第24章圆总复习
人教版初中数学九年级上册第24章知识复习第一部分圆的有关概念和性质

在上图中,
D
若∠COD=∠AOB,则 CD=AB,CD=AB ;
若CD=AB,则 ∠COD=∠AOB,CD=AB;
若CD=AB,则 ∠COD=∠AOB,CD=AB,.
CAD=ACB.
(二)圆的有关性质 3、垂径定理:
•
垂直于弦的直径平分这条弦,并且平分弦 所对的两条弧。 推论:①平分弦(非直径)的直径垂直于这条弦,
(二)圆的有关性质 Q
A•
O•
•B
P
C
4、②在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于该弧所对的圆心角的 一半;相等的圆周角所对的弧相等。
如图:∠BOC=2∠BAC=2∠BPC=2∠BQC.
(二)圆的有关性质
PQ
O •
D
A C
B
如图:若AB=CD, 则∠AOB=∠COD=2∠APB=2∠CQD.
反之,若∠APB=∠CQD,则AB=CD.
【及时巩固】
d P
P
d
O
•
r
d
P
1、设⊙O的半径为r,点P到圆心的而距离为d,
则 ①点P在⊙O上 d = r;
②点P在⊙O内 d< r;
③点P在⊙O外 d >r.
【及时巩固】
2、“经过三角形各顶点的圆叫三角形的外接圆. 外接圆的圆心叫做三角形的外心(即三角形三边 中垂线的交点),这个三角形叫圆的内接三角形.” 先分别作出锐角三角形、钝角三角形、直角三 角形的外接圆,再观察图形,填空:
并且平分弦所对的弧; ②平分弧的直径垂直平分这条弧所对的弦;...
(二)圆的有关性质
•
垂径定理及推论可归纳为: 一条直线若具有“①经过圆心; ②垂直于弦;③平分弦;④平分弦所对的 优弧;⑤平分弦所对的劣弧”这五个性质 中的两个,这条直线就具有其余三个性质. 注意:①③组合有限制.
人教版数学九年级上册第24章圆 全章拓展巩固与复习过关

人教版数学九年级上册第24章圆全章拓展巩固与复习过关知识全面设计合理含答案教师必备《圆》全章复习与巩固—知识讲解【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线. (2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点. ③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系 设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切. (4)和有唯一公共点,除这个点外,的每个点都在内部内切. (5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I ”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点. 要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识1.如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为.【答案】;【解析】由已知得BC∥x轴,则BC中垂线为那么,△ABC外接圆圆心在直线x=1上,设外接圆圆心P(1,a),则由PA=PB=r得到:PA2=PB2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a2-6a+9=9+a2+4a+4解得 a=0即△ABC外接圆圆心为P(1,0)则【总结升华】三角形的外心是三边中垂线的交点,由B、C的坐标知:圆心P(设△ABC的外心为P)必在直线x=1上;由图知:BC的垂直平分线正好经过(1,0),由此可得到P(1,0);连接PA、PB,由勾股定理即可求得⊙P的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,求CD的长.【答案与解析】作OF⊥CD于F,连接OD.∵ AE=1,EB=5,∴ AB=6.132412x-+==22(11)(03)13r PA==++-=∵ ,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°, ∴ ,∴ . 在Rt △DFO 中,OF =,OD =OA =3,∴ (cm). ∵ OF ⊥CD ,∴ DF =CF ,∴ CD =2DF =cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作OF ⊥CD 于F ,构造Rt △OEF ,求半径和OF 的长;连接OD ,构造Rt △OFD ,求CD 的长.举一反三: 【变式】如图,AB 、AC 都是圆O 的弦,OM⊥AB,ON⊥AC,垂足分别为M 、N ,如果MN =3,那么BC = .【答案】由OM⊥AB,ON⊥AC,得M 、N 分别为AB 、AC 的中点(垂径定理),则MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .32ABOA ==112EF OE ==223OF OE EF =-=322223(3)6DF OD OF =-=-=26N MO C BAyxOABDC(第3题)【答案】65°.【解析】连结OD,则∠D OB = 40°,设圆交y轴负半轴于E,得∠D OE= 130°,∠OCD =65°.【总结升华】根据同弧所对圆周角与圆心角的关系可求.举一反三:【变式】(2015•黑龙江)如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°【答案】C.【解析】作OD⊥AB,如图,∵点P是弦AB上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB=∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.请判断直线CE与⊙O的位置关系,并证明你的结论.【答案与解析】直线CE与⊙O相切理由:连接OE∵OE=OA∴∠OEA=∠OAE∵四边形ABCD是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线CE与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P为正比例函数图象上的一个动点,的半径为3,设点P的坐标为(x、y).(1)求与直线相切时点P的坐标.(2)请直接写出与直线相交、相离时x的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,(,).当与直线相切时,点的坐标为(5,7.5)或(,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC ,∴∠ABC=∠ACB , ∴∠ODB=∠ACB , ∴OD ∥AC ,∵DF 是⊙O 的切线, ∴DF ⊥OD , ∴DF ⊥AC .(2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°, ∴∠ABC=∠ACB=67.5°, ∴∠BAC=45°, ∵OA=OE , ∴∠AOE=90°, ∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE=8 , ∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图,所在圆的圆心为O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).