐标为(﹣2,﹣1),当﹣2<x <0或x >2时,直线11y k x =在22k y x=(2k >0)图象的上方,故不等式21k k x x>的解集为x <﹣1或x >2.故选B . 考点:在数轴上表示不等式的解集;反比例函数与一次函数的交点问题. 14.(2016山东省烟台市)反比例函数16ty x-=的图象与直线y =﹣x +2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是( ) A .t <16 B .t >16 C .t ≤16 D .t ≥16【答案】B .【分析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x 的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k 的一元一次不等式组,解不等式组即可得出结论. 【解析】将y =﹣x +2代入到反比例函数16t y x -=中,得:﹣x +2=16t x-,整理,得:22160x x t -+-=.∵ 反比例函数16ty x-=的图象与直线y =﹣x +2有两个交点,且两交点横坐标的积为负数, ∴2(2)4(16)0160t t ⎧--->⎨-<⎩,解得:t >16.故选B .考点:反比例函数与一次函数的交点问题.15.(2016广西玉林市崇左市)若一次函数y =mx +6的图象与反比例函数ny x=在第一象限的图象有公共点,则有( )A .mn ≥﹣9B .﹣9≤mn ≤0C .mn ≥﹣4D .﹣4≤mn ≤0 【答案】A .【分析】依照题意画出图形,将一次函数解析式代入反比例函数解析式中,得出关于x 的一元二次方程,由两者有交点,结合根的判别式即可得出结论. 【解析】依照题意画出图形,如下图所示.将y =mx +6代入n y x =中,得:6n mx x+=,整理得:260mx x n +-=,∵二者有交点,∴△=36+4mn ≥0,∴mn ≥﹣9.故选A .考点:反比例函数与一次函数的交点问题;根的判别式.16.(2016广西梧州市)在平面直角坐标系中,直线y =x +b 与双曲线1y x=-只有一个公共点,则b 的值是( )A .1B .±1C .±2D .2 【答案】C .考点:反比例函数与一次函数的交点问题.17.(2016湖南省株洲市)已知,如图一次函数1y ax b =+与反比例函数2ky x=的图象如图示,当12y y <时,x 的取值范围是( )A .x <2B .x >5C .2<x <5D .0<x <2或x >5 【答案】D .【分析】根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x 的范围即可.【解析】根据题意得:当12y y <时,x 的取值范围是0<x <2或x >5.故选D . 考点:反比例函数与一次函数的交点问题.18.(2016贵州省铜仁市)如图,在同一直角坐标系中,函数k y x=与2k kx y +=的大致图象是( ) A .B .C .D .【答案】C .【分析】比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.【解析】k >0时,一次函数2k kx y +=的图象经过第一、二、三象限,反比例函数的两个分支分别位于第一、三象限,无选项符合;k <0时,一次函数2k kx y +=的图象经过第一、二、四象限,反比例函数的两个分支分别位于第二、四象限,选项C 符合. 故选C .考点:反比例函数的图象;一次函数的图象.19.(2016黑龙江省绥化市)当k >0时,反比例函数ky x=和一次函数y =kx +2的图象大致是( ) A .B .C .D .【答案】C .【分析】根据k >0,判断出反比例函数ky x=经过一三象限,一次函数y =kx +2经过一二三象限,结合选项所给图象判断即可.【解析】∵k >0,∴反比例函数ky x=经过一三象限,一次函数y =kx +2经过一二三象限.故选C . 考点:反比例函数的图象;一次函数的图象.20.(2015贵港)如图,已知点A 1,A 2,…,A n 均在直线1y x =-上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若11a =-,则a 2015= .【答案】2.考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题. 21.(2015河池)反比例函数1my x=(0x >)的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中A (1,2),当21y y >时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >2 【答案】B . 【解析】试题分析:根据双曲线关于直线y =x 对称易求B (2,1).依题意得:如图所示,当1<x <2时,21y y >.故选B .考点:反比例函数与一次函数的交点问题.学科@网 22.(2015贺州)已知120k k <<,则函数1k y x=和21y k x =-的图象大致是( )A .B .C .D .【答案】C .考点:1.反比例函数的图象;2.一次函数的图象.23.(2015内江)如图,正方形ABCD 位于第一象限,边长为3,点A 在直线y =x 上,点A 的横坐标为1,正方形ABCD 的边分别平行于x 轴、y 轴.若双曲线ky x=与正方形ABCD 有公共点,则k 的取值范围为( )A .1<k <9B .2≤k ≤34C .1≤k ≤16D .4≤k <16 【答案】C . 【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kyx=经过点(1,1)时,k=1;当双曲线kyx=经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.24.(2015乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,34OAOB=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kyx=的图象过点C.当以CD为边的正方形的面积为27时,k的值是()A.2B.3C.5D.7【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题.25.(2015临沂)在平面直角坐标系中,直线2y x =-+与反比例函数1y x=的图象有唯一公共点,若直线y x b =-+与反比例函数1y x=的图象有2个公共点,则b 的取值范围是( )A .b >2B .﹣2<b <2C .b >2或b <﹣2D .b <﹣2 【答案】C .考点:反比例函数与一次函数的交点问题. 二、填空题26.(2017云南省,第6题,3分)已知点A (a ,b )在双曲线5y x=上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )两点的一次函数的解析式(也称关系式)为 . 【答案】y =﹣5x +5或y =﹣15x +1. 【分析】先根据反比例函数图象上点的坐标特征得出ab =5,由a 、b 都是正整数,得到a =1,b =5或a =5,b =1.再分两种情况进行讨论:当a =1,b =5;②a =5,b =1,利用待定系数法即可求解. 【解析】∵点A (a ,b )在双曲线5y x=上,∴ab =5,∵a 、b 都是正整数,∴a =1,b =5或a =5,b =1. 设经过B (a ,0)、C (0,b )两点的一次函数的解析式为y =mx +n . ①当a =1,b =5时,由题意,得:05m n n +=⎧⎨=⎩,解得:55m n =-⎧⎨=⎩,∴y =﹣5x +5;②当a =5,b =1时,由题意,得:501m n n +=⎧⎨=⎩,解得:151m n ⎧=-⎪⎨⎪=⎩,∴y =﹣15x +1.则所求解析式为y =﹣5x +5或y =﹣15x +1. 故答案为:y =﹣5x +5或y =﹣15x +1. 点睛:本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a 、b 的值是解题的关键.考点:反比例函数图象上点的坐标特征;分类讨论. 27.(2017内蒙古通辽市,第17题,3分)如图,直线333--=x y 与x ,y 轴分别交于点A ,B ,与反比例函数xky =的图象在第二象限交于点C ,过点A 作x 轴的垂线交该反比例函数图象于点D .若AD =AC ,则点D 的坐标为 .【答案】(﹣3,.【分析】过C 作CE ⊥x 轴于E ,求得A (﹣3,0),B (0,解直角三角形得到∠OAB =30°,求得∠CAE =30°,设D (﹣3,3k -),得到AD =3k -,AC =3k -,于是得到C (,6k-),列方程即可得到结论.【解析】过C 作CE ⊥x 轴于E ,∵直线333--=x y 与x ,y 轴分别交于点A ,B ,∴A (﹣3,0),B (0,,∴tan ∠OAB =OB OA =3,∴∠OAB =30°,∴∠CAE =30°,设D (﹣3,3k-),∵AD ⊥x 轴,∴AD =3k -,∵AD =AC ,∴AC =3k -,∴CE =6k -,AE =6-,∴C (6,6k-),∵C 在反比例函数x k y =的图象上,∴(+)•(6k-)=k ,∴k =-,∴D (﹣3,,故答案为:(﹣3,.