数字图像处理小波变换.ppt

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

频域处理-数字图像处理

频域处理-数字图像处理
图5 7 DFT和 DCT的频谱分布
频域处理
5.5 频域中图像处理的实现
5.5.1 理解数字图像的频谱图 数字图像平移后的频谱中,图像的能量将集中到频谱中
心(低频成分),图像上的边缘、线条细节信息(高频成分)将分 散在图像频谱的边缘。也就是说,频谱中低频成分代表了图 像的概貌,高频成分代表了图像中的细节。
频域处理
H(u,v)称作滤波器,它具有允许某些频率成分通过,而阻 止其他频率成分通过的特性。该处理过程可表示为
H 和G 的相乘是在二维上定义的。即,H 的第1个元素乘 以F 的第1个元素,H 的第2个元素乘以F 的第2个元素,以此类 推。滤波后的图像可以由IDFT 得到:
频域处理 图5 9给出了频域中图像处理的基本步骤。
频域处理
图5 10 基本滤波器的频率响应
频域处理
图5 11分别为采用D0=10、D0=30、D0=60、D0=160进行 理想低通滤波的结果。图5 11(c)存在严重的模糊现象,表明 图像中多数细节信息包含在被滤除掉的频率成分之中。随着 滤波半径的增加,滤除的能量越来越少,图5 11(d)到图5 11(f) 中的模糊现象也就越来越轻。当被滤除的高频成分减少时, 图像质量会逐渐变好,但其平滑作用也将减弱。
式中:u 取0,1,2,…,M -1;v 取0,1,2,…,N-1。
频域处理 对二维离散傅里叶变换,则有:
图像处理实践中,除了 DFT 变换之外,还可采用离散余弦 变换等其他正交变换。
频域处理
5.4 离散余弦变换(DCT)
离散余弦变换(DiscreteCosineTransform,DCT)的变换核 为余弦函数,因其变换核为实数,所以,DCT 计算速度比变换核 为复数的 DFT 要快得多。DCT 除了具有一般的正交变换性 质外,它的变换阵的基向量能很好地描述人类语音信号、图 像信号的相关特征。因此,在对语音信号、图像信号的变换 中,DCT 变换被认为是一种准最佳变换。

小波变换原理与应用PPT课件

小波变换原理与应用PPT课件

用傅立叶变换提取信号的频谱需要利用信号的全 部时域信息。
傅立叶变换没有反映出随着时间的变化信号频率 成分的变化情况。
傅立叶变换的积分作用平滑了非平稳信号的突变 成分。
由于上述原因,必须进一步改进,克服上述不足
,这就导致了小波分析。精选ppt
7
2.小波变换与傅里叶变换的比较
(1)克服第一个不足:小波系数不仅像傅立叶系 数那样,是随频率不同而变化的,而且对于同一个频 率指标j, 在不同时刻 k,小波系数也是不同的。
(0) (x)dx0
精选ppt
10
3.小波变换的基本原理与性质
信号的信息表示
➢ 时域表示:信号随时间变化的规律,信息包括均值、 方差、峰度以及峭陡等,更精细的表示就是概率密度 分布(工程上常常采用其分布参数)
➢ 频域表示:信号在各个频率上的能量分布,信息为频 率和谱值(频谱或功率谱),为了精确恢复原信号, 需要加上相位信息(相位谱),典型的工具为FT
与信号的初始段进行比较 ; ➢ 通过CWT的计算公式计算小波系数(反映了当前尺度
下的小波与所对应的信号段的相似程度); ➢ 改变平移因子,使小波沿时间轴位移,重复上述两个
步骤完成一次分析; ➢ 增加尺度因子,重复上述三个步骤进行第二次分析; ➢ 循环执行上述四个步骤,直到满足分析要求为止。
精选ppt
A x ( t)2 x ( t), m ,n ( t) 2 B x ( t)2 A ,B R
m ,n
x(t) Cm,n m,n(t) nZ
精选ppt
29
3.小波变换的基本原理与性质
正交小波变换与多分辨分析
多分辨分析也称为多尺度分析,是建立在函数空间概念上的理论 。它构造了一组正交基,使得尺度空间与小波空间相互正交。随 着尺度由大到小的变化,可在各尺度上由粗及精地观察目标。这 就是多分辨率分析的思想。在离散小波框架下,小波系数在时间尺度空间域上仍然具有冗余性,在数值计算或数据压缩等方面仍 然希望这种冗余度尽可能的小。在小波变换发展过程中, Stromberg、Meyer、Lemarie、Battle和Daubechies等先后成功的构 造了不同形式的小波基函数的基础上,是Meyer和Mallat将小波基 函数的构造纳入到了一个统一的框架中,形成了多分辨分析理论 。多分辨率分析理论不但将在那时之前的所有正交小波基的构造 统一了起来,而且为此后的小波基的构造设定了框架。

