2018年初中数学竞赛模拟试题(1)含答案

合集下载

最新2018年全国初中数学联赛试题及参考答案.

最新2018年全国初中数学联赛试题及参考答案.

2004年全国初中数学联赛试题及参考答案(江西赛区加试题2004年4月24日上午8:30-11:00)一. 选择题(本题满分42分,每小题7分)1.直角三角形斜边长为整数,两条直角边长是方程9x 2-3(k+1)x+k=0的两个根,则k 2的值是…………………………( )(A)2 (B)4 (C)8 (D)9 2.(8+37)9 +)738(91+值是……………………………………………( )(A)奇数 (B)偶数 (C)有理数而不是整数 (D)无理数3.边长分别是2、5、7的三个正方体被粘合在一起,在这些用各种方式粘合在一起的立方体中,表面积最小的那个立方体的表面积是…………………………….( )(A)410 (B)416 (C)394 (D)402x+yz=14.设有三个实数x 、y 、z 满足: y+zz=1 则适合条件的解组(x 、y 、z )有( )z+xy=1(A)3组 (B) 5组 (C)7组 (D)9组5.8a ≥1, 则333183131831-+-+-++a a a a a a 的值是( ) (A)1 (B) 23a (C)8a (D)不能确定 6.方程z y x y x ++=++2222的整数解有( )(A)1组 (B)3组 (C)6组 (D)无穷多组二.填空题(本题满分28分,每小题7分)1.函数y=x 2-2(2k -1)x +3k 2-2k +6的最小值为m 。

则当m 达到最大时x =2.对于1,2,3,。

,9作每二个不同的数的乘积,所有这些乘积的和是3.如图,AB ,CD 是圆O 的直径,且AB ⊥CD ,P 为CD 延长线上一点,PE 切圆O 为E ,BE 交CD 于F ,AB=6cm,PE=4cm,则EF 的长=C。

4.用6张1x2矩形纸片将3x4的方格表完全盖住,则不同的盖法有种。

三。

综合题1。

有二组数:A组1,2,。

,100 B组12,22,32,。

,1002若对于A 组中的X,在B组中存在一个数Y,使得X+Y也是B组中的数,则称X为关联数,求A 中关联数的个数2.已知二次函数y=ax2+bx+c(a>0)的图象和x轴,y轴都只有一个交点,分别为A,B。