点睛:本题考查了反比例函数与一次函数的交点问题,解直角三角形,反比例函数图象上点的坐标特征,正确的点A、B、C的坐标解题的关键.考点:反比例函数与一次函数的交点问题.28.(2017四川省成都市,第24题,4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P(1x,1y),称为点P的“倒影点”,直线1y x=-+上有两点A、B,它们的倒影点A′,B′均在反比例函数kyx=的图象上,若AB=,则k= .【答案】43 -.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(1a,11a-),B′(1b,11b-),由AB=可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(1a,11a-),B′(1b,11b-),∵AB=∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数kyx=的图象上,∴211(1)(1)b aka ab b=+⎧⎪⎨==⎪--⎩,解得:k=43-.故答案为:43-.点睛:本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.29.(2017广西贵港市,第18题,3分)如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线kyx=(x>0)与△ABC总有公共点,则k的取值范围是.【答案】2≤k≤9.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.点睛:本题考查了反比例函数图象上点的坐标特征,根的判别式等知识点的应用,题目比较典型,有一定的难度.考点:反比例函数与一次函数的交点问题.30.(2017江苏省常州市,第18题,2分)如图,已知点A是一次函数12y x=(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数kyx=(x>0)的图象过点B,C,若△OAB的面积为6,则△ABC的面积是.【答案】3.【分析】作辅助线,构建直角三角形,设AB=2a,根据直角三角形斜边中线是斜边一半得:BE=AE=CE=a,设A(x,12x),则B(x,kx),C(x+a,kx a+),因为B、C都在反比例函数的图象上,列方程组可得结论.【解析】如图,过C作CD⊥y轴于D,交AB于E,∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE =AE =CE ,设AB =2a ,则BE =AE =CE =a ,设A (x ,12x ),则B B (x ,k x ),C (x +a ,kx a+),∴11262212212OAB S AB DE a x ka x xk a x a x ∆⎧=⋅=⨯⨯=⎪⎪⎪=+⎨⎪⎪=+⎪+⎩①②③,由①得:ax =6,由②得:2k =4ax +x 2,由③得:2k =2a (a +x )+x (a +x ),2a 2+2ax +ax +x 2=4ax +x 2,2a 2=ax =6,a 2=3,∵S △ABC =12AB •CE =12•2a •a =a 2=3. 故答案为:3.点睛:本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征;等腰直角三角形;反比例函数综合题.学科@网31.(2017江苏省连云港市,第15题,3分)设函数3y x =与y =﹣2x ﹣6的图象的交点坐标为(a ,b ),则12a b+的值是 . 【答案】﹣2.【分析】由两函数的交点坐标为(a ,b ),将x =a ,y =b 代入反比例解析式,求出ab 的值,代入一次函数解析式,得出2a +b 的值,将所求式子通分并利用同分母分式的加法法则计算后,把ab 及2a +b 的值代入即可求出值. 【解析】∵函数3y x =与y =﹣2x -6的图象的交点坐标是(a ,b ),∴将x =a ,y =b 代入反比例解析式得:b =3a,即ab =3,代入一次函数解析式得:b =﹣2a ﹣6,即2a +b =﹣6,则12a b +=2a bab + =63- =﹣2,故答案为:﹣2.点睛:此题考查了反比例函数与一次函数的交点问题,其中将x =a ,y =b 代入两函数解析式得出关于a 与b的关系式是解本题的关键.考点:反比例函数与一次函数的交点问题.32.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x =和9y x =在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交1y x=的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是 .【答案】k=7或5. 【分析】根据一次函数和反比例函数的解析式,即可求得点A 、B 、C 的坐标(用k 表示),再讨论①AB =BC ,②AC =BC ,即可解题. 【解析】∵点B 是y =kx 和9y x =的交点,y =kx =9x ,解得:xy=,∴点B 坐标为),点A 是y =kx 和1y x =的交点,y =kx =1x ,解得:x,y,∴点A),∵BD ⊥x 轴,∴点C13,∴点C,3),∴BA ≠AC ,若△ABC 是等腰三角形,则: ①AB =BC﹣3,解得:k=7; ②AC =BC﹣3,解得:k=5;故答案为:k点睛:本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k 表示点A 、B 、C 坐标是解题的关键.考点:反比例函数与一次函数的交点问题;等腰三角形的性质;分类讨论;综合题.33.(2017金华,第15题,4分)如图,已知点A (2,3)和点B (0,2),点A 在反比例函数ky x=的图象上,做射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数图象于点C ,则点C 的坐标为 .【答案】(﹣1,﹣6).【分析】先过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据直线AB 的解析式为122y x =+,可得PF =32,将△AGP 绕点A 逆时针旋转90°得△AEH ,构造△ADP ≌△ADH ,再设DE =x ,则DH =DP =x +32,FD =1+2﹣x =3﹣x ,在Rt △PDF 中,根据PF 2+DF 2=PD 2,可得方程22233()(3)()22x x +-=+,进而得到D (1,0),即可得出直线AD 的解析式为y =3x ﹣3,最后解方程组即可得到D 点坐标.【解析】如图所示,过A 作AE ⊥x 轴于E ,以AE 为边在AE 的左侧作正方形AEFG ,交AB 于P ,根据点A (2,3)和点B (0,2),可得直线AB 的解析式为122y x =+,由A (2,3),可得OF =1,当x =﹣1时,y =﹣12+2=32,即P (﹣1,32),∴PF =32,将△AGP 绕点A 逆时针旋转90°得△AEH ,则△ADP ≌△ADH ,∴PD =HD ,PG =EH =32,设DE =x ,则DH =DP =x +32,FD =1+2﹣x =3﹣x ,Rt △PDF 中,PF 2+DF 2=PD 2,即22233()(3)()22x x +-=+,解得x =1,∴OD =2﹣1=1,即D (1,0),根据点A (2,3)和点D (1,0),可得直线AD 的解析式为y =3x ﹣3,解方程组:336y x y x =-⎧⎪⎨=⎪⎩,可得:23x y =⎧⎨=⎩或16x y =-⎧⎨=-⎩,∴C (﹣1,﹣6),故答案为:(﹣1,﹣6).点睛:本题主要考查了反比例函数与一次函数图象交点问题,以及反比例函数图象上点的坐标特征的运用,解决问题的关键是作辅助线构造正方形以及全等三角形,依据勾股定理列方程进行求解.考点:坐标与图形变化﹣旋转;反比例函数图象上点的坐标特征;反比例函数与一次函数的交点问题;综合题.34.(2017湖北省鄂州市,第15题,3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=D为AC与反比例函数kyx的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.【答案】﹣4或﹣8.【分析】过C作CE⊥AB于E,根据∠ABC=60°,AB=4,BC=ABC的面积,再根据点D 将线段AC分成1:2的两部分,分两种情况进行讨论,根据反比例函数系数k的几何意义即可得到k的值.【解析】如图所示,过C作CE⊥AB于E,∵∠ABC=60°,BC=Rt△CBE中,CE=3,又∵AC=4,∴△ABC的面积=12AB×CE=12×4×3=6,连接BD,OD,∵直线BD将△ABC的面积分成1:2的两部分,点睛:本题主要考查了反比例函数与一次函数交点问题,以及反比例函数系数k的几何意义的运用.