小波变换ppt课件

小波变换ppt课件
在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。

小波变换课件 第1章 Haar小波

小波变换课件 第1章 Haar小波

第1章Haar小波分析1.1简介(近距离---小尺度) (高分辨率)(远距离---大尺度) (低分辨率)1.2 平均与细节设1234{,,,}x x x x 是一个信号序列。

定义它的平均和细节:1,0121,012()/2()/2a x x d x x =+⎫⎬=-⎭找出了1x 、2x 和1,0a 、1,0d 的关系。

这里,1,0a 是原信号前两个值1x 、2x 的平均。

又叫低频成分,反映前两个值1x 、2x 的基本特征或粗糙趋势;1,0d 反映了1x 、2x 的差别,即细节信息,又叫高频成分。

1,1341,134()/2()/2a x x d x x =+⎫⎬=-⎭找出了3x 、4x 和1,1a 、1,1d 的关系。

同样,1,1a 是原信号后两个值3x 、4x 的平均,1,1d 反映了3x 、4x 的细节。

我们把1,01,11,01,1{,,,}a a d d 看作是对1234{,,,}x x x x 实施了一次变换的结果。

变换还可以往下进行:0,01,01,1()/2a a a =+=1234(()/2()/2)/2x x x x +++ =1234()/4x x x x +++0,0a 是对4个信号元素最终的平均,它是原信号最基本的信息;0,01,01,1()/2d a a =-。

经过二次变换,我们得到了原信号的另一种表示:0,00,01,01,1{,,,}a d d d该序列叫做原序列的小波变换,0,00,01,01,1,,,a d d d 叫做小波系数。

还可以反过来表示:111,0211,0x a d x a d =+⎫⎬=-⎭这是用{1a ,1,0d }来恢复原信号1x 、2x ;321,1421,1x a d x a d =+⎫⎬=-⎭用{2a ,1,1d }来恢复原信号3x 、4x 。

也就是反变换。

小波变换过程的塔式算法:例如,1234{,,,}x x x x ={3,1,-2,4}最终的小波变换为0,00,01,01,1{,,,}a d d d =31{,,1,3}22-1.3 尺度函数与小波函数 (1)Haar 尺度函数不压缩:不位移 位移一个单位 位移k 个单位t1)-压缩1/12倍,不位移压缩1/12倍,位移一个单位 压缩1/2j倍,移位K 个单位一般,()(2)j j k t t k φφ=-,0,1,2,...,21j k =-◆ 几个术语1) 支撑(支集),(尺度)函数,()j k t φ不为零的区间,上例中为1[,]22j j k k +。

第9章 小波变换(08) 数字图像处理课件

第9章 小波变换(08) 数字图像处理课件
采用上述方法,理论上产生的数据量将是原始数据的两倍。根据Nyquist采 样定理, 可用下采样的方法来减少数据量,即在每个通道内每两个样本数 据取一个, 便可得到离散小波变换的系数(Coefficient)。
D 1000个采样点