2018年上半年全国统考教师资格考试初中数学模拟卷一-教师版

2018年上半年全国统考教师资格考试初中数学模拟卷一-教师版

2018年上半年中小学教师资格考试模拟卷数学学科知识与教学能力(初级中学)一、单项选择题(本大题共8小题,每小题5分,共40分)1.若)(x f 为(﹣l ,l )内的可导奇函数,则)('x f ( ).A .是(﹣l ,l )内的偶函数B .是(﹣l ,l )内的奇函数C .是(﹣l ,l )内的非奇非偶函数D .可能是奇函数,也可能是偶函数1.【答案】A .解析:因为()()f x f x -=-,所以.2.当x 0→时,与1x 133-+为同阶无穷小的是( ).A .3xB .34xC .32xD .x 2.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=,选A . 3.直线383311x y z ---==-与直线376324x y z ++-==-的位置关系为( ). A .平行 B .相交 C .异面 D .重合3.【答案】B .解析:直线383311x y z ---==-可以化为一般式:36z x -=,直线376324x y z ++-==-可以化为一般式:346z x +=,联立两个方程,解得12565x z ⎧=⎪⎪⎨⎪=⎪⎩,说明两条直线相交. 4.计算22x y D edxdy --⎰⎰,其中D 是由中心在原点、半径为a 的圆周所围成的闭区域( ).A .()21a e π--B .()21a e π-C .()21a e π-+D .()21a e π+ 4.【答案】A .解析:在极坐标系中,闭区域D 可表示为0,02a ρθπ≤≤≤≤,所以()()222222222200000111122a a x y a a D D edxdy e d d e d d e d e d e πππρρρρρθρρθθθπ-------⎡⎤⎡⎤===-=-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰,所以答案选A .5.求幂级数()()2202!!n n n x n ∞=∑的收敛半径是( ). A .1 B .2 C .12 D .-15.【答案】C .解析:级数缺少奇次幂的项,定理2不能直接应用.我们根据比值审敛法来求收敛半径:()()()()()21222221!1!lim 42!!n n nn x n x n x n +→∞+⎡⎤⎣⎦+⎡⎤⎣⎦=,当2141,2x x <<即时级数收敛;当2141,2x x >>即时级数发散.所以收敛半径12R =. 6.设A ,B ,C 是三个随机事件,P (ABC )=0,且0<P (C )<1,则一定有( ).A .()()()()P ABC P A PB PC =B .()()()|||P A BC P A C P B C +=+⎡⎤⎣⎦ C .()()()()P A B C P A P B P C ++=++D .()()()||P A B C P A C P B C +=+⎡⎤⎣⎦ 6.【答案】B .解析:A .由于不知道P (A )或P (B )是否为零,因此选项A 不一定成立. B .()()()()()()P A B C P AC P BC P ABC P AC P BC -=⎣+=++⎡⎤⎦,()()()()()|||P A B C P A B C P C A P B C P C ⎡⎤⎣⎦+⎡⎤⎣⎦++==,选项B 正确.C .()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ---+++=++,由于不能确定 ()()()P AB P BC P AC 、、的概率是否全为零,因此选项C 不一定成立.D .()()()()()=P A B C P AC BC P AC P BC P ABC ⎡⎤-⎣=++⎦+,而()()()P AB P ABC P ABC =-,其值是否为零不能判断,因此选项D 不一定成立.7.对于求函数最大值的问题,下列关于该问题的解题过程所蕴涵的主要数学思想的()[]3221,1,3f x x x x x =+-+∈-表述中,不恰当的一项是( ).A .方程与函数思想B .特殊与一般思想C .化归与转化思想D .有限与无限思想7.【答案】D .解析:本题在结果过程中采用将原函数求导,并根据其导函数的取值范围确定原函数的单调性,再通过单调性判别最大值,分别体现了方程与函数、特殊与一般以及化归与转化的思想,没有体现有限与无限的思想.8.概念的外延是概念所反映的( )的总和.A .本质属性B .本质属性的对象C .对象的本质属性D .属性8.【答案】B .解析:概念的外延是概念所反映的本质属性的对象的总和,故选B .二、简答题(本大题共5小题,每小题7分,共35分)9.设1211321563A λμ⎡⎤-⎢⎥=-⎢⎥⎢⎥⎣⎦,已知()2R A =,求λμ与的值.9.【答案】51λμ=⎧⎨=⎩. 解析:121112110303444451080054A λλμμλ⎡⎤⎡⎤--⎢⎥⎢⎥++----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦::, 因为()2R A =,所以505,101λλμμ-==⎧⎧⎨⎨-==⎩⎩即. 10.三个箱子中,第一箱装有4个黑球1个白球,第二箱装有3个黑球3个白球,第三箱装有3个黑球5个白球,现在任取一箱,再从该箱中任取一球,问(1)取出的球是白球的概率?(2)若取出的为白球,则该球属于第二箱的概率?10.【答案】(1)53120;(2)2053. 解析:设i A 表示“取出第i 个箱子”, 1,2,3i =,B 表示“取出白球”. 于是1231()()()3P A P A P A ===, 11(|)5P B A =,23(|)6P B A =,15(|)8P B A =. (1)由全概率公式得3153()(|)()120i i i P B P B A P A ===∑; (2)由贝叶斯公式得2(|)()20(|)()53i i P B A P A P A B P B ==. 11.证明当0x >,()ln 11x x x x<+<+. 11.【答案】见解析.解析:设()()ln 1f t t =+,显然()f t 在区间[]0,x 上满足拉格朗日中值定理的条件,根据定理,应有()()()()00,0f x f f x x ξξ'-=-<<;由于()()100,1f f t t'==+,因此上式即为()ln 11x x ξ+=+,又由0x ξ<<,有()()ln 101x x x x x <+<>+,由此得证. 12.试结合实际教学说说在数学教学中如何激发学习兴趣,引起学习动机?12.【参考答案】兴趣是一个人积极探究某种事物或进行活动的意识倾向.学习兴趣是学生对学习活动或学习对象的一种力求认识或趋近的意识倾向.兴趣是入门的向导,是感情的体现,能促使动机的产生.学习兴趣是一种学习动机,是学习积极性中很现实、很活跃的心理成分.总是积极主动,心情愉快的进行学习,不会产生负担.在数学教学之初,或学习新课题时,教师应精心设计教学学习情境,将学生置于该情境之中,激发学习兴趣,千方百计的诱发学生的求知欲,使学生有一种力求认识世界,渴望获得知识,不断追求真理的欲望,产生学习的自觉性,迸发出极大的学习热情.13.何为教学反思?如何进行教学反思.13.【参考答案】反思是指教师以自己的教育教学实践为思考对象,对自己的教育行为、决策及教学效果进行认真的审视和分析,不断提高自己教学水平和专业素养的过程.反思不仅仅是头脑内部的“想一想”,而是一个不断实践、学习、研究的过程,是自己与自己、自己与他人更深层次的对话.反思是教师认识自己的重要途径,又是改变自己的前提,教学是一门遗憾的艺术,即使是成功的课堂教学也难免有疏漏失误之处,课后要及时进行回顾、梳理,并对其作深刻反思、探究和认真的剖析,为教师再教积累理论和实践经验.课后反思还要对自己的教学行为是否会对学生造成伤害进行反思.有时,教师无意识的行为会对学生造成终身难以弥补的伤害,所以教师在与学生沟通时要时时注意自己的言行.三、解答题(本大题1小题,10分)14.非齐次线性方程组12312321232222x x x x x x x x x λλ⎧-++=-⎪-+=⎨⎪+-=⎩,当λ取何值时有解?并求出它的通解.14.【答案】见解析.