过反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.解题时注意分类思想的运用.考点:反比例函数与一次函数的交点问题;数形结合;分类讨论.35.(2017山东省济南市,第20题,3分)如图,过点O的直线AB与反比例函数kyx=的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数3kyx-=(x<0)的图象交于点C,连接AC,则△ABC的面积为.【答案】8.【分析】由A(2,1)求得两个反比例函数分别为2yx=,6yx-=,与AB的解析式y=12x,解方程组求得B的坐标,进而求得C点的纵坐标,即可求得BC,根据三角形的面积公式即可求得结论.【解析】∵A(2,1)在反比例函数kyx=的图象上,∴k=2×1=2,∴两个反比例函数分别为2yx=,6yx-=,设AB的解析式为y=kx,把A(2,1)代入得,k=12,∴y=12x,解方程组:122y xyx⎧=⎪⎪⎨⎪=⎪⎩,得:21xy=⎧⎨=⎩或21xy=-⎧⎨=-⎩,∴B(﹣2,﹣1),∵BC∥y轴,∴C点的横坐标为﹣2,∴C点的纵坐标为62--=3,∴BC=3﹣(﹣1)=4,∴△ABC的面积为12×4×4=8,故答案为:8.点睛:本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.考点:反比例函数与一次函数的交点问题;反比例函数及其应用.36.(2017山东省莱芜市,第15题,4分)直线y=kx+b与双曲线6yx=-交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE= .【答案】16.【分析】利用待定系数法求出平移后的直线的解析式,求出点D、E的左边,再利用分割法求出三角形的面积即可.【解析】由题意A(﹣3,2),B(1,﹣6),∵直线y=kx+b经过点A(﹣3,2),B(1,﹣6),∴326k bk b-+=⎧⎨+=-⎩,解得:24kb=-⎧⎨=-⎩,∴y=﹣2x﹣4,向上平移8个单位得到直线y=﹣2x+4,由624yxy x⎧=-⎪⎨⎪=-+⎩,解得:32xy=⎧⎨=-⎩和16xy=-⎧⎨=⎩,不妨设D(3,﹣2),E(﹣1,6),∴S△ADE=6×8﹣12×4×2﹣12×6×4﹣12×8×4=16,故答案为:16.点睛:本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.37.(2016四川省广安市)若反比例函数kyx=(k≠0)的图象经过点(1,﹣3),则第一次函数y=kx﹣k(k≠0)的图象经过象限.【答案】一、二、四.【分析】由题意知,k=1×(﹣3)=﹣3<0,所以一次函数解析式为y=﹣3x+3,根据k,b的值判断一次函。
全国2018年中考数学真题分类汇编第11讲反比例函数无答案20180919252

(分类)第11讲反比例函数知识点1 反比例函数的概念知识点2 反比例函数的图象与性质(2018·齐齐哈尔)5.(2018·徐州)如果点(3,-4)在反比例函数kyx的图象上,那么下列各点中,在此图象上的是()A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)(2018·哈尔滨)(2018·曲靖)(2018·云南)(2018·海南)(2018·遂宁)(2018·巴中)(2018•天津)若点A (x 1,﹣6),B (x 2,﹣2),C (x 3,2)在反比例函数y=的图象上,则x 1,x 2,x 3的大小关系是( B )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 2<x 1(2018淮安)(2018•扬州)已知点A (x 1,3),B (x 2,6)都在反比例函数y=﹣x3的图象上,则下列关系式一定正确的是( )A .x 1<x 2<0B .x 1<0<x 2C .x 2<x 1<0D .x 2<0<x 1(2018•威海)若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y=(k <0)上,则y 1,y 2,y 3的大小关系是(D )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2(2018·滨州)(2018·衡阳)(2018·铜仁)知识点3 反比例函数中k的几何意义(2018·烟台)(2018·长春)(2018·龙东)(2018·贵阳)(2018郴州)如图,A ,B 是反比例函数4y x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则OAB △的面积是( )A .4B .3 C.2 D .1(2018·邵阳)(2018荆门)14.(2018·盐城)如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)ky x x=>的图象经过点D ,交BC 边于点E .若BDE ∆的面积为1,则k = .(2018·重庆A )11.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( D ) A .54B .154C .4D .5(2018·衢州)(2018·内江)(2018·成都)知识点4 确定反比例函数的解析式(2018·昆明)14.(2018·沈阳)如图,B(3,-3),C(5,0),以OC ,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为 .(2018·吉林)(2018·陕西)(2018·遵义)(2018·随州)(2018·吉林)(2018·广州)(2018·河南)知识点5 反比例函数与一次函数综合(2018·铜仁)(2018•临沂)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是( D )A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l(2018·山西)20.(2018·青岛)已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >.(1)当124y y -=时,求m 的值;(2)如图,过点B C 、分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上, 若三角形PBD 的面积是8,请写出点P 坐标(不需要写解答过程).(2018·南通)18.在平面直角坐标系xOy 中,过点()3,0A 作垂直于x 轴的直线AB ,直线y x b =-+与双曲线1y x=交于点()()1122,,,P x y Q x y ,与直线AB 交于点()33,R x y ,若123y y y >>时,则b 的取值范围是 .(2018·安徽)(y=23x-3)(2018·济宁)(2018·菏泽)(2018·呼和浩特)(2018·湘潭)知识点6 反比例函数的实际应用(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( C )A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内(2018·河北)(2018·荆州)(2018·郴州)(2018·乌鲁木齐)(2018·呼和浩特)。
2018年中考反比例函数真题

数,令 ω=x1+x2+x3,则 ω的值为(
)
A.1 B.m C. m2 D. 【分析】 三个点的纵坐标相同,由图象可知 y=x2 图象上点横坐标互为相反数,则 x1+x2+x3=x3, 再由反比例函数性质可求 x3. 【解答】 解:设点 A、B 在二次函数 y=x2 图象上, 点 C 在反比例函数 y= (x>0)的图象上. 因
7.(2018?嘉兴)如图,点 C 在反比例函数 y= (x>0)的图象上,过点 C 的直线与 x 轴, y 轴分别交于点 A, B,且 AB=BC,△ AOB 的面积为 1,则 k 的值为( )
A.1 B.2 C. 3 D.4 【分析】 根据题意可以设出点 A 的坐标,从而以得到点 C 和点 B 的坐标,再根据△ AOB 的面 积为 1,即可求得 k 的值. 【解答】 解:设点 A 的坐标为( a, 0), ∵过点 C 的直线与 x 轴, y 轴分别交于点 A,B,且 AB=BC,△ AOB的面积为 1,下载可编辑
反比例函数
参考答案与试题解析
一.选择题(共 23 小题)
1.(2018?凉山州)若 ab< 0,则正比例函数 y=ax与反比例函数 y= 在同一坐标系中的大致图
象可能是(
)
A.
B.
C.
D.
【分析】 根据 ab<0 及正比例函数与反比例函数图象的特点,可以从 a>0,b<0 和 a<0,b > 0 两方面分类讨论得出答案. 【解答】 解:∵ ab<0,∴分两种情况: ( 1)当 a>0,b<0 时,正比例函数 y=ax 数的图象过原点、第一、三象限,反比例函数图象 在第二、四象限,无此选项; ( 2)当 a<0,b>0 时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、 三象限,选项 B 符合. 故选: B.