S 1000个采样点
S 1000个采样点
cD 约500个DW T系数
A 1000个采样点
(t)
(t-k)
O
t
O
t
(a)
(b)
图7-15 (a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
第9章 小波变换及其在率之间的相互关系。傅立叶变 换提供了有关频率域的信息,但有关时间的局部化信息却基本 丢失。
• 与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征, 通过平移母小波来获 得信号的时间信息。
9.1.4 多分辨分析( Mallat快速算法,阮148)
• 1988年Mallat受到塔式算法的启发,在多分辨分析 的指导下建立了Mallat算法,它是小波变换的快速算 法,其作用相当于FFT。
•从多分辨分析——离散卷积——滤波处理,Mallat算 法本质上不需要知道小波函数的具体结构,只由系数 就可以实现f(t)的分解与重构。
cA 1
cD 1
cA 2
cD 2
cA 3
cD 3
(b )
A2
D2
S
Lo_ D : 低 通 滤 波 器 ; Hi_D:
高 通滤 波器
L o_ D
A3
Hi_D D3
cA 1
cD 1
cA 2
cD 2
cA 3
cD 3
(a )

数字图像处理课件(冈萨雷斯第三版)复习材料

数字图像处理课件(冈萨雷斯第三版)复习材料

(1) 名词解释RGB Red Green Blue,红绿蓝三原色CMYK Cyan Magenta yellow blacK , 用于印刷的四分色HIS Horizontal Situation Indicator 水平位置指示器FFT Fast Fourier Transform Algorithm (method) 快速傅氏变换算法CWT continuous wavelet transform 连续小波变换DCT Discrete Cosine Transform 离散余弦变换DWT DiscreteWaveletTransform 离散小波变换CCD Charge Coupled Device 电荷耦合装置Pixel: a digital image is composed of a finite number of elements,each of which has a particular lication and value,these elements are called pixel 像素DC component in frequency domain 频域直流分量GLH Gray Level Histogram 灰度直方图Mather(basic)wavelet:a function (wave) used to generate a set of wavelets, 母小波,用于产生小波变换所需的一序列子小波Basis functions basis image 基函数基图像Multi-scale analysis 多尺度分析Gaussian function 高斯函数sharpening filter 锐化滤波器Smoothing filter/convolution 平滑滤波器/卷积Image enhancement /image restoration 图像增强和图像恢复(2)问答题1. Cite one example of digital image processingAnswer: In the domain of medical image processing we may need to inspect a certain class of images generated by an electron microscope to eliminate bright, isolated dots that are no interest.2.Cite one example of frequency domain operation from the following processing result, make a general comment about ideal highpass filter (figure B) and Gaussian highpass filter(figure D)A. Original imageB. ideal highpass filterIn contrast to the ideal low pass filter, it is to let all the signals above the cutoff frequency fc without loss, and to make all the signals below the cutoff frequency of FC without loss of.C. the result of ideal highpass filterD. Gaussian highpass filterHigh pass filter, also known as "low resistance filter", it is an inhibitory spectrum of the low frequency signal and retain high frequency signal model (or device). High pass filter can make the high frequency components, while the high-frequency part of the frequency in the image of the sharp change in the gray area, which is often the edge of the object. So high pass filter can make the image get sharpening processingE. The result of Gaussian filter3.The original image, the ideal lowpass filter and Gaussian lowpass filter are shown below B nd C .D and E are the result of the eitherfilter B or CA. Draw lines to connect the filter with their resultB. Explain the difference of the two filtersDue to excessive characteristics of the ideal low-pass filter too fast Jun, it will produce a ringing phenomenon.Over characteristics of Gauss filter is very flat, so it is not ringing4.What is the result when applying an averaging mask with the size 1X1?5.State the concept of the Nyquist sampling theorem from the figure belovyThe law of sampling process should be followed, also called the sampling theorem and the sampling theorem. The sampling theorem showsthe relationship between the sampling frequency and the signal spectrum, and it is the basic basis of the continuous signal discretization. In analog / digital signal conversion process, when the sampling frequency fs.max greater than 2 times the highest frequency present in the signal Fmax fs.max>2fmax, sampling digital signal completely retained the information in the original signal, the general practical application assurance sampling frequency is 5 ~ 10 times higher than that of the signal of