【答案与解析】连接OB ,过点O 作OE ⊥AB ,垂足为E ,交于点F ,如图(2). 由垂径定理,可知E 是AB 中点,F 是的中点, ∴EF =2. 设半径为R 米,则OE =(R-2)m.在Rt △AOE 中,由勾股定理,得. 解得R =4.AB AB AB 12AE AB ==222(2)R R =-+∴ OE=2,,∴∠AOE=60°,∴∠AOB=120°.∴的长为(m).∴帆布的面积为(m2).【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以为底面的圆柱的侧面积.根据题意,应先求出所对的圆心角度数以及所在圆的半径,才能求的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】①作法略.如图所示.②如图所示,过O作OC⊥AB于D,交于C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为10cm.12OE AO=AB120481803ππ⨯=8601603ππ⨯=ABAB AB《圆》全章复习与巩固—知识讲解(提高)责编:常春芳【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. (3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为. (1)直线和⊙O 没有公共点直线和圆相离. (2)直线和⊙O 有唯一公共点直线和⊙O 相切.(3)直线和⊙O 有两个公共点直线和⊙O 相交. 4.切线的判定、性质 (1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线. ②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角. (2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算 1.圆中有关计算 圆的面积公式:,周长. 圆心角为、半径为R 的弧长.圆心角为,半径为R ,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R ,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有. 要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识【高清ID 号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题3】1. 如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB=45°,点在数轴上运动,若过点P 且与OA 平行(或重合)的直线与⊙O 有公共点, 设OP=x ,则的取值范围是( ).P xA.-1≤≤1 B.≤≤C.0≤≤ D.>【答案】B;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OA平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果为-2≤OP≤0.故答案为:-2≤OP≤2.【点评】本题考查了直线与圆的位置关系问题.关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().x2x2x2x2A.-1≤x<0或0<x≤1 B.0<x≤1 C.-2≤x<0或0<x≤2 D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0<OP≤2,同理可得,当OP与x轴负半轴相交时,-2≤OP<0,∴-2≤OP<0,或0<OP≤2.故选C.2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且,BF交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC,∵ AB是⊙O的直径,弦CG⊥AB,∴.∵,∴.∴∠C=∠CBE.∴ CE=BE.CF CB=CB GB=CF BC=CF GB=证法二:如图(2),作ON⊥BF,垂足为N,连接OE.∵ AB是⊙O的直径,且AB⊥CG,∴.∵,∴.∴ BF=CG,ON=OD.∵∠ONE=∠ODE=90°,OE=OE,ON=OD,∴△ONE≌△ODE,∴ NE=DE.∵,,∴ BN=CD,∴ BN-EN=CD-ED,∴ BE=CE.证法三:如图(3),连接OC交BF于点N.∵,∴ OC⊥BF.∵ AB是⊙O的直径,CG⊥AB,∵,.∴,.∵ OC=OB,∴ OC-ON=OB-OD,即CN=BD.又∠CNE=∠BDE=90°,∠CEN=∠BED,∴△CNE≌△BDE,∴ CE=BE.【点评】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【高清ID号:362179 高清课程名称:《圆》单元复习关联的位置名称(播放点名称):经典例题1-2】【变式】如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19 B.16 C.18 D.20CB BG=CB CF=CF BC BG==12BN BF=12CD CG=CF BC=BG BC=CF BG BC==BF CG=ON OD=【答案】如图,延长AO 交BC于点D,过O作OE⊥BC于E.则三角形ABD为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt△ODE中,∠ODE=60°,∠DOE=30°,则DE=OD=2,BE=BD-DE=10OE垂直平分BC,BC=2BE=20. 故选D类型三、与圆有关的位置关系3.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm,长约为8.4cm.(1)试计算烟盒顶盖ABCD的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm3173..【答案与解析】(1)如图(2),作O1E⊥O2O3()33333324AB cm+∴=⨯+=12∴四边形ABCD的面积是:(2)制作一个烟盒至少需要纸张:.【点评】四边形ABCD中,AD长为7支香烟的直径之和,易求;求AB长,只要计算出如图(2)中的O1E 长即可.类型四、圆中有关的计算4.(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【答案与解析】解:如图,连接OD,⊙CD是⊙O切线,⊙OD⊙CD,⊙OA=CD=2,OA=OD,⊙OD=CD=2,⊙⊙OCD为等腰直角三角形,⊙⊙DOC=⊙C=45°,⊙S阴影=S⊙OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,⊙AB是⊙O直径,⊙⊙ADB=⊙ADM=90°,又⊙=,⊙ED=BD,⊙MAD=⊙BAD,在⊙AMD和⊙ABD中,,⊙⊙AMD⊙⊙ABD,⊙DM=BD,⊙DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】(2015•贵阳)如图,⊙O是⊙ABC的外接圆,AB是⊙O的直径,FO⊙AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,⊙B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)⊙OF⊙AB,⊙⊙BOF=90°,⊙⊙B=30°,FO=2,⊙OB=6,AB=2OB=12,又⊙AB为⊙O的直径,⊙⊙ACB=90°,⊙AC=AB=6;(2)⊙由(1)可知,AB=12,⊙AO=6,即AC=AO,在Rt⊙ACF和Rt⊙AOF中,⊙Rt⊙ACF⊙Rt⊙AOF,⊙⊙FAO=⊙FAC=30°,⊙⊙DOB=60°,过点D作DG⊙AB于点G,⊙OD=6,⊙DG=3,⊙S⊙ACF+S⊙OFD=S⊙AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5..。