解析:这里的系数矩阵A 是方阵,A 中不含参数,故对增广矩阵作初等行变换为宜,求解如下:()()()222121211212112121121211203322031112112112033000B λλλλλλλλλλλλ⎡⎤-⎢⎥⎡⎤⎡⎤⎡⎤----⎢⎥-⎢⎥⎢⎥⎢⎥=-----+⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+----⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦:::, 因为()2R A =,故当()2R B =时,即当12λλ==-或时,方程组有解;当1λ=时,012111110000111100000000B ⎡⎤⎡⎤--⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::,则有13231x x x x =+⎧⎨=⎩,即()123111010x x c c R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 当2λ=-时,012121120011211200000000B ⎡⎤⎡⎤---⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::,则有132322x x x x =+⎧⎨=+⎩,即()123121210x x c c R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.四、论述题(本大题1小题,15分)15.解释解析几何的含义,并说明解析几何的意义.15.【参考答案】解析几何是这样一个数学学科,在采用坐标法的同时,运用代数方法来研究几何对象.(1)解析几何使得数学的研究方向发生了一次重大的转折:以几何为主导的数学转变为宜代数和分析为主导的数学;(2)解析几何使得以常量为主的数学转变为以变量为主的数学为微积分到的诞生奠定了基础; (3)解析几何使代数与几何融为一体,实现了几何图形的数字化,是数学化时代的先声;(4)代数的几何化和几何的代数化,使得人们摆脱了现实的束缚,它带来了认识新空间的需要,帮助人们从现实空间进入虚拟空间,从三维空间进入更高维的空间.五、案例分析题(本大题1小题,20分)16.案例:阅读下列3个教师有关“代数式概念”的教学片断.教师甲的情境创设:“一隧道长l 米,一列火车长180米,如果该列火车穿过隧道所花的时间为t 分钟,则列车的速度怎么表示?”学生计算得出t l 180+,教师指出:“tl 180+”、“10a +2b”这类表达式称为代数式. 教师乙的教学过程:复习上节内容后,教师在黑板上写下代数式的定义:“由运算符号、括号把数和字母连接而成的表达式称为代数式”,特别指出“单独一个数或字母也称为代数式”;然后判断哪些是代数式,哪些不是;接着通过“由文字题列代数式”及“说出代数式所表示的意义”进一步解释代数式的概念;最后让学生练习与例题类似的题目.教师丙的教学过程:让学生自学教材,但是教材并没有说“代数式”是怎么来的,有什么作用.接着教师大胆地提出开放式问题:“我们怎样用字母表示一个奇数?”当时教室里静极了,学生们都在思考.先有一位男生举手回答:“2a -1”.“不对,若a =1.5呢?”一位男生说.沉默之后又有一位学生大声地说:“a 应该取整数!”有些学生不大相信:“奇数77能用这个式子表示吗?”不久,许多学生算出来:“a 取39”.此时,教师趁势作了一个简单的点拨:“只要a 取整数,2a -1定是奇数,对吗?那么偶数呢?”他并没有作更多的解说,点到为止,最后的课堂小结也很简单:“数和式有什么不同?”“式中的字母有约束吗?”“前面一节学过的式子很多都是代数式!……”从师生们自如的沟通来看,他们都已成竹在胸.问题:(1)你认可教师甲的情境创设吗?说明理由;(2)你认可教师乙的教学过程吗?说明理由;(3)你认可教师丙的教学过程吗?说明理由.16.【参考答案】(1)甲教师情境创设的优点在于运用学生熟悉的物理背景来进行情境导入,降低了认知的难度.缺点在于看似联系实际,其实脱离学生的现有认知水平,使学生的认知起点与数学逻辑起点失调,无法引起学生的思维共鸣,使问题情境中隐含的数学问题与数学方法不能与教学目标相衔接,不能形成学生原有认知水平及生活经验的正迁移.(2)乙教师的教学过程存在优点也存在缺陷.优点是一开始复习了上节内容,进行了新旧知识间的过渡,降低了学生对新知识的认知难度;采取了直接导入的方法,开门见山的介绍本节课题,引起学生的注意,使学生迅速进入学习状态,对本节内容的基本轮廓有了大致了解;整个教学过程条理清楚、重难点突出;最后进行巩固练习,加深了学生对新知识的识记和掌握.缺点在于没有进行合适的情境创设,将知识全盘塞给学生,剥夺了学生研究问题的策略,无法激发学生学习新知识的兴趣,学生只能机械地配合老师的教学,整个过程中,缺乏师生间的互动,忽略了学生的主体地位.(3)丙教师的教学过程存在优点也存在缺陷.优点是充分发挥了学生的主体地位,开放性问题激发了学生自主探究的兴趣,有利于培养他们的独立思考能力和创新意识.缺点在于首先教师没有给出学生自主探究的准备时间,没有提供丰富的自学素材;另外教师导入的开放式问题并不能充分突出代数式这节的核心——“数”与“式”的区别;在探究过程中,教师没有科学合理地发挥自己的主导作用,小结也显得过于潦草和模糊.六、教学设计题(本大题1小题,30分)17.在进行初中数学“一次函数(第一课时)”时,你将怎样展开教学,请完成下列教学设计:(1)谈谈一次函数在初中数学课程中的作用;(2)确定本节课的教学目标和教学重难点;(3)请设计一个引入“一次函数概念”的教学片段,要求引导学生经历从实际背景抽象概念的过程.17.【参考答案】(1)一次函数属于《数学课程标准》中“数与代数”领域,是最基本的、最简单的函数.教材在前面首先安排了函数及正比例函数的内容,讨论了正比例函数的定义、图象、性质等,接着本节学习一次函数的定义、图象、性质和函数解析式,它既是对函数概念的进一步理解,又是特殊的一次函数——正比例函数到一般的一次函数的拓展,它还是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用.它也是将来学习二次函数,反比例函数的基础.本节教学内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材.(2)教学目标:知识与技能目标:能通过实例观察、比较、探索、归纳得出一次函数概念.能根据实际条件,分清两个变量间的关系,列出一次函数解析式.过程与方法目标:在经历一次函数概念的形成过程中,体会数学建模和特殊到一般的思想及类比思想,提高发现问题、解决问题的能力.情感态度与价值观目标:体验函数与人类生活的密切联系,增强对函数学习的求知欲,体验数学充满着探索性和创造性,增强学习数学的兴趣.教学重点、难点:教学重点:一次函数的概念,能利用一次函数解决简单的实际问题.教学难点:能根据具体条件写出一次函数解析式.(3)引例:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm时,他们所在的位置的气温是y℃,试写出y与x之间的关系式.引导学生得出正确结果:y=-6x+5追问:y是x的函数吗?引导学生回顾函数的定义,给出答案.提示并提问:我们看到实际问题中,两个变量之间的数量关系不总是k倍的关系,还有如引例中存在的数量关系.出示下列例题,让同学们自行写出其中变量对应的函数关系.①有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.②一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.③某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1元/分收取).④把一个长10cm,宽5cm的矩形的长减少x cm,宽不变,矩形面积y(cm2)随x的值而变化.引导学生得出正确结果:①c=7t-35;②G=h-105;③y=0.01x+22;④y=-5x+50.提问并进行小组讨论:这四个关系式显然都是函数,这些函数有什么共同的特点?若把它们叫做一次函数,你能类比正比例函数的定义给出一次函数的定义吗?由此引出一次函数的概念并总结:一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.。