2018年中考真题训练反比例函数答案

2018年中考真题训练反比例函数答案一、选择题1、在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )AA .k >3B .k >0C .k <3D . k <0 2、某反比例函数的图像过点M (2-,1),则此反比例函数 表达式为( )BA .2y x =B .2y x =-C .12y x =D .12y x=-3、已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。
AA 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定4、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ).C A .不小于54m 3 B .小于54m 3C .不小于45m 3 D .小于45m 35、反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( )D (A)2 (B)-2 (C)4 (D)-4 6、对于反比例函数2y x=,下列说法不正确...的是( )C A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小7、已知反比例函数2y x=,则这个函数的图象一定经过( )A A . (2,1) B . (2,-1) C . (2,4) D . (-12,2) 8、在下图中,反比例函数xk y 12+=的图象大致是( )D9、若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )D A .b 1<b2B .b 1 = b2C .b 1>b 2D .大小不确定10、反比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )CA.第一、二象限 B.第一、三象限 C.第二、四角限D.第三、四象限11、已知反比例函数8y x=-的图象经过点P (a+1,4),则a=_____.-3 12、若反比例函数1y x=-的图象上有两点1(1)A y ,,2(2)B y ,,则1y ______2y (填“>”或“=”或“<”). < 13、如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位. 1014、在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 .B 三、解答题15、如图6,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.解:(1) ∵ 点A (-4,2)和点B (n ,-4)都在反比例函数y =xm的图象上, ∴2,44.m m n ⎧=⎪⎪-⎨⎪-=⎪⎩解得8,2.m n =-⎧⎨=⎩图6又由点A (-4,2)和点B (2,-4)都在一次函数y =kx +b 的图象上, ∴42,2 4.k b k b -+=⎧⎨+=-⎩ 解得1,2.k b =-⎧⎨=-⎩∴ 反比例函数的解析式为8y x=-,一次函数的解析式为y =-x -2 .(2) x 的取值范围是x >2或-4<x <0 .16、如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.解:(1)∵点(21)A -,在反比例函数my x =的图象上, (2)12m =-⨯=-∴.∴反比例函数的表达式为2y x =-.∵点(1)B n ,也在反比例函数2y x=-的图象上,2n =-∴,即(12)B -,. 把点(21)A -,,点(12)B -,代入一次函数y kx b =+中,得 212k b k b -+=⎧⎨+=-⎩,,解得11k b =-⎧⎨=-⎩,.∴一次函数的表达式为1y x =--. (2)在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(10)C -,. ∵线段OC 将AOB △分成AOC △和BOC △,1113111212222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=+=△△△∴.17.(6分)将油箱注满k 升油后,轿车科行驶的总路程S (单位:千米)与平均耗油量a (单位:升/千米)之间是反比例函数关系S =(k 是常数,k ≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式); (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米? 解答: 解:(1)由题意得:a =0.1,s =700, 代入反比例函数关系S =中, 解得:k =sa =70, 所以函数关系式为:s =;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;18.(2014•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入,,时,19.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;解:(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.20.(10分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.,=,==1=的图象上.。
中考数学反比例函数-经典压轴题含答案解析

中考数学反比例函数-经典压轴题含答案解析一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.如图,点P( +1,﹣1)在双曲线y= (x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.【答案】(1)解:点P(,)在双曲线上,将x= ,y= 代入解析式可得:k=2;(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,∵四边形ABCD是正方形,∴AB=AD=BC,∠CBA=90°,∴∠FBC+∠OBA=90°,∵∠CFB=∠BOA=90°,∴∠FCB+∠FBC=90°,∴∠FBC=∠OAB,在△CFB和△AOB中,,∴△CFB≌△AOB(AAS),同理可得:△BOA≌△AED≌△CFB,∴CF=OB=AE=b,BF=OA=DE=a,设A(a,0),B(0,b),则D(a+b,a)C(b,a+b),可得:b(a+b)=2,a(a+b)=2,解得:a=b=1.所以点C的坐标为:(1,2).【解析】【分析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.3.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.4.已知:O是坐标原点,P(m,n)(m>0)是函数y= (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m).设△OPA的面积为s,且s=1+ .(1)当n=1时,求点A的坐标;(2)若OP=AP,求k的值;(3)设n是小于20的整数,且k≠ ,求OP2的最小值.【答案】(1)解:过点P作PQ⊥x轴于Q,则PQ=n,OQ=m,当n=1时,s= ,∴a= = .(2)解:解法一:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n= .∴1+ = •an.即n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.解法二:∵OP=AP,PA⊥OP,∴△OPA是等腰直角三角形.∴m=n.设△OPQ的面积为s1则:s1= ∴•mn= (1+ ),即:n4﹣4n2+4=0,∴k2﹣4k+4=0,∴k=2.(3)解:解法一:∵PA⊥OP,PQ⊥OA,∴△OPQ∽△OAP.设:△OPQ的面积为s1,则 =即: = 化简得:化简得:2n4+2k2﹣kn4﹣4k=0(k﹣2)(2k﹣n4)=0,∴k=2或k= (舍去),∴当n是小于20的整数时,k=2.∵OP2=n2+m2=n2+ 又m>0,k=2,∴n是大于0且小于20的整数.当n=1时,OP2=5,当n=2时,OP2=5,当n=3时,OP2=32+ =9+ = ,当n是大于3且小于20的整数时,即当n=4、5、6…19时,OP2的值分别是:42+ 、52+ 、62+ …192+ ,∵192+ >182+ >32+ >5,∴OP2的最小值是5.【解析】【分析】(1)利用△OPA面积定义构建关于a的方程,求出A的坐标;(2)由已知OP=AP,PA⊥OP,可得△OPA是等腰直角三角形,由其面积构建关于n的方程,转化为k的方程,求出k;(3)利用相似三角形的面积比等于相似比的平方构建关于k的方程,最值问题的基本解决方法就是函数思想,利用勾股定理用m、n的代数式表达OP2,,在n的范围内求出OP2的最值.5.