中学人教版九年级上册数学24章圆的专题复习 导学案

学习目标:1、系统熟悉圆的有关概念。
2、巩固有关圆的一些性质和定理。
3、进一步掌握用圆的有关知识解决某些数学问题。
教学重点:有关圆的计算;教学难点:应用圆的有关知识分析问题。
教学方法:采取学生小组合作为主的教学方法,激发学生思维的积极性,充分展现学生的主体作用。
教学过程:一、本章知识结构图二、新课讲解以4人小组为单位,完成以下练习题的讲解:1.⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD的距离为( )A.2cm B.14cmC.2cm或14cm D.10cm或20cm2.如图23-14,⊙O的直径为10,弦AB=8,P是弦AB上一个动点,那么OP的长的取值范围是_________.3.如图23-15,AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论不正确的是( )A.CE=DE B. C.∠BAC=∠BAD D.AC>AD4.如图23-10,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么AE的长为( )A. 2 B.3 C.4 D.55.在直径为52cm的圆柱形油桶内装入一些油后,截面如图23-16所示,如果油的最大深度为16cm,那么油面宽度为_________cm.6.如图23-17,点A是半圆上一个三等分点,B点是的中点,P为直径AMN上一动点,⊙O的半径为1,则AP+BP的最小值为( )A.1 B. C.D.7.如图23-11,CA为⊙O的切线,切点为A,点B在⊙O上,如果∠CAB=55°,那么∠AOB等于( )A.35° B.90° C.110°D.120°8.如图23-19,在△ABC中,∠C=90°,AC=3,BC=4,若以C为圆心,R为半径的圆与斜边AB有两个公共点,则R的取值范围是________.9.如图23-20,C是⊙O的直径AB延长线上一点,过C作⊙O的切线CD,D为切点,连结AD、OD、BD.请根据图中所给出的已知条件(不再标注或使用其他字母,不再添加任何辅助线),写出两个你认为正确的结论_________________.10.圆内接四边形ABCD中,∠A︰∠C=1︰3,则∠C=_________.11.如图23-22,⊙O、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连结5个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和为( )A.1πB.1.5πC.2πD.2.5π12.如图23-23,施工工地的水平地面上,有三根外径都是1米的水泥管,两两相切地堆放地一起,则其最高点到地面的距离是___________.13.如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于( )A. B. C. D.14.一个扇形的弧长为20πcm,面积为,则该扇形的圆心角为__________.15.已知圆锥的底面直径为4,母线长为6,则它的侧面积为_________.二、课堂小结三、教学反思今天的这节圆的复习课我的预设目标是让学生在月考前,对圆的知识有了一个系统的认识和巩固练习,通过小组合作交流学习,让较好的学生带动中差的学生完成习题的讲解,让中差的学生在这节课上有所收获。
人教版九年级数学上册_第24章圆复习课件1_人教新课标版666

欢迎同学们!注意听课,积极思考 呵!
C
(1)直径 (过圆心的弦);(2)垂直弦; (3) 平分弦 【弦不是直径】;
A
M└
●
B
O
(4)平分劣弧(5)平分优弧.
知二得三
注意: “ 直径平分弦则垂直弦.” 这句话对吗?
(错 )
D
2013年8月30日7时14分
!注意听课,积极思考呵!
A.1如图1,已知⊙O,AB为直径,AB⊥CD,垂足为E,由图你 还能知道哪些正确的结论?请把它们一一写出 来 ; 2、为改善市区人民生活环境,市建设污水管网工程,某圆 柱型水管的直径为100 cm,截面如图2,若管内污水的面宽 AB=60 cm,则污水的最大深度为 cm;
C
●
O
A
D
2013年8月30日7时14分
欢迎同学们!注意听课,积极思考 呵!
(1)定义
(2)圆心到直线的距离d=圆的半径r (3)切线的判定定理:经过半径的外端, 并且垂直于这条半径的直线是圆的切线.
2013年8月30日7时14分
欢迎同学们!注意听课,积极思考 呵!
切线的性质定理
圆的切线垂直于过切点的半径.
A P O B
B.11、如图2,在以O为圆心的两个同心圆 设AB=12,则两圆构成圆环面积为_____;
2013年8月30日7时14分 欢迎同学们!注意听课,积极思考 呵!
中,大圆的弦AB是小圆的切线,P为切点,
七.圆与圆的位置关系 位置关系
外离 相离 相交 外切 相切 内切 内含
性质 判定
d,R,r数量关系
欢迎同学们!注意听课,积极思考 呵!
三、圆心角、弧、弦、弦心距的关系 • 在同圆或等圆中,如果①两个圆心角,②两条 弧,③两条弦,④两条弦心距中,有一组量相等 ,那么它们所对应的其余各组量都分别相等. A • D
人教版初中数学九年级上册第24章圆知识复习第二部分点和圆、直线和圆的位置关系

*有兴趣的同学可以尝试证明: (1)如图,正五角星中AC=a, 求该五角星外接圆的直径.(用三角函数表示) (2)圆内接四边形两组对边乘积之和等于两条对角线 的乘积。(提示:构造相似形)
(3)若圆内接四边形的对角线互相垂直,则过对角线 的交点所作任一边的垂线将对边平分. A
B
E
•
O
C
D
中考试题精选
O• 5 A 4P B
【及时巩固】
7、如图,AB是ʘO的直径,AC是弦,∠CAB=30º, 过C点作ʘO的切线交AB的延长线于D,如果 OD=12cm,那么ʘO的半径为 6 .
C
30º • 60º 30º
AO
BD
【及时巩固】
8、如图,PB、PC分别切ʘO于B、C两点,A 是ʘO上一点,∠CAB=50º,则∠P等于 80º .
6、如图,△ABC内接于⊙O,AB的延长线 与过C点的切线GC相交于点D,BE与AC相 交于点F,且CB=CE.求证:(1)BE∥DG; (2)CB2-CF2=BF·FE.
A
O•
E
FB
G CD
中考试题精选
7、如图,PC为⊙O的切线,C为切点, PAB是过O点的割线,CD⊥AB于点D,
若 tan B 1,PC=10cm,求△BCD的面积. 2
A
对应的一个基本图
E O• C D
P
形,其中有很多关
系,你能找出多少?
B
弦切角:圆的切线和过切点的弦所夹的角。 P
O•
O•
B
A
M
(5)弦切角定理:弦切角等于它所夹的弧所对 的圆周角.
推论:如果两个弦切角所夹的弧相等,那么 这两个弦切角也相等.