2018年四川绵阳市中考数学模拟试题(一)含答案

2018年四川绵阳市中考数学模拟试题(一)含答案

绵阳市2018年初中毕业考试暨高中阶段学校招生考试模拟试卷1(满分:140分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.如图是正方体的平面展开图,每个面上标有一个汉字,与“我”字相对的面上的字是()第2题A.魅B.力C.绵D.阳3.下列运算正确的是()A.a2a3=a6B.(a2)3=a6C.a6÷a2=a3D.a6﹣a2=a4 4.2014年12月10日从省教厅获悉,今年起我省编制并实施全面改善贫困地区义务教育薄弱学校基本办学条件计划《实施方案》,目前,已安排下达2014年“全面改薄”中央专项资金19.4亿元.用科学记数法表示19.4亿为()A.19.4×108B.1.94×108C.1.94×109D.19.4×1095.如图,四边形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分线相交于点O,则∠COD 的度数是()第5题A.80°B.90°C.100°D.110°6.如图,假设可以随意在图中取点,那么这个点取在阴影部分的概率是()A.B.C.D.第6题第7题7.如图,直线l1∥l2,∠1=∠2=35°,∠P=90°,则∠3等于()A.50°B.55°C.60°D.65°8.某种商品进价为每件a元,销售商先以高出进价50%定价,后又以7折的价格销售,这时一件该商品的在买卖过程中盈亏情况为()A.赢利0.05a元B.赢利0.5a元C.亏损0.05a元D.亏损0.3a元9.如图,在边长为1的正方形ABCD中,对角线AC和BD相交于点O,P是BC边上任意一点,PE⊥BD于点E,PF⊥AC于点F,则PE+PF=()A.B.C.D.第9题第10题10.如图,Rt△ABE中,∠B=90°,延长BE到C,使EC=AB,分别过点C,E作BC,AE 的垂线两线相交于点D,连接AD.若AB=3,DC=4,则AD的长是()A.5 B.7C.5D.无法确定11.如图所示的三角形数垒,a、b是某行的前两个数,当a=7时,b=()A.20 B.21 C.22 D.23第11题第12题12.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.B.2C.D.1第II卷非选择题(共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.因式分解:4a2b﹣b3=.14.化简:÷(+)=.15.如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为米.(保留根号)第15题第16题16.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O 重合.若BC=3,则折痕CE的长为.17.如图,有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去边长为的正方形.第17题第18题18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是.三、解答题(本大题共7小题,共86分,解答应写出必要的文字说明,证明过程或演算步骤)19.(16分)(1)计算:﹣(﹣1)2015×()﹣2﹣|1﹣|;(2)解不等式组.20.(11分)我们知道,每年的4月23日是”世界读书日”,某校为了鼓励学生去发现读书的乐趣,享受阅读的过程,随机调查了部分学生,就”你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表.请根据统计表提供的信息解答下列问题:(1)这次随机调查了名学生,统计表中d=.(2)假如以此统计表绘制出扇形统计图,则武侠小说对应的圆心角度数是多少?21.(11分)九年级(1)班团支书计划组织部分同学在元旦进行鲜花销售活动,在元旦当天,预计销售康乃馨和百合花,经过市场调研,他们知道康乃馨的批发价是每枝1.5元,百合花每枝4元,而市场销售价为康乃馨每枝2元,百合花每枝5元.(1)如果用300元钱进货,售出全部鲜花之后所得利润为80元,求两种鲜花各进多少枝?(2)团支部将这些鲜花平均分给甲乙两个小组去销售,由于甲组每小时售出的花是乙组的两倍,因此比乙组提前1小时售完,求甲组每小时售出多少枝花.22.(11分)已知一次函数y=2x﹣k与反比例函数y=的图象相交于A、B,其中A的横坐标为3.(1)求A、B两点的坐标;(2)若直线AB上有一点P,使得△APO∽△AOB,求P坐标.第22题23.(11分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4,ON=1,求⊙O的半径.第23题24.(12分)已知y=ax2+bx﹣3过(2,﹣3),与x轴交于A(﹣1,0),B(x2,0),交y 轴于C.(1)求抛物线的解析式;(2)过点C作CD∥x轴,交抛物线于D,是否存直线y=kx+1将四边形ACDB分成面积相等的两部分,若存在,请求k的值;若不存在,请说明理由;(3)若直线y=m(﹣3<m<0)与线段AC、BC分别交于D、E两点,则在x轴上是否存在点P,使得△DPE为等腰直角三角形,若存在,请求P点的坐标;若不存在,请说明理由.第24题25.(14分)如图1,在正方形ABCD中,E是BC的中点,点F在CD上,∠BAE=∠FAE.(1)指出线段AF、BC、FC之间有什么关系,证明你的结论.(2)设AB=12,求线段FC的长.(3)如图2,过AE中点G的直线分别交AB、CD于P、Q;求的值.第25题绵阳市2018年初中毕业考试暨高中阶段学校招生考试模拟试卷1(参考答案)一、1.B解析:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选B.2.D解析:正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以与“我”字相对的面上的字是阳.故选D.3.B解析:A、a2a3=a5,故本选项错误;B、(a2)3=a6,正确;C、a6÷a2=a4,故本选项错误;D、a6﹣a2不是同类项,不能合并,故本选项错误;故选B.4.C解析:19.4亿=19 4000 0000=1.94×109.故选C.5.C解析:∵∠A+∠B+∠ADC+∠DCB=360°,∠A+∠B=200°,∴∠ADC+∠DCB=160°.又∵∠ADC、∠DCB的平分线相交于点O,∴∠ODC=∠ADC,∠OCD=,∴∠ODC+∠OCD=80°,∴∠COD=180°﹣(∠ODC+∠OCD)=100°.故选C.6.C解析:设阴影部分的面积是x,则整个图形的面积是7x,则这个点取在阴影部分的概率是=.故选C.7.B解析:如图,∵l1∥l2,∴∠1+∠2+∠3+∠4=180°,∵∠1=∠2=35°,∴∠3+∠4=110°,∵∠P=90°,∠2=35°,∴∠4=90°﹣35°=55°,∴∠3=110°﹣55°=55°.故选B.8.A 解析:总售价=a(1+50%)×0.7=1.05a,∵1.05a﹣a=0.05a,∴赢利0.05a元,故选A.9.B解析:∵四边形ABCD是正方形,∴AB=AD=1,AC⊥BD,∠ABC=∠BCD=90°,∠CBO=∠BCO=45°,OB=BD,∴BD==,∠BOC=90°,∴OB=,∵PE⊥BD于点E,PF⊥AC于点F,∴∠OEP=∠OFP=90°=∠EOF,△BEP是等腰直角三角形,∴四边形OEPF是矩形,PE=BE,∴PF=OE,∴PE+PF=BE+OE=OB=.故选B.10.C解析:如图,∵∠C=∠B=90°,∠AED=90°,∴∠1=∠2.在△ABE与△ECD中,,∴△ABE≌△ECD(AAS),∴AE=ED,BE=CD=4,∴在直角△ABE中,由勾股定理,得AE2=AB2+BE2=32+42=52.则AE=5.在等腰直角△AED中,AD=AE=5.故选C.11.C解析:根据分析,可得第n行的第一个数是n,所以当a=7时,a、b是第7行的前两个数;因为4﹣2=2,7﹣4=3,11﹣7=4,所以第6行的第2个数是:11+5=16,所以第7行的第2个数是b=16+6=22.故选C.12.A解析:连结AE,OD、OE.∵AB是直径,∴∠AEB=90°,又∵∠BED=120°,∴∠AED=30°,∴∠AOD=2∠AED=60°.∵OA=OD∴△AOD是等边三角形,∴∠OAD=60°,∵点E为BC的中点,∠AEB=90°,∴AB=AC,∴△ABC是等边三角形,边长是4.△EDC是等边三角形,边长是2.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=S△EDC=×22=.故选A.二.13.b(2a﹣b)(2a+b)解析:4a2b﹣b3=b(4a2﹣b2)=b(2a﹣b)(2a+b).14.x解析:原式=÷(+)=÷=•=x.15.10解析:如图,作AD⊥CD于D点.∵∠B=30°,∠ACD=60°,∠ACD=∠B+∠CAB,∴∠CAB=30°.∴BC=AC=10m,在Rt△ACD中,CD=AC•cos60°=10×0.5=5m,∴BD=15.∴在Rt△ABD中,AB=BD÷cos30°=15÷=10m.16.2解析:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.17.5cm 解析:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意,得(100﹣2x)(50﹣2x)=3600,展开,得x2﹣75x+350=0,解得x1=5,x2=70(不合题意,舍去),则铁皮各角应切去边长为5cm的正方形.18.①④解析:①当x=1时图象在x轴下方时,y<0,即a+b+c<0,①正确;②当x=﹣1时图象在x轴上方,y>0,即a﹣b+c>0,②错误;③由抛物线的开口向上知a>0,∵﹣<1,∴2a+b>0,③错误;④∵图象开口向上,∴a>0,∵对称轴在y轴右侧∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,④正确.三.19.解:(1)原式=3﹣(﹣1)×4﹣(﹣1)=3+4﹣+1=8﹣;(2)∵解不等式①,得x<﹣3,解不等式②,得x≥﹣5,∴不等式组的解集为﹣5≤x<﹣3.20.解:(1)调查的总人数是:30÷0.15=200,则b=32÷200=0.16,d=1﹣0.56﹣0.16﹣0.15=0.13.故答案是200,0.13;(2)360°×0.15=54°.则武侠小说对应的圆心角度数是54°.21.解:(1)设康乃馨进货x枝,百合进货y枝,根据题意,得,解得.答:康乃馨进货40枝,百合进货60枝.(2)设乙组每小时售出a枝花,根据题意,得﹣=1解得a=25,经检验:a=25是分式方程的解,2×25=50.答:甲组每小时售出50枝花.22.解:(1)∵一次函数y=2x﹣k与反比例函数y=的图象相交于A和B两点,其中有一个交点A的横坐标为3,∴,解得k=4.∴一次函数的解析式为:y=2x﹣4;反比例函数的关系式为y=.(2)解,得,,∴A(3,2),B(﹣1,﹣6);∴OA2=32+22=13,AB==4,∵△APO∽△AOB,∴=,∴OA2=AP•AB,即13=AP•4,解得AP=,∵点P在直线y=2x﹣4上,∴设P(x,2x﹣4),∴AP=,解得x=3±,∴P点坐标为(3+,2+2)或(3﹣,6﹣2).23.(1)证明:∵∠BAD与∠BCD是同弧所对的圆周角,∴∠BAD=∠BCD,∵AE⊥CD,AM⊥BC,∴∠AMC=∠AEN=90°,∵∠ANE=∠CNM,∴∠BCD=∠BAM,∴∠BAM=BAD,在△ANE与△ADE中,∵,∴△ANE≌△ADE,∴AD=AN;(2)解:∵AB=4,AE⊥CD,∴AE=2,又∵ON=1,∴设NE=x,则OE=x﹣1,NE=ED=x,r=OD=OE+ED=2x﹣1连结AO,则AO=OD=2x﹣1,∵△AOE是直角三角形,AE=2,OE=x﹣1,AO=2x﹣1,∴(2)2+(x﹣1)2=(2x﹣1)2,解得x=2,∴r=2x﹣1=3.24.解:(1)∵y=ax2+bx﹣3过(2,﹣3),A(﹣1,0),∴,解得a=1,b=﹣2,∴抛物线的解析式为:y=x2﹣2x﹣3.(2)如图1,设直线y=kx+1与x轴交于点E,于CD交于点F,A(﹣1,0),B(3,0),E(),F();S四边形ACFE=(CF+AE)•OC=(1);S四边形EFDB=(DF+BE)•OC=(5);即(1)=(5),k=.(3)存在点P.直线y=m与y轴交点为F(0,m),①当DE为腰时,分别过D、E作DP1⊥x 轴于P1,作EP2⊥x轴于P2;如图2,则△DP1E和△DEP2均为等腰直角三角形,又DP1=DE=EP2=OF=﹣m,又AB=x B﹣x A=3+1=4,又△ECD∽△BCA,即,即m=;P1(,0),P2(,0);②当DE为底时,过P3作GP3⊥DE于G,如图3,又DG=GE=GP3=OF=﹣m,由△ECD∽△BCA,,即m=;P3(,0)综上所述,P1(,0),P2(,0),P3(,0).图1 图2 图325.解:(1)AF=BC+FC,证明如下:如图1,过E作EM⊥AF交AF于点M,∵∠BAE=∠FAE,∴BE=ME,在Rt△ABE和Rt△AME中,,∴Rt△ABE≌Rt△AME(HL),∴AM=AB=BC,ME=BE=EC,在Rt△MFE和Rt△CFE中,,∴Rt△MFE≌Rt△CFE(HL),∴MF=FC,∴AF=AM+MF=BC+FC;(2)设FC=x,由(1)可知MF=x,AM=AD=AB=12,则DF=12﹣x,AF=12+x,在Rt△AFD中,由勾股定理,得AD2+DF2=AF2,即122+(12﹣x)2=(12+x)2,解得x=3,即FC=3;(3)如图2,过G作RS∥BC,交AB于点R,交CD于点S,∵G为AE中点,∴R为AB 中点,∴RG=BE=BC,GS=RS﹣RG=BC﹣RG=BC﹣BC=BC,∵AB∥CD,∴===.。

2018年全国初中数学联赛试题B

2018年全国初中数学联赛试题B

试卷编号:19402018年全国初中数学联赛试题B班级:_____学号:_____姓名:_____成绩:_____一、选择题共6小题。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.满足(x2+x−1)x+2=1的整数x的个数为( )(A)1(B)2(C)3(D)42.已知x1,x2,x3(x1<x2<x3)为关于x的方程x3−3x2+(a+2)x−a=0的三个实数根,则4x1−x21+x22+x23=( )(A)5(B)6(C)7(D)83.已知点E,F分别在正方形ABCD的边CD,AD上,CD=4CE,∠EFB=∠FBC,则tan∠ABF=( )(A)12(B)35(C)√22(D)√324.方程√3+√9+x=3√x的实数根的个数为( )(A)0(B)1(C)2(D)35.设a,b,c为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a,b,c)的个数为( )(A)4(B)5(C)6(D)76.已知实数a,b满足a3−3a2+5a=1,b3−3b2+5b=5,则a+b=( )(A)2(B)3(C)4(D)5二、填空题共4小题。