the high frequency; sampling theorem, also known as the Nyquist theorem6.A mean filter is a linear filter but a median filter is not, why?Mean filter is a typical linear filtering algorithm, it is to point to in the target pixels in the image to a template, this template including its surrounding adjacent pixels and the pixels in itself.To use in the template to replace all the pixels of average pixelvalues.Linear filter, median filter, also known as the main method used in the bounded domain average method.Median filter is a kind of commonly used nonlinear smoothing filter and its basic principle is to put the little value in a digital image or sequence to use value at various points in the field of a point at which the value to replace, its main function is to let the surrounding pixel gray value differences between larger pixel change with the surrounding pixels value close to the values, which can eliminate the noise of the isolated points, so median filter to filter out the salt and pepper noise image is very effective.(3)算法题1.The following matrix A is a 3*3 image and B is 3*3 Laplacian mask, what will be the resulting image? (Note that the elements beyond the border remain unchanged)2.Develop an algorithm to obtain the processing result B from original image A3.Develop an algorithm which computes the pseudocolor image processing by means of fourier tramsformAnswer:The steps of the process are as follow:(1) Multiply the input image f(x,y) by (-1)x+y tocenter the transform;(2) Compute the DFT of the image from (1) to get power spectrumF(u,v) of Fourier transform.(3) Multiply by a filter function h(u,v) .(4) Compute the inverse DFT of the result in (3).(5) Obtain the real part of the result in (4).(6) Multiply the result in (5) by(-1)x+y4.Develop an algorithm to generate approximation image series shown in the following figure b** means of down sampling.(4)编程题There are two satellite photos of night as blew.Write a programwith MATLAB to tell which is brighterAn 8*8 image f(i,i) has gray levels given by the following equation:f(i,i)=|i-j|, i,j=0,1 (7)Write a program to find the output image obtained by applying a 3*3 median filter on the image f(i,j) ;note that the border pixels remain unchanged.Answer:1.Design an adaptive local noise reduction filter and apply it to an image with Gaussian noise. Compare the performance of the adaptive local noise reduction filter with arithmetic mean and geometric mean filter.Answer:clearclose all;rt=imread('E:\数字图像处理\yy.bmp');gray=rgb2gray(rt);subplot(2,3,1);imshow(rt);title('原图像') ;subplot(2,3,2);imshow(gray);title('原灰度图像') ;rtg=im2double(gray);rtg=imnoise(rtg,'gaussian',0,0.005)%加入均值为0,方差为0.005的高斯噪声subplot(2,3,3);imshow(rtg);title('高噪点处理后的图像');[a,b]=size(rtg);n=3;smax=7;nrt=zeros(a+(smax-1),b+(smax-1));for i=((smax-1)/2+1):(a+(smax-1)/2)for j=((smax-1)/2+1):(b+(smax-1)/2)nrt(i,j)=rtg(i-(smax-1)/2,j-(smax-1)/2);endendfigure;imshow(nrt);title('扩充后的图像');nrt2=zeros(a,b);for i=n+1:a+nfor j=n+1:b+nfor m1=3:2m2=(m1-1)/2;c=nrt2(i-m2:i+m2,j-m2:j+m2);%使用7*7的滤波器Zmed=median(median(c));Zmin=min(min(c));Zmax=max(max(c));A1=Zmed-Zmin;A2=Zmed-Zmax;if(A1>0&&A2<0)B1=nrt2(i,j)-Zmin;B2=nrt2(i,j)-Zmax;if(B1>0&&B2<0)nrt2(i,j)= nrt2(i,j);elsenrt2(i,j)=Zmed;endcontinue;endendendendnrt3=im2uint8(nrt2);figure;imshow(nrt3);title('自适应中值滤波图');2. Implement Wiener filter with “wiener2” function of MatLab to an image with Gaussian noise and compare the performance with adaptive local noise reduction filter.代码如下:>> I=imread('E:\数字图像处理\yy.bmp');>>J=rgb2gray(I);>>K = imnoise(J,'gaussian',0,0.005);>>L=wiener2(K,[5 5]);>>subplot(1,2,1);imshow(K);title('高噪点处理后的图像');>>subplot(1,2,2);imshow(L);title('维纳滤波器处理后的图像');3. Image smoothing with arithmetic averaging filter (spatial convolution).图像平滑与算术平均滤波(空间卷积)。

数字图像处理 03图像变换(DCT&DWT变换)

数字图像处理  03图像变换(DCT&DWT变换)