(6)和三角形各边都相切的圆叫三角形的内切圆。 内切圆的圆心是三角形的内心(即三角形三内角 平分线的交点)。各边都和圆相切的三角形叫圆 的外切三角形。
【期末专项】九年级上《第24章圆》解答题综合培优训练(含答案)

【期末专项复习】第24章:圆解答题综合培优训练1.如图,已知△ABC内接于⊙O,BC为⊙O直径,延长AC至D,过D作⊙O 切线,切点为E,且∠D=90°,连接BE.DE=12,(1)若CD=4,求⊙O的半径;(2)若AD+CD=30,求AC的长.2.如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.3.如图,AB是⊙O的直径,弦CD⊥AB于点E,在上取点G,连结CG,DG,AC.求证:∠DGC=2∠BAC.4.如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的圆O交BC 于点D,且D点是弧BE的中点,(1)求证AB是圆的直径;(2)若AB=8,∠C=60°,求阴影部分的面积;(3)当∠A为锐角时,试说明∠A与∠CBE的关系.5.如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC =∠BAC.(1)证明BC与⊙O相切;(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.6.如图,矩形ABCD中AB=3,AD=4.作DE⊥AC于点E,作AF⊥BD于点F.(1)求AF、AE的长;(2)若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,求⊙A的半径r的取值范围.7.已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.8.如图,Rt△ABC中,∠C=90°,AC=,BC=2AC,半径为2的⊙C,分别交AC、BC于点D、E,得到.(1)求证:AB为⊙C的切线;(2)求图中阴影部分的面积.9.如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于C,OC平分∠AOB.(1)求∠AOB的度数;(2)若线段CD的长为2cm,求的长度.10.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=4,点D 是AB的中点,连接DO并延长交⊙O于点P.(1)求劣弧PC的长(结果保留π);(2)过点P作PF⊥AC于点F,求阴影部分的面积(结果保留π).11.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.(1)求证:EM是⊙O的切线;(2)若∠A=∠E,BC=,求阴影部分的面积.(结果保留π和根号).12.如图,△ABC的三边分别切⊙O于D,E,F.(1)若∠A=40°,求∠DEF的度数;(2)AB=AC=13,BC=10,求⊙O的半径.13.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E 为的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径14.如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.15.如图,在⊙O中,弦AD,BC相交于点E,连接OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的直径为10,DE=1,求AE的长.16.如图,四边形ABCD是⊙O的内接四边形,BD是∠ABC的角平分线,过点D分别作DE⊥AB,DF⊥BC,垂足分别为E、F.(1)求证:△AED≌△CFD;(2)若AB=10,BC=8,∠ABC=60°,求BD的长度.17.如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°.点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当DE与⊙O相切时,求∠CFB的度数;(2)如图2,当点F是C D的中点时,求△CDE的面积.参考答案1.(1)解:连接OE,作OH⊥AD于H,∵DE是⊙O的切线,∴OE⊥DE.又∵∠D=90°,∴四边形OHDE是矩形,设⊙O的半径为r,在Rt△OCH中,OC2=CH2+OH2,∴r2=(r﹣4)2+144,∴半径r=20.(2)解:∵OH⊥AD,∴AH=CH.又∵AD+CD=30,即:(AH+HD)+(HD﹣CH)=30.∴2HD=30,HD=15,即OE=HD=OC=15,∴在Rt△OCH中,CH===9.∴AC=2CH=18.【点评】考查了圆的切线的性质,矩形的判定和性质及垂径定理.解答此类题目的关键是通过作辅助线构造直角三角形,利用勾股定理求得相关线段的长度.2.(1)证明:连接BC,∵AB是⊙O的直径,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:连接AE.∵∠A BE=∠A+∠D=50°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【点评】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.证明:连结AD,∵弦CD⊥直径AB,∴2∠BAC=2∠BAD=∠DAC(垂径定理),又∵∠DGC=∠DAC(圆周角定理),∴∠BAC=∠DGC,∴∠DGC=2∠BAC.【点评】此题考查了垂径定理、圆周角定理.此题难度不大,注意掌握辅助线的作法与数形结合思想的应用.4.解:(1)连结AD,∵D是中点,∴∠BAD=∠CAD,又∵AB=AC,∴AD⊥BD,∴∠ADB=90°,∴AB是⊙O直径;(2)连结OE,∵∠C=60°,AB=AB,∴∠BAC=60°,∴∠AOE=60°,∴∠BOC=120°,∴∠OBE=30°,∵AB=8,∴OB=4,∴S阴影=S扇形AOE+S△BOE=+×2×4=π+4.(3)由(1)知AB是⊙O的直径,∴∠BEA=90°,∴∠EBC+∠C=∠CAD+∠C=90°,∴∠EBC=∠CAD,∴∠CAB=2∠EBC.【点评】本题考查了扇形面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.5.证明:(1)连接BO并延长交⊙O于点E,连接DE.∵BE是⊙O的直径,∴∠BDE=90°,∴∠EBD+∠E=90°,∵∠DBC=∠DAB,∠DAB=∠E,∴∠EBD+∠DBC=90°,即OB⊥BC,又∵点B在⊙O上,∴BC是⊙O的切线;(2)连接OD,∵∠BOD=2∠A=60°,OB=OD,∴△BOD是边长为6的等边三角形,∴S△BOD=×62=9,∵S扇形DOB==6π,∴S阴影=S扇形DOB﹣S△BOD=6π﹣9.【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出∠EBD+∠DBC=90°和分别求出扇形DOB和三角形DOB的面积.6.解:(1)∵矩形ABCD中AB=3,AD=4,∴AC=BD==5,∵AF•BD=AB•AD,∴AF==,同理可得DE=,在Rt△ADE中,AE==;(2)∵AF<AB<AE<AD<AC,∴若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,即点F在圆内,点D、C在圆外,∴⊙A的半径r的取值范围为2.4<r<4.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.