7.已知p,q,r为素数,且pqr整除pq+qr+rp−1,则p+q+r=_____.8.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_____.9.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE=_____.10.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_____.三、解答题共3小题。

解答应写出文字说明、演算步骤或证明过程。

11.若实数a,b,c满足(a+b+c)(1a+b−5c +1b+c−5a+1c+a−5b)=95,求(a+b+c)(1a +1b+1c)的值.12.如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.(1)证明:AD∥BC;(2)设AC与DE交于点P,如果∠ACE=30◦,求DPPE.13.设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.。

初中数学竞赛试题及答案大全

初中数学竞赛试题及答案大全

全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY信利杯”全国初中数学竞赛试题 (17)2004年“TRULY信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

初中数学竞赛模拟试题

初中数学竞赛模拟试题

初中数学竞赛模拟试题文/安振平苟春鹏第一试(共70分)一、选择题(每小题7分,共42分)1.a、b、c、d都是实数.若|a+b|=4,|c+d|=2,且|(a-c)+(b-d)|=(c-a)+(d-b),则a+b+c+d的最大值是().A.6 B.2 C.-2 D.-62.若实数x、y满足x2+y2-xy-y+x<0,则有().A.x2+y2<1 B.x2+y2=1C.x2+y2>1 D.x2+y2≥13.如图1,ABCDE是正五边形,AP、AQ和AR是由A向CD、CB和DE(或延长线)所引的垂线.设O是正五边形的中心,OP=1,则AO+AQ+AR等于().图1A.3 B.1+C.4 D.2+4.已知△ABC的两边长分别为2和4,且有一个内角等于30°,则这个三角形是().A.锐角三角形B.直角三角形C.钝角三角形D.直角三角形或钝角三角形5.正三角形ABC的高等于⊙O的半径,⊙O在AB上滚动,切点为T,⊙O交AC、BC于M、N则().图1A.在0°~30°变化B.在30°~60°变化C.在60°~90°变化D.保持60°不变6.已知实数a、b、c满足a2+ab+ac<0,则关于x的方程ax2+bx+c=0(). A.有两个不同的实根B.有两个相等的实根C.无实数根D.以上都不对二、填空题(每小题7分,共28分)1.设x、y、z为3个非零实数,则(x/|x|)+(|y|/y)+(z/|z|)+(xy/|xy|)+(|yz|/yz)+(zx/|zx|)+(|xyz|/xyz)=_______.2.折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与对角线BD重合,得折痕DG(图3).若AB=2,BC=1,则AG=_________.图33.某种商品,当出售价格是15元时卖出500个,价格每上涨1元,卖出的个数就要减少20个,要使售货金额取得最大值,价格应定为__________元.4.在△ABC中,∠ACB=75°,P点是BC边上的一点,且PC=2BP,∠APC=60°,则∠ABC=_________.第二试(共70分)一、(本题满分20分)如,OM是⊙O的半径,AB切⊙O于M,连结OA、OB交⊙O于C、D两点,且AC=BD,求证:AM=BM.图4二、(本题满分25分)解方程组=10,①=10.② 三、(本题满分25分)设x、y、z为任意实数,求证:≥.参考答案第一试一、选择题1.选C.由|a+b|=4,得a+b=±4,由|c+d|=2,得c+d=±2.∴|(a-c)+(b-d)|=(c-a)+(d-b),即|(a+b)-(c+d)|=(c+d)-(a+b),∴c+d>a+b,则c+d必等于±2,a+b必等于-4,∴a+b+c+d等于-2或-6.故a+b+c+d的最大值为-2.2.选A.对已知不等式两边乘以2,得0>2x2+2y2-2xy-2y+2x=(x2+y2-1)+[x2+y2+12-2xy-2y+2x]=(x2+y2-1)+(x-y+1)2,即x2+y2-1<-(x-y+1)2≤0.∴x2+y2<1.3.选C.∵S△ACD+S△ABC+S△ADE=S正五边形ABCDE=5S△COD,即(1/2)CD²AP+(1/2)BC²AQ+(1/2)ED²AR=5²(1/2)CD²OP.由CD=BC=DE,有AP+AQ+AR=5OP.又OP=1,AP=AO+OP,∴AO+1+AR+AQ=5,即AO+AQ+AR=4.4.选D.不妨设AC=2,BC=4,此题没有明确哪一个内角等于30°,因此三个内角都有可能等于30°,所以分以下三种情况:(第4题)①如图(1),当∠A=30°时,由BC>AC得∠B<∠A,∴∠B<30°,而且∠C>120°,即△ABC是钝角三角形;②如图(2),当∠B=30°时,过点C作CA⊥AB,垂足为A′,在Rt△A′BC中,∵∠B=30°,∴BC=2A′C,∵BC=4,AC=2,即BC=2AC,∴AC=A′C,即A′与A重合.故∠A=90°,∴△ABC是直角三角形.③如图(3),当∠C=30°时,∵AB>BC-AC,BC-AC=2=AC,∴AB>AC,∴∠B<∠C,于是有∠B<30°,∴∠A>120°,即△ABC是钝角三角形. 综合①、②、③得这个三角形是直角三角形或钝角三角形.5.选D.延长BC交⊙O于G,过C、O作⊙O的直径EF交⊙O于E、F,设CA交⊙O于M,连MG交EF于P(参看右图).(第5题)由已知得EF∥AB,∠ECM=∠A=60°,∠ECG=∠B=60°,∴∠ECM=∠ECG=60°.由于EF是⊙O的直径,由轴对称性质得EG=EM,GM⊥CE.从而∠BGM=30°,∴=60°.6.选A.Δ=b2-4ac,当c=0时,Δ>0显然成立.下设c≠0,将已知变形为a(a+b+c)<0,即说明a与a+b+c异号.构造函数f(x)=cx2+bx+a.∵f(0)=a,f(1)=a+b+c,∴f(x)的图象(抛物线)与x轴有两个交点,故判别式Δ=b2-4ac>0.综上知,b2>4ac.二、填空题1.填-1或7.设所求代数式的值为S,则S=(x/|x|)+(|y|/y)+(z/|z|)+(x/|x|)²(y/|y|)+(|y|/y)²(|z|/z)+(z/|z|)²(x/|x|)+(|x|/x)²(|y|/y)²(|z|/z)=(x/|x|)+(y/|y|)+(z/|z|)+(x/|x|)²(y/|y|)+(y/|y|)²(z/|z|)+(z/|z|)²(x/|x|)+(x/|x|)²(y/|y|)²(z/|z|)=((x/|x|)+1)((y/|y|)+1)((z/|z|)+1)-1 (∵(a/|a|)=|a|/a).因为对任意实数a≠0,有a/|a|1 (a>0),-1 (a<0),所以当x、y、z中至少有一个为负数时,S的值是-1;当x、y、z均为正数时,S的值是7. 2.填(+1)/2.(第2题)如图,设折叠后点A落在BD上A′点的位置,并设AG=x,则A′G=x,DA′=DA=BC=1,GB=2-x,且GA′⊥BD.∵BD==,∴A′B=-1.在Rt△BGA′中,A′G2+A′B2=GB2.解得AG=x=(+1)/2.3.填8000.设每个提价x元,总金额为y,则有y=500(15+x)-20x(15+x)=-20x2+200x+7500=-20(x-5)2+8000.显然当x=5时,y有最大值8000.因此要使销售金额最大,售出价格应定为15+5=20元,此时最大金额为8000元.4.填45°.(第4题)如图,过点C作CQ⊥AP,连结BQ.由∠APC=60°,∠ACB=75°,得∠CAQ=45°.∵AQ=CQ,又∠PCQ=30°,∴PQ=(1/2)PC=BP.则∠QBP=∠PQB=∠PCQ=30°.∴BQ=AQ=CQ,∠ABQ=∠BAQ=15°,则∠ABC=∠ABQ+∠QBP=15°+30°=45°.第二试一、如图,设AM=x,BM=y,OM=r,延长AO交⊙O于E,延长BO交⊙O于F.由切割线定理,得AM2=AC²AE,BM2=BD²BF,即(第一题)x2=AC(AO+OE)=AC(+OE)=AC(+r),①y2=BD(BO+OF)=BD(+OF2)=BD(+r).② ∵AC=BD,∴由①÷②,得x2/y2=(+r)/(+r),即x2-y2=(y2-x2)r.两边平方,整理得x2+2r2+y2=2.将上式两边平方,整理得(x2-y2)2=0.∴x2-y2=0,x=y,故AM=BM.二、由①得-5=-+5,分子有理化,得16(x-1)/(+5)=-9(y-1)/(+5).③对①-②的变形式-=-,作分子有理化,得(x-1)/(+)=(y-1)/(+).④ 由③³④,得16(x-1)2/(+5)(+)=-9(y-1)2/(+5)(+).⑤注意到⑤的左端非负,而右端非正,故有x-1=0,且y-1=0,∴x=y=1.三、在平面上建立坐标系xOy,并取三个点A(x,0),B(-y/2,-(/2)y),C(-z/2,(/2)z),则|AB|==,|AC|==,|BC|==.∵|AB|+|AC|≥|BC|,∴≥.。