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,∴CE=BE•tan∠ABO=6× =3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y= 的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣(2)解:∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,∴OA=OB•tan∠ABO=4× =2.∵S△BAF= AF•OB= (OA+OF)•OB= (2+ )×4=4+ .∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO= ×|﹣6|=3.∵S△BAF=4S△DFO,∴4+ =4×3,解得:n= ,经验证,n= 是分式方程4+ =4×3的解,∴点D的坐标为(,﹣4).【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.6.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点.(1)求m的值;(2)求过A、B、D三点的抛物线的解析式;(3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1,是四边形OACD面积S的?若存在,求点E的坐标;若不存在,请说明理由.【答案】(1)解:∵反比例函数的图象都经过点A(3,3),∴经过点A的反比例函数解析式为:y= ,而直线OA向下平移后,与反比例函数的图象交于点B(6,m),∴m=(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6,),与x轴、y轴分别交于C、D两点,而这些OA的解析式为y=x,设直线CD的解析式为y=x+b代入B的坐标得: =6+b,∴b=﹣4.5,∴直线OC的解析式为y=x﹣4.5,∴C、D的坐标分别为(4.5,0),(0,﹣4.5),设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,分别把A、B、D的坐标代入其中得:解之得:a=﹣0.5,b=4,c=﹣4.5∴y=﹣0.5x2+4x﹣4.5(3)解:如图,设E的横坐标为x,∴其纵坐标为﹣0.5x2+4x﹣4.5,∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,= (﹣0.5x2+4x﹣4.5+4.5)×4.5,= (﹣0.5x2+4x)×4.5,而S= (3+OD)×OC= (3+4.5)×4.5= ,∴(﹣0.5x2+4x)×4.5= ,解之得x=4± ,∴这样的E点存在,坐标为(4﹣,0.5),(4+ ,0.5).【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐标.7.如图,直线y=2x+6与反比例函数y= (k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集;(3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?【答案】(1)解:∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y= .(2)解:不等式2x+6﹣<0的解集为0<x<1.(3)解:由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴﹣>0∴S△BMN= |MN|×|y M|= ×(﹣)×n=﹣(n﹣3)2+ ,∴n=3时,△BMN的面积最大,最大值为.【解析】【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)由图象直接求得;(3)构建二次函数,利用二次函数的最值即可解决问题.8.如图,在平面直角坐标系中,直线与双曲线相交于点A(,6)和点B(-3,),直线AB与轴交于点C.(1)求直线AB的表达式;(2)求的值.【答案】(1)解:∵点A(,6)和点B(-3,)在双曲线,∴m=1,n=-2,∴点A(1,6),点B(-3,-2),将点A、B代入直线,得,解得,∴直线AB的表达式为:(2)解:分别过点A、B作AM⊥y轴,BN⊥y轴,垂足分别为点M、N,则∠AMO=∠BNO=90°,AM=1,BN=3,∴AM//BN,∴△ACM∽△BCN,∴【解析】【分析】根据反比例函数的解析式可得m和n的值,利用待定系数法求一次函数的表达式;作辅助线,构建平行线,根据平行线分线段成比例定理可得结论.9.如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点E,且S△AOE=3S△OBE.(1)求k的值;(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长OF交反比例函数y= (x<0)的图象于点N,求N点坐标.【答案】(1)解:∵S△AOE=3S△OBE,∴AE=3BE,∴AE=3,∴E(﹣3,4)反比例函数y= (k≠0,且k为常数)的图象过点E,∴4= ,即k=﹣12(2)解:∵正方形AOCB的边长为4,∴点D的横坐标为﹣4,点F的纵坐标为4.∵点D在反比例函数的图象上,∴点D的纵坐标为3,即D(﹣4,3).∵点D在直线y= x+b上,∴3= ×(﹣4)+b,解得b=5.∴直线DF为y= x+5,将y=4代入y= x+5,得4= x+5,解得x=﹣2.∴点F的坐标为(﹣2,4),设直线OF的解析式为y=mx,代入F的坐标得,4=﹣2m,解得m=﹣2,∴直线OF的解析式为y=﹣2x,解,得.∴N(﹣,2 )【解析】【分析】(1)根据题意求得E的坐标,把点E(﹣3,4)代入利用待定系数法即可求出k的值;(2)由正方形AOCB的边长为4,故可知点D的横坐标为﹣4,点F的纵坐标为4.由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(﹣4,3),由点D在直线y= x+b上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标,然后根据待定系数法求得直线OF的解析式,然后联立方程解方程组即可求得.10.如图,已知直线l:y=kx+b(k<0,b>0,且k、b为常数)与y轴、x轴分别交于A 点、B点,双曲线C:y= (x>0).(1)当k=﹣1,b=2 时,求直线l与双曲线C公共点的坐标;(2)当b=2 时,求证:不论k为任何小于零的实数,直线l与双曲线C只有一个公共点(设为P),并求公共点P的坐标(用k的式子表示).(3)①在(2)的条件下,试猜想线段PA、PB是否相等.若相等,请加以证明;若不相等,请说明理由;②若直线l与双曲线C相交于两点P1、P2,猜想并证明P1A与P2B之间的数量关系.【答案】(1)解:联立l与C得,①﹣②,得﹣x+2 ﹣ =0化简,得x2﹣2 x+3=0解得x1=x2= ,y1=y2= ,直线l与双曲线C公共点的坐标为(,)(2)解:证明:联立l与C得,①﹣②,得kx+2 ﹣ =0,化简,得kx2+2 x﹣3=0,a=k,b=2 ,c=﹣3,△=b2﹣4ac=(2 )2﹣4k×(﹣3)=12k﹣12k=0,∴kx2+2 x﹣3=0只有相等两实根,即不论k为任何小于零的实数,直线l与双曲线C只有一个公共点;x=﹣,y= ,即P(﹣,)(3)解:①PA=PB,理由如下:y=kx+b当x=0时,y=b,即A(0,b);当y=0时,x=﹣,即B(﹣,0),P(﹣,),PA= ,PB= ,∴PA=PB.②P1A=P2B,理由如下:y=kx+b当x=0时,y=b,即A(0,b);当y=0时,x=﹣,即B(﹣,0),联立l与C得,①﹣②,得kx+b﹣ =0,化简,得kx2+bx﹣3=0,解得P1(,)P2(,)P1A2=()2+()2,P2B2=()2+()2,∴P1A2=P2B2,∴P1A=P2B【解析】【分析】(1)根据联立函数解析式,可得方程组,根据代入消元法,可得方程组的解,可得交点的坐标;(2)根据联立函数解析式,可得方程组,根据代入消元法,可的一元二次方程,根据判别式,可得答案;(3)①根据函数与自变量的关系,可得A、B点坐标,根据两点间距离公式,可得答案;②根据函数与自变量的关系,可得A、B点坐标,根据联立函数解析式,可得方程组,根据代入消元法,可得方程组的解,可得交点的坐标,根据两点间距离公式,可得答案.11.已知抛物线的顶点坐标为,经过点 .(1)求抛物线的解析式;(2)如图1,直线交抛物线于,两点,若,求的值;(3)如图2,将抛物线向下平移个单位长度得到抛物线,抛物线的顶点为,交轴的负半轴于点,点在抛物线上.①求点的坐标(用含的式子表示);②若,求,的值.【答案】(1)解:已知抛物线的顶点坐标为,∴设抛物线的解析式为,把代入得:6=16a-2,解得:,∴抛物线的解析式为(2)解:设直线交轴点,则点的坐标,∴ .∵,∴ .∴ .由得,∴,,∴,∴,∵,∴ .(3)解:①依题意得抛物线的解析式为 . 点在抛物线上,∴,∴顶点的坐标为,令,即 .∴,(舍去),∴点的坐标为 .②作轴于点,∵E(2-a,0),F(a,2a-2),∴,∴,又,∴,∵FH//y轴,∴∠FPO=∠PFH=22.5°,∴∠FPO=∠EFP,∴PD=FD,设交轴于点,过D作DG⊥FH于G,则DG=OH,∵∠EFH=45°,∴,∵∠FEH=45°,a>2,∴OD=OE=a-2,∴PD=a-2- = ,∵HO=a,∴,∴,(舍去),∴ .【解析】【分析】(1)观察函数图像可知抛物线关于y轴对称,可得到点A时抛物线的顶点坐标,因此设函数解析式为y=ax2-2,再将点B的坐标代入求出a的值,即可得到抛物线C的解析式。