解:(1)如图1,连接OD,∵AB是⊙O的直径,弦CD与AB相交,∠BAC=40°,∴∠ACB=90°.∴∠ABC=∠ACB﹣∠BAC=90°﹣40°=50°.∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)如图2,连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°.由DP∥AC,又∠BAC=40°,∴∠P=∠BAC=40°.∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=130°.∴∠ACD=65°.∵OC=OA,∠BAC=40°,∴∠OCA=∠BAC=40°.∴∠OCD=∠ACD﹣∠OCA=65°﹣40°=25°.【点评】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8.(1)证明:过C作CF⊥AB于F,∵在Rt△ABC中,∠C=90°,AC=,BC=2AC,∴BC=2,由勾股定理得:AB==5,∵△ACB的面积S=×AB×CF=×AC×BC,∴CF==2,∴CF为⊙C的半径,∵CF⊥AB,∴AB为⊙C的切线;(2)解:图中阴影部分的面积=S△ACB ﹣S扇形DCE=××2﹣=5﹣π.【点评】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解此题的关键.9.解:(1)∵AM为圆O的切线,∴OA⊥AM,∵BD⊥AM,∴∠OAD=∠BDM=90°,∴OA∥BD,∴∠AOC=∠OCB,∵OB=OC,∴∠OBC=∠OCB,∵OC平分∠AOB,∴∠AOC=∠BOC,∴∠BOC=∠OCB=∠OBC=60°,∴∠AOB=120°;(2)如图:过点O作OE⊥BD,垂足为E∵∠BOC=∠OCB=∠OBC=60°,∴OB=OC=BC∵OE⊥BD,∴BE=CE=BC=OA∵OE⊥BD,且OA⊥AD,BD⊥AD∴四边形ADEO是矩形∴OA=DE∴CD+CE=OA=2CE,且CD=2cm∴CE=2cm∴OA=4cm∴的长度==π【点评】本题考查了切线的性质,平行线的判定与性质以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键.10.解:(1)连接OB,∵OA=OB,点D是AB的中点,∴PD⊥AB,∵∠A=30°,∴∠POC=∠AOD=60°,∵AC是直径,∴∠ABC=90°,∠A=30°,∴AC=2BC=8,∴OC=4∴劣弧PC的长==π;(2)∵PF⊥AC,∠OPF=30°,∴OF=OP=2,PF=2,∴S=﹣×2×2=π﹣2.阴影【点评】本题考查的是三角形的外接圆与外心,扇形面积计算,弧长的计算,掌握扇形面积公式和弧长公式是解题的关键.11.解:(1)连接OC,∵OF⊥AB,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A,∵OA=OC,∴∠A=∠ACO,∴∠ACE=90°+∠ACO=∠ACO+∠OCE,∴∠OCE=90°,∴OC⊥CE,∴EM是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE,∵∠A=∠E,∴∠A=∠ACO=∠BCE=∠E,∴∠ABC=∠BCO+∠E=2∠A,∴∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,∴OB=BC=,∴阴影部分的面积=﹣××=﹣.【点评】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC是解题的关键.12.(1)连OD,OF,如图,则OD⊥AB,OF⊥AC,∴∠DOF=180°﹣∠A=180°﹣40°=140°,又∵∠DEF=∠DOF=×140°=70°;(2)过A作AM⊥BC于M,∵AB=AC,∴BM=BC=×10=5,则AM=12,则S=60,△ABC设圆O的半径的半径是r,则(13+13+10)•r=60,解得:r=.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了切线长定理.13.解:(1)连结AE,BD,∵E为的中点,∴=,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,∴∠AEB=90°,即AE⊥BC,∴∠AEB=∠AEC=90°,在△AEC和△AEB中,∴△AEC≌△AEB(ASA),∴CE=BE,∴DE=CE=BE=BC;(2)在Rt△CBD中,BD2=BC2﹣CD2=32,设半径为r,则AB=2r,由(1)得AC=AB=2r,AD=AC﹣CD=2r﹣2,在Rt△ABD中AD2+BD2=AB2,∴(2r﹣2)2+32=(2r)2,解得:r=4.5,∴⊙O的半径为4.5.【点评】本题考查了圆周角、弧、弦的关系,全等三角形的判定和性质,勾股定理,圆周角定理,正确的作出辅助线是解题的关键.14.(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.15.(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=,∴AB=CD;(2)如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=5.则AF=3+1=4,即AE=AF+3=7.【点评】本题考查了勾股定理,正方形的判定与性质,垂径定理以及圆周角、弧、弦间的关系.注意(2)中辅助线的作法.16.证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,又∵∠DCF+∠BCD=180°,∴∠A=∠DCF,∵BD是∠ABC的角平分线,又∵DE⊥AB,DF⊥BC,∴DE=DF,∠DEA=∠F=90°,在△AED与△CFD中,∴△AED≌△CFD(AAS)(2)∵△AED≌△CFD,∴AE=CF,BE=BF,设AE=CF=x,则BE=10﹣x,BF=8+x,即10﹣x=8+x,解得x=1,在Rt△BFD,∠DBC=30°,设DF=y,则BD=2y,∵BF2+DF2=BD2,∴y2+92=(2y)2,y=3,BD=6.【点评】考查了圆周角定理,全等三角形的判定与性质.解答此题的关键是证明△AED≌△CFD.17.解:(1)如图:连接OD∵DE与⊙O相切∴∠ODE=90°∵AB∥DE∴∠AOD+∠ODE=180°∴∠AOD=90°∵∠AOD=2∠C∠C=45°∵∠CFB=∠CAB+∠C∴∠CFB=75°(2)如图:连接OC∵AB是直径,点F是CD的中点∴AB⊥CD,CF=DF,∵∠COF=2∠CAB=60°,∴OF =OC =,CF =OF =,∴CD=2CF =,AF=OA+OF =,∵AF∥AD,F点为CD的中点,∴DE⊥CD,AF为△CDE的中位线,∴DE=2AF=3,=×3×=∴S△CED【点评】本题考查切线的性质和判定、圆的有关知识、勾股定理等知识,解题的关键是灵活运用这些知识,属于基础题,中考常考题型.21 / 21。
人教版数学九年级上册 第24章 圆 24.1.4 圆周角 课件(共16张PPT)优质课件PPT
•
我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。自我激励能力是人自我调节系
统中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都发挥着关键性的作用。具备
D
的圆周角”的数量关系,就转化为圆
内接四边形的对角之间的数量关系,
也就是本节课的主题。
探究性质
B
O
A
C
D
圆内接四边形ABCD的对角 有什么数量关系?