2018年上半年全国统考教师资格考试初中数学模拟卷一-答案版

2018年上半年中小学教师资格考试模拟卷数学学科知识与教学能力(初级中学)一、单项选择题(本大题共8小题,每小题5分,共40分)1.【答案】A .解析:因为()()f x f x -=-,所以.2.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=,选A . 3.【答案】B .解析:直线383311x y z ---==-可以化为一般式:36z x -=,直线376324x y z ++-==-可以化为一般式:346z x +=,联 立两个方程,解得12565x z ⎧=⎪⎪⎨⎪=⎪⎩,说明两条直线相交. 4.【答案】A .解析:在极坐标系中,闭区域D 可表示为0,02a ρθπ≤≤≤≤,所以()()222222222200000111122a a x y a a D D edxdy e d d e d d e d e d e πππρρρρρθρρθθθπ-------⎡⎤⎡⎤===-=-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰,所以答案选A .5.【答案】C .解析:级数缺少奇次幂的项,定理2不能直接应用.我们根据比值审敛法来求收敛半径:()()()()()21222221!1!lim 42!!n n nn x n x n x n +→∞+⎡⎤⎣⎦+⎡⎤⎣⎦=,当2141,2x x <<即时级数收敛;当2141,2x x >>即时级数发散.所以收敛半径12R =. 6.【答案】B .解析:A .由于不知道P (A )或P (B )是否为零,因此选项A 不一定成立. B .()()()()()()P A B C P AC P BC P ABC P AC P BC -=⎣+=++⎡⎤⎦,()()()()()|||P A B C P A B C P C A P B C P C ⎡⎤⎣⎦+⎡⎤⎣⎦++==,选项B 正确.C .()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ---+++=++,由于不能确定 ()()()P AB P BC P AC 、、的概率是否全为零,因此选项C 不一定成立.D .()()()()()=P A B C P AC BC P AC P BC P ABC ⎡⎤-⎣=++⎦+,而()()()P AB P ABC P ABC =-,其值是否为零不能判断,因此选项D 不一定成立.7.【答案】D .解析:本题在结果过程中采用将原函数求导,并根据其导函数的取值范围确定原函数的单调性,再通过单调性判别最大值,分别体现了方程与函数、特殊与一般以及化归与转化的思想,没有体现有限与无限的思想.8.【答案】B .解析:概念的外延是概念所反映的本质属性的对象的总和,故选B .二、简答题(本大题共5小题,每小题7分,共35分)9.【答案】51λμ=⎧⎨=⎩. 解析:121112110303444451080054A λλμμλ⎡⎤⎡⎤--⎢⎥⎢⎥++----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦::, 因为()2R A =,所以505,101λλμμ-==⎧⎧⎨⎨-==⎩⎩即. 10.【答案】(1)53120;(2)2053. 解析:设i A 表示“取出第i 个箱子”, 1,2,3i =,B 表示“取出白球”. 于是1231()()()3P A P A P A ===, 11(|)5P B A =,23(|)6P B A =,15(|)8P B A =. (1)由全概率公式得3153()(|)()120i i i P B P B A P A ===∑; (2)由贝叶斯公式得2(|)()20(|)()53i i P B A P A P A B P B ==. 11.【答案】见解析. 解析:设()()ln 1f t t =+,显然()f t 在区间[]0,x 上满足拉格朗日中值定理的条件,根据定理,应有()()()()00,0f x f f x x ξξ'-=-<<;由于()()100,1f f t t'==+,因此上式即为()ln 11x x ξ+=+,又由0x ξ<<,有()()ln 101x x x x x <+<>+,由此得证.12.【参考答案】兴趣是一个人积极探究某种事物或进行活动的意识倾向.学习兴趣是学生对学习活动或学习对象的一种力求认识或趋近的意识倾向.兴趣是入门的向导,是感情的体现,能促使动机的产生.学习兴趣是一种学习动机,是学习积极性中很现实、很活跃的心理成分.总是积极主动,心情愉快的进行学习,不会产生负担.在数学教学之初,或学习新课题时,教师应精心设计教学学习情境,将学生置于该情境之中,激发学习兴趣,千方百计的诱发学生的求知欲,使学生有一种力求认识世界,渴望获得知识,不断追求真理的欲望,产生学习的自觉性,迸发出极大的学习热情.13.【参考答案】反思是指教师以自己的教育教学实践为思考对象,对自己的教育行为、决策及教学效果进行认真的审视和分析,不断提高自己教学水平和专业素养的过程.反思不仅仅是头脑内部的“想一想”,而是一个不断实践、学习、研究的过程,是自己与自己、自己与他人更深层次的对话.反思是教师认识自己的重要途径,又是改变自己的前提,教学是一门遗憾的艺术,即使是成功的课堂教学也难免有疏漏失误之处,课后要及时进行回顾、梳理,并对其作深刻反思、探究和认真的剖析,为教师再教积累理论和实践经验.课后反思还要对自己的教学行为是否会对学生造成伤害进行反思.有时,教师无意识的行为会对学生造成终身难以弥补的伤害,所以教师在与学生沟通时要时时注意自己的言行.三、解答题(本大题1小题,10分)14.【答案】见解析.解析:这里的系数矩阵A 是方阵,A 中不含参数,故对增广矩阵作初等行变换为宜,求解如下:()()()222121211212112121121211203322031112112112033000B λλλλλλλλλλλλ⎡⎤-⎢⎥⎡⎤⎡⎤⎡⎤----⎢⎥-⎢⎥⎢⎥⎢⎥=-----+⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+----⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦:::, 因为()2R A =,故当()2R B =时,即当12λλ==-或时,方程组有解;当1λ=时,012111110000111100000000B ⎡⎤⎡⎤--⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::,则有13231x x x x =+⎧⎨=⎩,即()123111010x x c c R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 当2λ=-时,012121120011211200000000B ⎡⎤⎡⎤---⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::,则有132322x x x x =+⎧⎨=+⎩,即()123121210x x c c R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 四、论述题(本大题1小题,15分)15.【参考答案】解析几何是这样一个数学学科,在采用坐标法的同时,运用代数方法来研究几何对象.(1)解析几何使得数学的研究方向发生了一次重大的转折:以几何为主导的数学转变为宜代数和分析为主导的数学;(2)解析几何使得以常量为主的数学转变为以变量为主的数学为微积分到的诞生奠定了基础;(3)解析几何使代数与几何融为一体,实现了几何图形的数字化,是数学化时代的先声;(4)代数的几何化和几何的代数化,使得人们摆脱了现实的束缚,它带来了认识新空间的需要,帮助人们从现实空间进入虚拟空间,从三维空间进入更高维的空间.五、案例分析题(本大题1小题,20分)16.【参考答案】(1)甲教师情境创设的优点在于运用学生熟悉的物理背景来进行情境导入,降低了认知的难度.缺点在于看似联系实际,其实脱离学生的现有认知水平,使学生的认知起点与数学逻辑起点失调,无法引起学生的思维共鸣,使问题情境中隐含的数学问题与数学方法不能与教学目标相衔接,不能形成学生原有认知水平及生活经验的正迁移.(2)乙教师的教学过程存在优点也存在缺陷.优点是一开始复习了上节内容,进行了新旧知识间的过渡,降低了学生对新知识的认知难度;采取了直接导入的方法,开门见山的介绍本节课题,引起学生的注意,使学生迅速进入学习状态,对本节内容的基本轮廓有了大致了解;整个教学过程条理清楚、重难点突出;最后进行巩固练习,加深了学生对新知识的识记和掌握.缺点在于没有进行合适的情境创设,将知识全盘塞给学生,剥夺了学生研究问题的策略,无法激发学生学习新知识的兴趣,学生只能机械地配合老师的教学,整个过程中,缺乏师生间的互动,忽略了学生的主体地位.(3)丙教师的教学过程存在优点也存在缺陷.优点是充分发挥了学生的主体地位,开放性问题激发了学生自主探究的兴趣,有利于培养他们的独立思考能力和创新意识.缺点在于首先教师没有给出学生自主探究的准备时间,没有提供丰富的自学素材;另外教师导入的开放式问题并不能充分突出代数式这节的核心——“数”与“式”的区别;在探究过程中,教师没有科学合理地发挥自己的主导作用,小结也显得过于潦草和模糊.六、教学设计题(本大题1小题,30分)17.【参考答案】(1)一次函数属于《数学课程标准》中“数与代数”领域,是最基本的、最简单的函数.教材在前面首先安排了函数及正比例函数的内容,讨论了正比例函数的定义、图象、性质等,接着本节学习一次函数的定义、图象、性质和函数解析式,它既是对函数概念的进一步理解,又是特殊的一次函数——正比例函数到一般的一次函数的拓展,它还是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用.它也是将来学习二次函数,反比例函数的基础.本节教学内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材.(2)教学目标:知识与技能目标:能通过实例观察、比较、探索、归纳得出一次函数概念.能根据实际条件,分清两个变量间的关系,列出一次函数解析式.过程与方法目标:在经历一次函数概念的形成过程中,体会数学建模和特殊到一般的思想及类比思想,提高发现问题、解决问题的能力.情感态度与价值观目标:体验函数与人类生活的密切联系,增强对函数学习的求知欲,体验数学充满着探索性和创造性,增强学习数学的兴趣.教学重点、难点:教学重点:一次函数的概念,能利用一次函数解决简单的实际问题.教学难点:能根据具体条件写出一次函数解析式.(3)引例:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm时,他们所在的位置的气温是y℃,试写出y与x之间的关系式.引导学生得出正确结果:y=-6x+5追问:y是x的函数吗?引导学生回顾函数的定义,给出答案.提示并提问:我们看到实际问题中,两个变量之间的数量关系不总是k倍的关系,还有如引例中存在的数量关系.出示下列例题,让同学们自行写出其中变量对应的函数关系.①有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.②一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.③某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1元/分收取).④把一个长10cm,宽5cm的矩形的长减少x cm,宽不变,矩形面积y(cm2)随x的值而变化.引导学生得出正确结果:①c=7t-35;②G=h-105;③y=0.01x+22;④y=-5x+50.提问并进行小组讨论:这四个关系式显然都是函数,这些函数有什么共同的特点?若把它们叫做一次函数,你能类比正比例函数的定义给出一次函数的定义吗?由此引出一次函数的概念并总结:一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.。