3.3.1 一维离散余弦变换
正变换: f (x)为一维离散函数, x = 0,1,",N −1
∑ F (0) =
1
N −1
f (x) ,
N x=0
u=0
∑ F (u) =
2 N
N −1 x=0
f
(
x)
cos
⎡ ⎢⎣
π
2N
(2x
+
1)u
⎤ ⎥⎦
,
u = 1,2,", N −1
反变换:
∑ f (x) =
+ 1)u
⎤ ⎥⎦
∑ +
2 N
N −1 v=1
F
(0,
v)
cos⎢⎣⎡
π
2N
(2 y +1)v⎥⎦⎤
∑ ∑ +
2 N
N −1 u =1
N −1 v=1
F
(u,
v)
cos⎢⎣⎡
π
2N
(2x
+ 1)u ⎥⎦⎤
cos⎢⎣⎡
π
2N
(2 y
+ 1)v ⎥⎦⎤
6
数字图像处理讲义,2006,陈军波©中南民族大学
3.3离散余弦变换(DCT)
23
数字图像处理讲义,2006,陈军波©中南民族大学
3.4 小波变换简介
S
滤波器组
低通
高通
A
D
图3-19 小波分解示意图
24
数字图像处理讲义,2006,陈军波©中南民族大学
3.4 小波变换简介
在小波分析中,近似值是大的缩放因子计算的系数,表示信 号的低频分量,而细节值是小的缩放因子计算的系数,表示信号 的高频分量。实际应用中,信号的低频分量往往是最重要的,而 高频分量只起一个修饰的作用。如同一个人的声音一样, 把高频 分量去掉后,听起来声音会发生改变,但还能听出说的是什么内 容,但如果把低频分量删除后,就会什么内容也听不出来了。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.5 小波包与图像边缘检测
7.5.1 基本原理 7.5.2 MATLAB例程分析
7.5.1 基本原理
图像的边缘检测是对图像进行进一步处 理和识别的基础,虽然图像边缘产生的原因 不同,但反映在图像的组成基元上,它们都 是图像上灰度的不连续点或灰度剧烈变化的 地方,这就意味着图像边缘就是信号的高频 部分。
wavenames lwt lwt2
lwtcoef lwtcoef2
ilwt ilwt2 laurmat laurpoly
函数意义 向提升方案中添加原始或双重提升步骤 显示提升方案 提升方案信息 计算并画出双正交“尺度和小波”函数 将四联滤波器变换为提升方案 在四联滤波器上应用基本提升方案 将提升方案变换为四联滤波器 提升小波的提升方案 提供小波的劳伦多项式 提供用于LWT的小波名 一维提升小波变换 二维提升小波变换 提取或重构一维LWT小波系数 提取或重构二维LWT小波系数 一维提升小波反变换 二维提升小波反变换 劳伦矩阵类LM的构造器 劳伦多项式类LM的构造器
因此一个好的水印算法能提供完全没有 争议的版权证明,在这方面还需要做很多工 作。
(5)音频和视频水印的解决方案还不完 善,大多数的视频水印算法实际上是将其图 像水印的结果直接应用于视频领域中,而没 有考虑视频应用中大数据量以及近乎实时的 特性。
(6)现有水印算法在原理上有许多雷同 之处,但目前国内外的工作尚未能对这些有 内在联系的不同算法的共性问题进行高度提 炼和深入的理论研究,因而缺乏对数字水印 作进一步研究具有指导意义的理论结果。
7.2.2 一种基于小波变换的数字水印方法
(2)第二步,对图像作小波变换,对变 换后得到的小波系数,选出一个起始位置在、 大小为的系数矩阵。
(3)第三步,在选出的系数矩阵中嵌入 水印信息,即将两个的矩阵进行信息叠加, 其中含有水印信息的矩阵元素为0或1。
TYC提出了一种信息叠加的方案。
7.3 小波包分析的应用
7.4 小波包分析用于信号压缩
7.4.1 基本原理 7.4.2 MATLAB例程分析
7.4.1 基本原理
在小波包分析中,其信号压缩的算法思想 和在小波分析中的基本相同,所不同的就是 小波包提供了一种更为复杂,也更为灵活的 分析手段。
因为小波包分析对上层的低频部分和高频 部分同时进行分解,所以具有更加精确的局 部分析能力。