通过学生自己动手画图、测量、 猜想,最后证明结论,探究得出 圆内接四边形的性质
B
性质:
50
圆内接四边形的对角互补.
O
延伸:
A
130 50C D
圆内接四边形的任意一个 外角等于它的内对角.
自我激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励和支持。一个小男孩在自
家的后院练习棒球。在挥动球棒前,对自己大喊:“我是世界上最棒的棒球手!”然后扔出棒球,挥动……但是没有击中。接着,他又对自己喊:“我是世界上最棒的棒球手!”扔出棒球,
难对于脑力运动者来说,不过是一场场艰辛的比赛。真正的运动者总是盼望比赛。如果把困难看作对自己的诅咒,就很难在生活中找到动力,如果学会了把握困难带来的机遇,你自然会动力
O A OB
C
C
AB 2.半圆(或直径)所
O
对的圆周角是直
O
角, 90的圆周角
沪科版九年级下册数学 24.3 :圆周角定理及其推论 (共18张PPT)
2.如图,在⊙O中,当 A⌒B 所对的圆心角∠AOB 与圆周角∠ACB具有如图所示的两种位置关系时,
它们是否还具有上述的数量关系?为什么?
C
C
O·
A
B
D
O·
D
B A
(1)圆心在∠BCA的内部.
作直径CD.
C
由于∠AOD=2∠ACD
O·
∠BOD=2∠BCD,
A
B
D
所以∠AOD+∠BOD=
∠ACB=
1 2
AOB
;
∠ADB=
1 2
AOB
;
∠ ACB =∠ ADB .
图 2如3 .图1 . 1 0
⌒ 1.在一个圆中,并画出AB所对的圆周角能
画多少个?它们有什么关系?
2.在同圆和等圆中,如果两个弧 相等,它们所对的圆周角一定 相等吗?为什么?反过来呢?
推论1:
C
同弧或等弧所对的圆周角相等; 相等的圆周角所对的弧也相等.
D A
O·
E
B
探索半圆或直径所对的圆周角的度数。
如图, △ABC内接于
C
⊙O, 请思考当∠AOB为
180°时, ∠ACB的度数是多
少?从而你得到什么结论? A
·O
B
推论2:半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径.
证明:因为OA=OB=OC,
∴ △AOC、△BOC都是等腰
三角形
∠OAC=∠OCA,∠OBC =∠OCB
又 ∠OAC+∠OBC+∠ACB= 180° 图 2 3 . 1 . 9
∠ACB=∠OCA+∠OCB= 180
=90°
最新人教版九年级上册数学第二十四章《圆》优秀课件(含复习共12课时)
集合定义
圆 弦(直径) 有关 概念 弧 劣弧 半圆 优弧 等弧 能够互相重合的两段弧
同 圆 半径 相等
直径是圆中 最 长 的 弦 半圆是特殊的弧
同圆
等圆
课后作业
见本课时练习
谢谢!
[义务教育教科书]( R J ) 九 上 数 学 课 件
第二十四章 圆
24.1 圆的有关性质
24.1.2 垂直于弦的直径
证明:∵四边形ABCD是矩形, ∴AO=OC,OB=OD.
又∵AC=BD, ∴OA=OB=OC=OD.
A
D
O
B C
∴A、B、C、D在以O为圆心以OA为半径的圆上.
二 圆的有关概念
弦:
连接圆上任意两点的线段(如图中的AC)叫
A
·
B
O
C
做弦. 经过圆心的弦(如图中的AB)叫做直径.
注意 1.弦和直径都是线段.
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.进一步认识圆,了解圆是轴对称图形.
2.理解垂直于弦的直径的性质和推论,并能应用它解决一
些简单的计算、证明和作图问题.(重点) 3.灵活运用垂径定理解决有关圆的问题.(难点)
导入新课
你能通过折叠的方式找到圆形纸片的对称轴吗?
在折的过程中你有何发现? 圆是轴对称图形,任何一条直径所在直线都是 它的对称轴.
2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦 不一定是直径.