苏州市高新区2018届初中毕业暨升学考试数学模拟试卷(含答案)

2018届初中毕业暨升学考试模拟试卷数 学本试卷由选择题、填空题和解答题三大题组成.共28小题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号、考试号填涂在答题卡相应的位置上;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔填涂在答题卡相应的位置上. 1.A.3±B.3C.2.下列计算正确的是A.633x x x ÷=B.339x x x =g C.729()a a = D.22264y y -=-3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为 A.60.100810⨯ B.61.00810⨯ C.51.00810⨯ D.410.0810⨯4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是A. 85,90B. 85,87.5C. 90,85D. 95,90 5.一个多边形的每一个内角均为108º,那么这个多边形是A.七边形B.六边形C.五边形D.四边形6.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,己知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为A.10033100x y x y +=⎧⎨+=⎩B.1003100x y x y +=⎧⎨+=⎩C.1003100x y x y +=⎧⎨+=⎩D.100131003x y x y +=⎧⎪⎨+=⎪⎩7.己知圆锥的底面半径为4cm ,母线长为5cm ,则这个圆锥的侧面积是 A. 20πcm 2 B. 20cm 2 C.40πcm 2 D. 40cm 28.如图,在矩形ABCD 中,2AB =,3BC =.若E 是边CD 的中点,连接AE ,过点B 作BF AE ⊥于点F ,则BF 的长为9.己知抛物线2y ax bx c =++(0)b a >>与x 轴最多有一个交点,现有以下三个结论: ①该抛物线的对称轴在y 轴右侧;②关于x 的方程210ax bx c +++=无实数根;③420a b c ++>;其中,正确结论的个数为A. 0个B. 1个C.2个D.3个10.如图,ABC ∆中,90BAC ∠=︒,5AB =,12AC =,点D 是BC 的中点,将ABD ∆ 沿AD 翻折得到AED ∆,连CE ,则线段CE 的长等于A.B. 9C. 12013D. 11913二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填写在答题卡相应位置上. 1l.23-的相反数是 .12.函数y =中自变量x 的取值范围是 .13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .14.如图,点A ,B ,C 在⊙O 上,72AOB ∠=︒,则ACB ∠等于 .15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数ky x=的图像上,则k 的值为 .16.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则sin BOD ∠的值等于 .17.如图①,四边形ABCD 中,//AB CD ,90ADC ∠=︒,P 从A 点出发,以每秒2个单位长度的速度,按A B C D →→→的顺序在边上匀速运动,设P 点的运动时间为t 秒,PAD ∆的面积为S ,S 关于t 的函数图像如图②所示,当P 运动到BC 中点时,PAD ∆的面积为.18.如图,在ABC ∆中,90ACB ∠=︒,12BC =,9AC =,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则23A BD +的最小值是 . 三、解答题:本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算:011cos60(2()3π-︒---+20.(本题满分5分)解不等式组:3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩21.(本题满分6分)先化简,再求值:2211()1121x xx x x x -+÷+--+,其中1x =. 22.(本题满分6分)甲、乙两公司为“见义勇为基金会”各捐款30000元.己知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 23.(本题满分8分)如图①,在ABC ∆和EDC ∆中,AC CE CB CD ===,90ACB DCE ∠=∠=︒,AB 与CE 交于F ,ED 与AB 、BC ,分别交于M 、H . (1)求证:CF CH =; (2)如图②,ABC ∆不动,将EDC ∆绕点C 旋转到45BCE ∠=︒时,求证: 四边形ACDM 是菱形.24.(本题满分8分)初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: (1)m = ,n = ;(2)扇形统计图中机器人项目所对应扇形的圆心角度数为 º;(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.25.(本题满分8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB 、CD 、EF 表示支撑角钢,太阳能电池板紧贴在支撑角钢AB 上且长度均为300 cm ,AB的倾斜角为30º,50BE CA ==cm ,支撑角钢CD 、EF 与地面接触点分别为D 、F ,CD 垂直于地面,FE AB ⊥于点E .点A 到地面的垂直距离为50 cm ,求支撑角钢CD 和EF 的长度各是多少.(结果保留根号)26.(本题满分10分)如图,己知一次函数1y kx b =+的图像与反比例函数24y x=的图像交于点(4,)A m -,且与y 轴交于点B ,第一象限内点C 在反比例函数24y x=的图像上,且以点C 为圆心的圆与x 轴,y 轴分别相切于点D ,B . (1)求m 的值;(2)求一次函数的表达式;(3)根据图像,写出当120y y <<时,x 的取值范围.27.(本题满分10分)如图①,AB 是⊙O 的直径,»»AC BC =,连接AC . (1)求证: 45CAB ∠=︒;(2)如图②,直线l 经过点C ,在直线l 上取一点D ,使BD AB =,BD 与AC 相交于点E ,连接AD ,且AD AE =. ①求证:直线l 是⊙O 的切线;②求CDEB的值.28.(本题满分10分)如图①,己知抛物线29y ax a =--与坐标轴交于A ,B ,C 三点,其中(0,3)C ,BAC ∠的平分线AD 交BC 于点D ,交第一象限的抛物线于点E . (1)求a 的值;(2)如图①,抛物线上两点C 、E 间的一动点F 关于AD 的对称点'F 恰好落在线段BD上,求F 点坐标;(3)若动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN ∆的面积是APM ∆面积的2倍,且线段NQ 的长度最小?如果存在,求出点Q 的坐标:如果不存在,说明理由.11。