小波包分析能够为信号提供一种更精细的 分析方法,它将频带进行多层次划分,对多 分辨率分析没有细分的高频部分作进一步分 解,并能够根据被分析信号的特征,自适应 地选择相应频带,使之与信号频谱相匹配, 从而提高了时—频分辨率,因此波包具有更 广泛的应用价值。
7.3.2 小波包的空间分解
7.3.3 小波包算法
7.2.1 数字水印技术需要解决的问题
(1)设计对水印系统进行公正的比较和 评价方法,在这方面已有部分学者进行一些 初步的研究,但缺乏普遍性和原理性,水印 系统的脆弱之处在于无法进行全面测试与衡 量。
(2)从现实的角度看,水印系统必然要 在算法的鲁棒性、水印的嵌入信息量以及不 可觉察性之间达到一个平衡,这涉及鲁棒性 算法的原理性设计、水印的构造模型、水印 能量和容量的理论估计、水印嵌入算法和检 测算法的理论研究等方面。
7.6.3 MATLAB实现提升方案的基本 步骤
(1)分解。 (2)预测。 (3)更新。
7.6.4 MATLAB小波工具箱函数
表7-1
提升函数
函数名称 提升方案函数 双正交四联滤波器 正交或双正交小 波及lazy小波
提升小波变换和反变换 劳伦多项式和矩阵
函数名称 addlift displs lsinfo bswfun filt2ls liftfilt ls2filt liftwave wave2lp
7.1.1 二维小波变换及相应的快速算法
7.1.2 小波变换用于图像压缩的一般方法
(1)利用二维小波分析进行图像压缩 (2)二维信号压缩中的阈值的确定与作 用命令
7.2 基于小波变换数字图像水印研究
7.2.1 数字水印技术需要解决的问 题 7.2.2 一种基于小波变换的数字水 印 方法 7.2.3 MATLAB例程分析
7.3.1 小波包基本理论 7.3.2 小波包的空间分解 7.3.3 小波包算法 7.3.4 MATLAB含噪图像进行消 噪 处理
7.3.1 小波包基本理论
短时傅立叶变换对信号的频带划分是线性 等间隔的。
多分辨分析可以对信号进行有效的时频分 解,但由于其尺度是按二进制变化的,所以 在高频频段其频率分辨率较差,而在低频频 段其时间分辨率较差,即对信号的频带进行 指数等间隔划分(具有等Q结构)。
如何确定平衡点仍是一个难题,目前大 多数水印算法均利用经验而不是从理论上解 决此问题。
(3)如何将水印技术与现行国际图象及 视频压缩标准(如JPEG 2000和MPEG-4)相结 合,以及如何将水印技术应用于DVD工业标准 中。
(4)所有权的证明问题还没有完全解决, 就目前已出现的很多算法而言,攻击者完全 可破坏掉图像中的水印,或复制出一个理论 上存在的“原始图像”,这导致文件所有者 不能令人信服地提供版权归属的有效证据。
第7章小波变换
7.1 图像的小波分解和重构算法 7.2 基于小波变换数字图像水印研究 7.3 小波包分析的应用 7.4 小波包分析用于信号压缩 7.5 小波包与图像边缘检测 7.6 MATLAB提升小波变换
7.1 图像的小波分解和重构算法
7.1.1 二维小波变换及相应的快速 算法 7.1.2 小波变换用于图像压缩的一 般 方法
因此所有的边缘检测方法都是检测信号 的高频分量,但是在实际图像中,由于噪声 的存在,边缘检测成为一个难题。
小波包分解后得到的图像序列由近似部 分和细节组成,近似部分是原始图像对高频 部分进行滤波所得的近似表示。
经滤波后,近似部分去除了高频分量, 因此能够检测到原始图像中所检测不到的边 缘。
7.6 MATLAB提升小波变换
7.6.1 小波变换的提升实现的传统算 法 7.6.2 小波变换的提升实现的简化 算法 7.6.3 MATLAB实现提升方案的基本 步骤 7.6.4 MATLAB小波工具箱函数 7.6.5 MATLAB二维提升小波变换
7.6.1 小波变换的提升实现的传统算法
7.6.2 小波变换的提升实现的简化算法
相关文档
最新文档