弧:
圆上任意两点间的部分叫做圆弧,简弧. 以A、B为端点的弧记作 AB ,读作“圆弧 AB”或“弧AB”. 半圆 圆的任意一条直径的两个端点把圆分成 两条弧,每一条弧都叫做半圆. A ( O · B
C
人教版九年级上册数学教案:第24章《圆的复习》优秀教学案例
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,总结学习方法和学习经验,提高学生的我管理能力。
2.同伴评价:组织学生互相评价,给予同伴肯定和鼓励,培养学生的评价能力和良好的人际关系。
3.探究情境:组织学生进行小组讨论,探讨圆的性质和公式,引导学生主动参与学习,培养学生的发现问题、分析和解决问题的能力。
(二)问题导向
1.设计问题链:围绕圆的知识,设计一系列由浅入深的问题,引导学生层层递进地思考,如“圆是什么形状?”“圆有哪些性质?”“圆的周长和面积如何计算?”等。
2.问题导向教学:在教学过程中,以问题为导向,引导学生自主学习、合作交流,使学生在解决问题的过程中,掌握圆的相关知识。
三、教学策略
(一)情景创设
1.生活情境:以日常生活中常见的圆形物品为例,如硬币、圆桌、车轮等,创设情境,引导学生关注圆的形状和特征,激发学生的学习兴趣。
2.问题情境:设计一些与圆相关的问题,如“圆形草坪的面积是多少?”“自行车轮子的周长是多少?”等,让学生在解决问题的过程中,自然地引入圆的相关知识。
2.问题导向的教学策略:本案例中,教师以问题为导向,设计了一系列由浅入深的问题,引导学生层层递进地思考。这种问题导向的教学策略,不仅有助于激发学生的思维,培养学生的批判性思维和问题解决能力,还能够帮助学生建立起知识之间的联系,形成系统化的知识结构。
3.小组合作的学习方式:通过组织学生进行小组讨论和合作交流,本案例充分调动了学生的学习主动性,培养了学生的合作能力和团队意识。在小组合作的过程中,学生不仅能够互相学习、互相帮助,还能够提高自己的表达能力和沟通技巧,培养良好的人际关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C第24章圆总复习一、【复习目标】12二、【复习导学】1(1)圆是轴对称图形,经过的直线都是对称轴;又是中心对称图形,对称中心是.(2)连结___________的________叫做弦.经过______的____叫做直径.并且直径是同一圆中_____的弦.(3)圆上_________的部分叫做圆弧,简称______,以A,B为端点的弧记作______,读作_____或_____.(4)圆的的两个端点把圆分成两条弧,每________都叫做半圆.(5)在一个圆中_____________叫做优弧;_____________叫做劣弧.(6)半径相等的两个圆叫做____________.在同圆和等圆中,能够完全重合的弧叫.(7)顶点在的角叫做圆心角.(8)顶点在,并且两边都和圆的角叫做圆周角.(9)经过圆的外一点作圆的切线,的长叫做这点到圆的切线长.(10)三角形的三个顶点可以确定一个圆,这个圆叫做,外接圆的圆心叫做三角形的,它到三角形都相等,是的交点.(11)和三角形三边都的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的;它到三角形都相等,是的交点.(12)多边形的各个顶点都在圆上,这个多边形叫做圆的,这个圆叫做多边形的.2、位置关系(1(3、重要定理(1)垂径定理:垂直于弦的直径 弦且平分弦所对的 . (2)垂径定理的推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 以上共2个定理,可简称2推3定理:此定理中共5个结论中,2个可推出其它3个结 即:①AB 是直径 ②AB CD ⊥ ③CE DE =④ 弧BC =弧BD ⑤ 弧AC =弧AD(3)圆心角定理:在同圆或圆中,相等的圆心角所对的 相等,所对的 相等,所对应的 弦心距相等. 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE ∠=∠;②AB DE =(4)圆周角定理即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角(5)圆周角定理的推论: 推论1:同弧或等弧所对的圆周角 ;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴推论2:即:在⊙O 中,∵AB 是直径 ∴ 90C ∠=︒ .推论3即:在△ABC 中,∵OC OA OB == ∴△ABC (6)圆内接四边形 圆的内接四边形定理:圆的内接四边形的对角 .即:在⊙O 中, ∵四边形ABCD 是内接四边形 ∴∠(7)切线的性质与判定定理 ①切线的判定定理:过半径 且 于半径的直线是圆的切线; 即:∵MN OA ⊥且MN 过半径OA 外端∴MN 是⊙O 的切线②性质定理:切线垂直于过 点的半径(如右图)(8)切线长定理:从圆外一点引圆的 条切线,它们的切线长 这点和圆心的连线 两条切线的夹角. 即:∵PA 、PB 是的两条切线∴ PA= ,PO 平分 .(9)正多边形的计算 ①正三角形:计算在Rt BOD ∆中进行, OD=1则AB=______, OB= .②正四边形:计算在Rt OAE ∆中进行, AD=2则OE=______,OA=______. ③正六边形:计算在Rt OAB ∆中进行, AB=2则OA=______,OB=_______. (10)扇形、圆柱和圆锥的相关计算公式①扇形:①弧长公式:180n Rl π= ;②扇形面积公式: 213602n R S lR π== , 213602n R S lR π== ,②圆柱: 2S S S =+侧表底=___________ ③圆锥侧面展开图 S S S =+侧表底=_________lOC 1D 1CA AD 图B A (三)圆易错点:1.注意考虑点的位置(在解决点与圆的问题时,应注意对点的位置进行分类,如点在圆内圆外、点在优弧劣弧等)例1.点P 到⊙O 上的最近距离为cm 3,最远距离为cm 5,则⊙O 的半径为 cm . 例2.BC 是⊙O 的一条弦, ︒=∠120BOC ,点A 是⊙O 上的一点(不与B 、C 重合),则BAC ∠的度数为(解决与弦有关的问题时,应对两条的位置进行分类,即注意位于圆心同侧和异侧的分类.)例3.在半径cm 5为的圆中,有两条平行的弦,分别长cm 8和cm 6,则这两条平行弦的距离是 . 例4.AB 是⊙O 的直径,AC 、AD 是⊙O 的两条弦,且︒=∠30BAC ,︒=∠45BAD ,则CAD ∠的AD= .3.注意公共点的个数(在涉及直线与圆的位置关系时,应注意有公共点和有唯一公共点的区别.)例7.⊙O 的半径为cm 3,点P 在直线l 上,且cm OP 3=,则⊙O 和直线l 的位置关系为 . 4.注意两圆相切中的分类(在解决两圆相切的问题时,应注意对内切、外切以及两圆大小进行分类) 例8.