八年级数学竞赛模拟试题

八年级数学竞赛模拟试题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果一个数的平方等于16,那么这个数是多少?A. 4B. ±4C. ±2D. 163. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 84. 以下哪个是二次方程的解?A. x = 2B. x = 3C. x = 4D. x = 55. 一个数的立方是-8,这个数是多少?A. -2B. 2C. -8D. 86. 一个数的绝对值是5,这个数可以是?A. 5B. -5C. 5或-5D. 都不是7. 一个圆的直径是14厘米,那么它的半径是多少?A. 7厘米B. 14厘米C. 21厘米D. 28厘米8. 如果一个数的倒数是1/3,那么这个数是多少?A. 3B. 1/3C. 1/9D. 99. 一个数的平方根是4,那么这个数是多少?A. 16B. 8C. -16D. -810. 一个数的立方根是2,那么这个数是多少?A. 8B. 4C. 2D. 6二、填空题(每题3分,共15分)11. 如果一个数的平方是25,那么这个数是_________。

12. 一个数的立方是27,那么这个数是_________。

13. 一个圆的周长是2πr,其中π是圆周率,r是半径,如果一个圆的周长是12π,那么它的半径是_________。

14. 如果一个直角三角形的斜边长度是5,一个直角边是3,那么另一个直角边的长度是_________。

15. 如果一个数的绝对值是7,那么这个数可以是_________。

三、简答题(每题5分,共20分)16. 解释什么是质数,并给出5个连续的质数。

17. 解释什么是有理数和无理数,并各给出一个例子。

18. 给出一个二次方程,并解出它的根。

19. 解释什么是勾股定理,并用一个具体的例子来说明。

四、计算题(每题5分,共25分)20. 计算下列表达式的值:\( (-3)^2 + 4 \times (-2) - 5 \)21. 计算下列方程的解:\( x^2 - 4x + 4 = 0 \)22. 计算下列方程的解:\( 2x^2 + 3x - 2 = 0 \)23. 计算下列方程的解:\( 3x^2 - 6x + 2 = 0 \)五、解答题(每题10分,共10分)24. 一个农场主想要围成一个正方形的围栏,他有100米的围栏材料。

初中数学竞赛试题及答案大全

全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年初中数学竞赛模拟试题(1)
一、选择题(每小题6分,共30分)
1.方程1)1(32xxx的所有整数解的个数是( )
(A)2个 (B)3个 (C)4个 (D)5个
2.设△ABC的面积为1,D是边AB上一点,且31ABAD.若在边AC上取一点E,

使四边形DECB的面积为43,则EACE的值为( )
(A)21 (B)31 (C)41 (D)51
3.如图所示,半圆O的直径在梯形ABCD的底
边AB上,且与其余三边BC,CD,DA相切,若BC
=2,DA=3,则AB的长( )
(A)等于4 (B)等于5
(C)等于6 (D)不能确定 (第3题)
4.在直角坐标系中,纵、横坐标都是整数的点,称为整点。设k为整数,当直线2xy
与直线4kxy的交点为整点时,k的值可以取( )个
(A)8个 (B)9个 (C)7个 (D)6个
5.世界杯足球赛小组赛,每个小组4个队进行单循环比赛,每场比赛胜队得3分,败队
得0分,平局时两队各得1分.小组赛完后,总积分最高的2个队出线进入下轮比赛.如
果总积分相同,还有按净胜球数排序.一个队要保证出线,这个队至少要积( )
分.
(A)5 (B)6 (C)7 (D)8
二、填空题(每小题6分,共30分)
6.当x分别等于20051,20041,20031,20021,20011,20001,2000,2001,2002,

2003,2004,2005
时,计算代数式221xx的值,将所得的结果相加,其和等

于 .

·
D
C

O
B
A
7.关于x的不等式xba)2(>ba2的解是x<25,则关于x的不等式bax<
0的解为 .
8.方程02qpxx的两根都是非零整数,
且198qp,则p= .
9.如图所示,四边形ADEF为正方形,ABCD
为等腰直角三角形,D在BC边上,△ABC的面积
等于98,BD∶DC=2∶5.则正方形ADEF的面积
等于 . (第9题)
10.设有n个数1x,2x,…,nx,它们每个数的值只能取0,1,-2三个数中的一个,
且21xx…5nx,2221xx…192nx,则5251xx…5nx的值是

三、解答题(每小题15分,共60分)
11.如图,凸五边形ABCDE中,已知S△ABC=1,且EC∥AB,AD∥BC,BE∥CD,
CA∥DE,DB∥EA.试求五边形ABCDE的面积.

A
B
F
C
E
D

D
AB
CE
F
12.在正实数范围内,只存在一个数是关于x的方程kxxkxx3132的解,求
实数k的取值范围.

13.如图,一次函数的图象过点P(2,3),交x轴的正半轴与A,交y轴的正半轴与B,
求△AOB面积的最小值.

O
B

A

y

x
P
14.预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每
个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲
商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么甲、乙两商品支
付的总金额是1563.5元.
(1)求x、y的关系式;
(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于
210,求x、y的值.
参考答案
一、选择题
1.C 2.B 3.B 4.A 5.C
二、填空题
6.6 7.8x 8.-202 9.116 10.-125
三、解答题
11.∵ BE∥CD,CA∥DE,DB∥EA,EC∥AB,AD∥BC,
∴ S△BCD=S△CDE=S△DEA=S△EAB=S△ACB=S△ACF=1.
设S△AEF=x,则S△DEF=x1,
又△AEF的边AF与△DEF的边DF上的高相等,
所以,xxAFDE1,而△DEF∽△ACF,则有

xxxAFDFSSACFDEF1
)1(
2
2

2

整理解得 215x.
故SABCDE=3S△ABC+S△AEF=255.
12.原方程可化为0)3(322kxx,①
(1)当△=0时,833k,4321xx满足条件;
(2)若1x是方程①的根,得0)3(13122k,4k.此时方程①的
另一个根为21,故原方程也只有一根21x;
(3)当方程①有异号实根时,02321kxx,得3k,此时原方程也只有
一个正实数根;
(4)当方程①有一个根为0时,3k,另一个根为23x,此时原方程也只有一
个正实根。
综上所述,满足条件的k的取值范围是833k或4k或3k.
13.解:设一次函数解析式为ykxb,则32kb,得32bk,令0y得
bxk,则OA=b
k

令0x得yb,则OA=b.

2
2
2

1()21(32)214129213[(2)24]212.AOBb
Sbkkkkkkkk










所以,三角形AOB面积的最小值为12.
14.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是

1500byax
, ①

由甲商品单价上涨1. 5元、乙商品单价上涨1元,并且甲商品减少10个的情形,得
1529)1()10)(5.1(ybxa
.②

再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形,

5.1563)1()5)(1(ybxa
, ③

由①、②、③得




.5.685,44105.1ayx
ayx

④-⑤×2并化简,得
1862yx

(2)依题意,有205<yx2<210及1862yx,54<y<3255,



由y是整数,得55y,从而得76x.
答:(1)x、y的关系1862yx;
(2)预计购买甲商品76个,乙商品55个.

相关文档
最新文档