2018年中考数学真题专题汇编一次函数、反比例函数综合题(无答案)

2018年中考数学真题专题汇编—一次函数、反比例函数综合题24.(2018山东滨州)如图,在平面直角坐标系中,点O 为坐标原点,菱形OABC 的顶点A 在x 轴的正半轴上,顶点C的坐标为(.(1)求图象过点B 的反比例函数的解析式, (2)求图象过点A B 、的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.24(2018湖南株洲)如图已知函数(0,0)ky k x x=>>的图象与一次函数5(0)y mx m =+<的图象相交不同的点A 、B ,过点A 作AD ⊥x 轴于点D ,连接AO ,其中点A 的横坐标为0x ,△AOD 的面积为2。
(1)求k 的值及0x =4时m 的值;(2)记[]x 表示为不超过x 的最大整数,例如:[]1.41=,[]22=,设.t OD DC =,若3524m -<<-,求2m t ⎡⎤⎣⎦ 值20.(2018山东青岛)已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >.(1)当124y y -=时,求m 的值;(2)如图,过点B C 、分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上,若三角形PBD 的面积是8,请写出点P 坐标(不需要写解答过程).25.(2018甘肃武威)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于(1,)A a -,B 两点,与x 轴交于点C .(1)求此反比例函数的表达式; (2)若点P 在x 轴上,且32ACP BOC S S ∆∆=,求点P 的坐标. 23.(2018四川达州)矩形AOBC 中,3,4==OA OB .分别以OA OB ,所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与C B ,重合),过点F 的反比例函数xky =(0>k )的图象与边AC 交于点E .(1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF ,求EFC ∠的正切值;(3)如图2,将CEF ∆沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式.23.(2018浙江金华)如图,四边形ABCD 的四个顶点分别在反比例函数y=与y=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.17.(2018江西省)如图,反比例函数(0)ky k x=≠的图象与正比例函数2y x =的图象相交于(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠= .(1)求k 的值及点B 的坐标; (2)求tan C 的值.22.(2018重庆B 卷)如图,在平面直角坐标系中直线11:2l y x =与直线2l 交点A 的横坐标为2.将直线1l ,沿y 轴向下平移4个单位长度得到直线3l ,直线3l 与y 轴交于点B ,与直线2l 交于点C .点C 的纵坐标为-2直线2l 与y 轴交于点D . (1)求直线2l 的解析式; (2)求△BDC 的面积20.(2018四川南充)已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.22.(2018四川绵阳)如图,一次函数1522y x =-+的图象与反比例函数ky x=(0k >)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA PB +的最小值,并求出其最小值和P 点的坐标.21.(2018山东枣庄)如图,一次函数b kx y +=(b k ,为常数,0≠k )的图象与x 轴、y 轴分别交于B A ,两点,且与反比例函数xny =(n 为常数,且0≠n )的图象在第二象限交于点C ,⊥CD x 轴,垂足为D ,若1232===OD OA OB .(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求CDE ∆的面积; (3)直接写出不等式xnb kx ≤+的解集.22(2018浙江金华)如图,四边形ABCD 的四个顶点分别在反比例函数y xm=与y xn=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由. (2)四边形ABCD 能否成为正方形?若能, 求此时m,n 之间的数量关系;若不能,试说明理由.20.(2018浙江台州)如图,函数y x =的图象与函数(0)ky x x=>的图象相交于点(2,)P m .(1)求m ,k 的值;(2)直线4y =与函数y x =的图象相交于点A ,与函数(0)ky x x=>的图象相交于点B ,求线段AB 长.20.(2018湖南常德)如图7,已知一次函数111(0)y k x b k =+≠与反比例函数222(0)k y k x=≠的图像交于(4,1)A ,(,2)B n -两点.(1) 求一次函数与反比例函数的解析式; (2) 请根据图像直接写出12y y <时x 的取值范围.23.(2018四川达州)矩形AOBC 中,3,4==OA OB .分别以OA OB ,所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与C B ,重合),过点F 的反比例函数xky =(0>k )的图象与边AC 交于点E .(1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF ,求EFC ∠的正切值;(3)如图2,将CEF ∆沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式.24.(2018浙江衢州25.如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于(1,)A a -,B 两点,与x 轴交于点C .(1)求此反比例函数的表达式; (2)若点P 在x 轴上,且32ACP BOC S S ∆∆=,求点P 的坐标. 23(2018甘肃白银)如图,Rt△OAB 的直角边OA 在x 轴上,顶点B 的坐标为(6,8),直线CD 交AB 于点D (6,3),交x 轴于点C (12,0). (1)求直线CD 的函数表达式;(2)动点P 在x 轴上从点(﹣10,0)出发,以每秒1个单位的速度向x 轴正方向运动,过点P 作直线l 垂直于x 轴,设运动时间为t .①点P 在运动过程中,是否存在某个位置,使得∠PDA=∠B ?若存在,请求出点P 的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.25(2018湖南长沙)如图,在平面直角坐标系xOy中,函数myx(m为常数,m 1,x 0)的图象经过点P(m,1)和Q(1,m,直线PQ与x轴,y轴分别交于C,D两点,点M(x,y)是该函数图象上的一个动点,过点 M 分别作x轴和y轴的垂线,垂足分别为A,B。
中考数学反比例函数-经典压轴题及详细答案
(3)先分别求得 S△ P1B1O、S△ P2B2O 的值,然后找出其中的规律,最后依据规律进行计算
即可.
5.如图,P1、P2(P2 在 P1 的右侧)是 y= (k>0)在第一象限上的两点,点 A1 的坐标为
(2,0).
(1)填空:当点 P1 的横坐标逐渐增大时,△ P1OA1 的面积将________(减小、不变、增 大) (2)若△ P1OA1 与△ P2A1A2 均为等边三角形, ①求反比例函数的解析式; ②求出点 P2 的坐标,并根据图象直接写在第一象限内,当 x 满足什么条件时,经过点
(1)求一次函数和反比例函数的解析式; (2)求△ ABH 面积. 【答案】(1)解:∵ 点 D 的坐标为(﹣1,0),tan∠ CDO=2, ∴ CO=2,即 C(0,2), 把 C(0,2),D(﹣1,0)代入 y=ax+b 可得,
,解得
,
∴ 一次函数解析式为 y=2x+2,
∵ 点 A 的横坐标是 1,
,
分别交于 E,F 两点.
双曲线
与矩形两边 BC,AB
(1)如图一,若 E 是 BC 中点,求点 F 的坐标;
(2)如图二,若将
沿直线 EF 对折,点 B 恰好落在 x 轴上的点 D 处,求 k 的值.
【答案】 (1)解:矩形 OABC 中,
,
,E 是 BC 中点,
点
.
点 E 在双曲线 .
上,
.