已知⊙O 1和⊙O 2相切,两圆的圆心距为9cm ,⊙O 1的半径为4cm ,则⊙O 2的半径为( ). A .cm 5 B .cm 13 C .cm 9或cm 13 D .cm 5 或cm 13 (四)考点归纳:考点1:基本概念和性质 例1.(2010兰州)有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ). A .4个 B .3个 C . 2个 D . 1个考点2:圆心角与圆周角的关系 例2.(2010连云港)如图,点A 、B 、C 在⊙O 上,AB ∥CD ,∠B =22°, 则∠A =________°.考点3:垂径定理. 例3.(2010芜湖)如图,在⊙O 中,有折线OABC ,其中8=OA , 12=AB ,︒=∠=∠60B A ,则弦BC 的长为( ). A .19 B .16 C .18 D .20考点1-3练习: 1.如图1,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上,∠BAC=35°,则∠ADC=_____.(1) (2) (3) (4) 2.如图2,在⊙O 中,∠ACB=∠D=60°,AC=3,则△ABC 的周长为______.3.如图3,AB 是⊙O 的弦,圆心O 到AB 的距离OD=1,AB=4,则该圆的半径是________. 4.如图4,⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°,则BC=_____cm .(5) (6) (7) (8)5.我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,点到直线的距离.类似地,如图5,若P 是⊙O 外一点,直线PO 交⊙O 于A 、B 两点,PC 切⊙O 于点C ,则点P 到⊙O 的距离是( )A .线段PO 的长度B .线段PA 的长度C .线段PB 的长度D .线段PC 的长度 6.如图6,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC=CD=DA ,则∠BCD=( ) A .100° B .110° C .120° D .135°7.如图7,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20° 8.图8中∠BOD 的度数是( )A .55°B .110°C .125°D .150°考点4:直线与圆的位置关系(中考热点:切线的判断和性质) 1.已知∠ABC=60°,点O 在∠ABC 的平分线上,OB=5cm ,以O 为圆心,3cm 为半径作圆,则⊙O 与BC 的位置关系是________.2.如图1,AB 是⊙O 的切线,OB=2OA ,则∠B 的度数是_______.(1) (2) (3) 3.如图2,已知直线CD 与⊙O 相切于点C ,AB 为直径,若∠BCD=40°,则∠ABC 的大小等于_____. 4.如图3,PB 为⊙O 的切线,B 为切点,连结PO 交⊙O 于点A ,PA=2,PO=5,则PB 的长为( ) A .4 B .10 C .26 D .435.如右图,AB 与⊙O 切于点B ,AO=6cm ,AB=4cm ,则⊙O 的半径为( )A .45cmB .25cmC .213cmD .13cm 6.如右图,已知⊙O 的直径AB 与弦AC 的夹角为35°,过C 点的切线PC 与AB 的延长线交于点P ,那么∠P 等于( ) A .15° B .20° C .25° D .30° 7.⊙O 的半径为4,圆心O 到直线L 的距离为3, 则直线L 与⊙O 的位置关系是( )A .相交B .相切C .相离D .无法确定 8.如图,A 是⊙O 外一点,B 是⊙O 上一点,AO 的延长线交⊙O 于点C ,连结BC ,∠C=22.5°,∠A=45°.求证:直线AB 是⊙O 的切线. 9.如图,⊙O 的直径AB=4,∠ABC=30°,BC=43,D 是线段BC 的中点. (1)试判断点D 与⊙O 的位置关系,并说明理由;(2)过点D 作DE ⊥AC ,垂足为点E ,求证直线DE 是⊙O 的切线.10.已知:△ABC 是边长为4的等边三角形,点O 在边AB 上,⊙O 过点B 且分别与边AB ,BC 相交于点D ,E ,EF ⊥AC ,垂足为F. (1)求证:直线EF 是⊙O 的切线;(2)当直线DF 与⊙O 相切时,求⊙O 的半径.考点5:弧长扇形面积的计算考查形式:考查运用弧长公式(_____________=l )以及 扇形面积公式(_________=S和________=S )进行有关的计算,常以填空题或选择题的形式进行考查.例5.(2010巴中)如图所示,以六边形的每个顶点为圆心,1为半径画圆, 则图中阴影部分的面积为 .考点6:圆锥的侧面展开问题考查形式:考查圆锥的侧面展开图的有关知识以及空间想象能力,常以选择题或填空题的形式出现. 例6.(2010年眉山)已知圆锥的底面半径为4cm ,高为3cm ,则这个圆锥的侧面积为__________cm 2.考点7:正多边形的计算例7.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )A .2B .3 CD.考点5-7:练习1.已知扇形的圆心角为120°,半径为15cm ,则扇形的弧长为 cm (结果保留π).2.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处 不重叠),那么这个圆锥的高为( )A .6cm B. C .8cm D. 3.如图,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成如图所示的一个圆锥模型.设圆的半径为r , 扇形的半径为R ,则圆的半径与扇形半径之间的关系为( )A . 160°B . 150°C . 140°D . 120°剪去2. ( 2014•广西贺州,第11题3分)如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC =2,AE =,CE =1.则弧BD 的长是( ) A . B .C .D .) A .35° B . 45° C . 55° D . 65°第2题图 第3题图 第4题图 第5题图 第7题图 3的最大扇形ABC ,则:(1)AB 的长为 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米. 8.(2014•四川自贡,第14题4分)一个边长为4cm 的等边三角形ABC 与⊙O 等高, 如图放置,⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长为 cm .9. (2014年江苏南京)如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E , 连接BC ,若AB =2cm ,∠BCD =22°30′,则⊙O 的半径为 cm . (Ⅰ)如图①,若BC 为⊙O 的直径,AB =6上两点,且=,连,求⊙。