点 F 的横坐标为 4,且在双曲线
2.心理学家研究发现,一般情况下,一节课 40 分钟中,学生的注意力随教师讲课的变化 而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理 想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数 y 随时间 x(分钟)的变化规律如下图所示(其中 AB、BC 分别为线段,CD 为双曲线的一部 分):
中考数学反比例函数-经典压轴题及详细答案
中考数学反比例函数-经典压轴题及详细答案一、反比例函数1.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.2.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.3.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.反比例函数的表达式为y1=(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),观察图象得,当x<﹣4或0<x<4时,y1>y2(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.y1= 中,当x=1时,y=4,∴P(1,4).设直线AP的函数关系式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,则,解得.故直线AP的函数关系式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15.【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出S△AOP= ,则S△PAB=2S△AOP=15.4.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.5.如图,正比例函数和反比例函数的图象都经过点A(3,3),把直线OA向下平移后,与反比例函数的图象交于点B(6,m),与x轴、y轴分别交于C、D两点.(1)求m的值;(2)求过A、B、D三点的抛物线的解析式;(3)若点E是抛物线上的一个动点,是否存在点E,使四边形OECD的面积S1,是四边形OACD面积S的?若存在,求点E的坐标;若不存在,请说明理由.【答案】(1)解:∵反比例函数的图象都经过点A(3,3),∴经过点A的反比例函数解析式为:y= ,而直线OA向下平移后,与反比例函数的图象交于点B(6,m),∴m=(2)解:∵直线OA向下平移后,与反比例函数的图象交于点B(6,),与x轴、y轴分别交于C、D两点,而这些OA的解析式为y=x,设直线CD的解析式为y=x+b代入B的坐标得: =6+b,∴b=﹣4.5,∴直线OC的解析式为y=x﹣4.5,∴C、D的坐标分别为(4.5,0),(0,﹣4.5),设过A、B、D三点的抛物线的解析式为y=ax2+bx+c,分别把A、B、D的坐标代入其中得:解之得:a=﹣0.5,b=4,c=﹣4.5∴y=﹣0.5x2+4x﹣4.5(3)解:如图,设E的横坐标为x,∴其纵坐标为﹣0.5x2+4x﹣4.5,∴S1= (﹣0.5x2+4x﹣4.5+OD)×OC,= (﹣0.5x2+4x﹣4.5+4.5)×4.5,= (﹣0.5x2+4x)×4.5,而S= (3+OD)×OC= (3+4.5)×4.5= ,∴(﹣0.5x2+4x)×4.5= ,解之得x=4± ,∴这样的E点存在,坐标为(4﹣,0.5),(4+ ,0.5).【解析】【分析】(1)先根据点A的坐标求得反比例函数的解析式,又点B在反比例函数图像上,代入即可求得m的值;(2)先根据点A的坐标求得直线OA的解析式,再结合点B的坐标求得直线CD的解析式,从而可求得点C、D的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上E点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x的二元一次方程,方程有解则点E存在,并可求得点E的坐标.6.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.7.已知一次函数y=− x−12的图象分别交x轴,y轴于A,C两点。
中考数学压轴题专题复习—反比例函数的综合含答案解析
一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.(1)求双曲线的解析式;(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;(3)点(6,n)为G1与G2的交点坐标,求a的值.(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,所以双曲线的解析式为y= ;(2)2(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),抛物线G2的解析式为y=﹣(x﹣a)2+9,把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,即a的值为6± ;(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2;∵G1与G2有两个交点,∴3+ ≤a≤12﹣2 ,设直线DE的解析式为y=px+q,把D(3,4),E(12,1)代入得,解得,∴直线DE的解析式为y=﹣ x+5,∵G2的对称轴分别交线段DE和G1于M、N两点,∴M(a,﹣ a+5),N(a,),∵MN<,∴﹣ a+5﹣<,整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,∴a<4或a>9,∴a的取值范围为9<a≤12﹣2 .【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),所以BE= =2 .故答案为2 ;【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.2.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.3.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.4.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.5.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
2018年中考数学回归考点 反比例函数练习卷
反比例函数练习卷1.已知点P (-1,4)在反比例函数y =k x(k ≠0)的图象上,则k 的值是( )A .-14 B.14C .4D .-4 2.如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为( )A .y =2xB .y =-2xC .y =12xD .y =-12x3.已知反比例函数y =1x,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大4.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A .(-3,2)B .(3,2)C .(2,3)D .(6,1)5.关于反比例函数y =4x的图象,下列说法正确的是( ) A .必经过点(1,1) B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称6.小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图象是( )7.如图,点M 是函数x y 3=与xk y =的图象在第一象限内的交点,4=OM ,则k 的值为 .8.若点A (1,y 1),B (2,y 2)是双曲线y =3x上的点,则y 1 y 2(填“>”,“<”或“=”). 9.反比例函数y =m -1x 的图象在第一、三象限,则m 的取值范围是 . 10.函数y =1x -3中自变量x 的取值范围是 .11.已知一次函数y =x +2与反比例函数y =k x ,其中一次函数y =x +2的图象经过点P (k,5).(1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标.12.已知直线y =-3x 与双曲线y =m -5x 交于点P (-1,n ). (1)求m 的值;(2)若点A (x 1,y 1),B (x 2,y 2)在双曲线y =m -5x 上,且x 1<x 2<0,试比较y 1、y 2的大小.13.如图,已知反比例函数y 1=k 1x(k 1>0)与一次函数y 2=k 2x +1(k 2≠0)相交于A 、B 两点,AC ⊥x 轴于点C .若△OAC 的面积为1,且tan ∠AOC =2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B 点的坐标,并指出当x 为何值时,反比例函数y 1的值大于一次函数y 2的值?14.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x(m ≠0)的图象相交于A 、B 两点.求:(1)根据图象写出A 、B 两点的坐标并分别求出反比例函数和一次函数的解析式;(2) 根据图象写出:当x 为何值时,一次函数值大于反比例函数值.15.如图,正比例函数y =12x 的图象与反比例函数y =k x(k ≠0)在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知△OAM 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA +PB 最小.参考答案1. D2.B3.D4.A5.D6. B7.8. >9.m >1 10.x ≠311.因一次函数y =x +2的图象经过点P (k,5),所以得5=k +2,解得k =3,所以反比例函数的表达式为y =3x. (2)联立得方程组⎩⎪⎨⎪⎧ y =x +2y =3x, 解得⎩⎪⎨⎪⎧ x =1y =3或⎩⎪⎨⎪⎧x =-3y =-1, 故第三象限的交点Q 的坐标为(-3,-1).12.(1)∵点P (-1,n )在直线y =-3x 上,∴n =-3×(-1)=3.∴P 的坐标是(-1,3).∵点P (-1,3)在双曲线y =m -5x 上, ∴m -5=-3,即m =2.(2)∵m -5=-3<0,∴y =-3x, ∴当x <0时,y 随x 的增大而增大,又∵点A (x 1,y 1),B (x 2,y 2)在双曲线y =m -5x上,且x 1<x 2<0,∴y 1<y 2. 13.(1)在Rt △OAC 中,设OC =m .∵tan ∠AOC =AC OC =2,∴AC =2×OC =2m .∵S △OAC =12×OC ×AC =12×m ×2m =1, ∴m 2=1,∴m =1(m =-1舍去).∴A 点的坐标为(1,2).把A 点的坐标代入y 1=k 1x 中,得k 1=2.∴反比例函数的表达式为y 1=2x. 把A 点的坐标代入y 2=k 2x +1中,得k 2+1=2,∴k 2=1.∴一次函数的表达式y 2=x +1.(2)B 点的坐标为(-2,-1).当0<x <1或x <-2时,y 1>y 2.14.解:(1)如图,可知点A 的坐标为⎝ ⎛⎭⎪⎫2,12,点B 的坐标为(-1,-1),∵反比例函数y =m x (m ≠0)的图象经过点⎝ ⎛⎭⎪⎫2,12, ∴m =1.∴反比例函数的解析式为y =1x, ∵一次函数y =kx +b (k ≠0)的图象经过点A ⎝ ⎛⎭⎪⎫2,12和点B (-1,-1), ∴⎩⎪⎨⎪⎧ 2k +b =12-k +b =-1,解得k =12,b =-12. ∴一次函数的解析式为y =12x -12. (2) 由图象可知:当x >2或-1<x <0时一次函数值大于反比例函数值.15.解:(1)设A 点的坐标为(a ,b ),则b =k a .∴ab =k .∵12ab =1,∴12k =1.∴k =2. ∴反比例函数的解析式为y =2x. (2)由⎩⎪⎨⎪⎧ y =2x y =12x 得⎩⎪⎨⎪⎧ x =2y =1,∴A 为(2,1).设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,-1).∴PA =PC ,连接线段BC 时,PA +PB 最小值即为BC .令直线BC 的解析式为y =mx +n .∵B 为(1,2),∴⎩⎪⎨⎪⎧ 2=m +n -1=2m +n ,∴⎩⎪⎨⎪⎧ m =-3n =5.∴BC 的解析式为y =-3x +5.当y =0时,x =53.∴P 点为⎝ ⎛⎭⎪⎫53,0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O A B
x
y
O A B x y N F P E M O A B x
y
2018年全国各地中考数学压轴题专集:3反比例函数 1.如图,点A、B在反比例函数y=- 4 x 的图象上,且点A、B的横坐标分别为a、2a(a<0). (1)求△AOB的面积; (2)若点C在x轴上,点D在y轴上,且四边形ABCD为正方形,求a的值.
2.如图,点P是反比例函数y=- 2 x (x<0)图象上一动点,点A、B分别在x轴,y轴上,且OA=OB=2,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F. (1)当动点P的纵坐标为 5 3 时,连接OE、OF,求△EOF的面积; (2)设动点P的坐标为P(a,b)(-2<a<0,0<b<2且| a |≠| b |),其他条件不变,探索:以AE、EF、BF为边的三角形是怎样的三角形?并证明你的结论.
3.如图,在△OAB中,OA=OB,点A坐标为(-33,3),点B在x轴负半轴上. (1)将△OAB沿x轴向右平移a个单位后,点A恰好落在反比例函数y= 63 x 的图象上,求a的值; (2)将△OAB绕点O按逆时针方向旋转α角(0°<α<90°).
①当α=30°时,点B恰好落在反比例函数y= k x 的图象上,求k的值; ②点A、B能否同时落在①中的反比例函数的图象上,若能,求α角的大小;若不能,请说明理由. O A B x y C O A B x
y
备用图
4.如图,△AOB为等腰直角三角形,斜边OB在x轴上,一次函数y=3x-4的图象经过点A,交y轴于点C,反比例函数y= k x (x>0)的图象也经过点A. (1)求反比例函数的解析式; (2)过O点作OD⊥AC于D点,求CD 2-AD 2的值; (3)若点P是x轴上的动点,在反比例函数的图象上是否存在点Q,使得△PAQ为等腰直角三角形?若存在,求点Q的坐标,若不存在,请说明理由.
5.如图,已知一次函数y=kx+b的图象交反比例函数y= 4-2m x (x>0)图象于点A、B,交x轴于点C. (1)求的m的取值范围;
(2)若点A的坐标是(2,-4),且 BC AB = 1 3 ,求m的值和一次函数的解析式; (3)在(2)的条件下,设点P是一次函数图象上的第一、四象限......内的动点,点Q是反比例函数图象上的动点,过点P作PP1⊥x轴于P1,PP2⊥y轴于P2;过点Q作QQ1⊥x轴于Q1,QQ2
⊥y轴于Q2.设点P的横坐标为x,请直接写出....使四边形PP1OP2的面积小于四边形QQ1OQ2的
面积的x的取值范围.
6.在平面直角坐标系xOy中,直线l1过A(1,0)且与y轴平行,直线l2过点B(0,2)A O x y
B C O A
B
x
y l
且与x轴平行,直线l1与l2相交于点P.点E为直线l2上一点,反比例函数y= k x (k>0)的图象过点E且与直线l1相交于点F. (1)若点E与点P重合,求k的值; (2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求点E的坐标; (3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求点E的坐标,若不存在,请说明理由.
7.如图,已知直线l经过点A(1,0),且与曲线y= m x (x>0)交于点B(2,1).过点P(p,p-1)(p>1)作x轴的平行线分别交曲线y= m x (x>0)和y=- m x (x<0)于M、N两点.
(1)求m的值及直线l的解析式; (2)若点P在直线y=2上,求证:△PMB∽△PNA; (3)是否存在实数p,使得S△AMN =4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.
8.如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y= 6 x (x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B. (1)判断P是否在线段AB上,并说明理由;
E l1 O x y B P 1 l2 F A 1 l1 O x y B P 1 l2 A 1 (备用图1) l1
O x y B P 1 l2 A 1
(备用图2) A E B x F C O
y
A B x C O
y
(2)求△AOB的面积; (3)Q是反比例函数y= 6 x (x>0)图象上异于点P的另一点,请以Q为圆心,QO半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.
9.如图,将—矩形OABC放在直角坐标系中,O为坐标原点,点A在y轴正半轴上,点E是边AB上的—个动点(不与点A、B重合),过点E的反比例函数y= k x (x>0)的图象与边BC交于点F.
(1)若△OAE、△OCF的面积分别为S1、S2,且S1+S2=2,求k的值; (2)若OA=2,OC=4,问当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?
10.如图,已知抛物线y=( 3-m )x 2+2( m-3 )x+4m-m 2的顶点A在双曲线y= 3 x 上,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C. (1)求直线AB的解析式; (2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交与点E,求sin∠BDE的值; (3)过点B作x轴的平行线与双曲线交于点F,点M在直线BF上,且到抛物线的对称轴的距离为6.若点N在直线BF上,直接写出使得∠AMB+∠ANB=45°的点N的坐标.
_y O A
B x
y
Q P A B x C O y Q N M P
A B x C O
y
11.如图,在平面直角坐标系中,直线y=mx(m>0)与双曲线y= k x 交于A、B两点,过点A作AC∥x轴,过点B作BC∥y轴,AC与BC交于点C,AC与y轴交于点M,BC与x轴交于点N,若∠BAC=60°,AB=4. (1)求m、k的值; (2)将一把三角尺的直角顶点放在原点O处,绕着点O旋转三角尺,三角尺的两直角边分别交射线CA、射线BC于点P、Q,设点P的横坐标为x,PQ的长为L,当点P在边AC上运动时,求L与x的函数关系式;
(3)当△PQC的面积为 3 2 时,求点P的坐标.
12.如图,在平面直角坐标系中,直线y=ax+1(a≠0)与x轴交于点A,与y轴交于点B,与双曲线y= k x 在第三象限的交点为C(-2 3,m),且△AOB的面积为 3 2 . (1)求a、m、k的值; (2)以BC为一边作等边三角形BCD,求D点的坐标. O
A B x
y D
C
13.已知一次函数y=2 x+8 与反比例函数y= k x 的图象相交于A、B两点,点A的横坐标为x1,点B的横坐标为x2,且x1-x2=2. (1)求k的值; (2)求△AOB的面积; (3)若一条开口向下的抛物线经过A、B两点,并在过点A且与OB平行的直线上截得的线段长为 13,求抛物线的解析式.
14.如图,已知A、B两点的坐标分别为A(0,2 3),B(2,0)直线AB与反比例函数y= m x 的图象交与点C和点D(-1,a). (1)求直线AB和反比例函数的解析式; (2)求∠ACO的度数; (3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少度时OC′⊥AB,并求此时线段AB′ 的长.
15.在矩形AOBC中,OA=4,OB=6.分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y= k x
O A B x
y A B x C O
y
F E
(k>0)的图象与AC边交于点E. (1)若点E的坐标为(2,4),求经过O、E、F三点的抛物线的解析式; (2)设点P是(1)中所求抛物线上一点,且△PEF的面积等于△OEF的面积,求点P的坐标; (3)是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出此时OF的长;若不存在,请说明理由.
16.如图,矩形ABCD的顶点A在坐标原点,顶点B坐标为(-2,1),顶点C在y轴上. (1)求顶点D的坐标; (2)将矩形ABCD绕点O顺时针旋转,使点D落在x轴的点G处,得到矩形AEFG,EF与AD交于点M,过点M的反比例函数图象交FG于点N,求△AMN的面积; (3)求证:△AMN是直角三角形.
17.如图,已知反比例函数y= m x (m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).
(1)求一次函数的关系式; (2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO= 17(O为坐标原点),求反比例函数的关系式; (3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.
G x C O y F E B (A)
D M
N
O x y A P
B