贝雷梁支架计算书
贝雷门架的设计及计算书

附件2:贝雷门架的设计及计算书一跨门洞贝雷梁按9米长计算,按简支梁布设。
门洞纵向分配梁采用1.7m高贝雷梁,贝雷梁规格为170 cm×300 cm×18cm,腹板下面用45花窗将3个贝雷梁连成一组,其余部分每2个用90花窗连成一组。
每组贝雷片对应端头采用贝雷框进行连接。
贝雷梁上面每90cm 铺设工字钢,工字钢上搭设支架,支架上搭设方木,方木上直接铺设箱梁底模。
数据采集:312型贝雷梁:单排单层加强型①弯曲应力:[δϖ]=245 Mpa.②桁片最大弯矩:[Mmax]=1687.5 KN.m.③桁片最大剪力:[Qmax]=245 KN.④截面抵弯矩:[Wx]=7699 cm3⑤截面惯性矩:[ Ix]=577434 cm4.Q235钢材①轴向应力:[δ]=245 Mpa.②弯曲应力:[δϖ]= 181 Mpa.③弹性模量:[E]=2.1×105 Mpa.④挠度:[f]=l/400.6.1.1、的混凝土重左幅5900 KN,右幅4500KN。
6.1.2、模板重以混凝土自重的5%计左幅295KN,右幅225KN6.1.3、上述荷载合计G左=6195KN,G右=4725KN均布荷载线处最大荷载在腹板处:q=(1.7×1.2×12×2.5+1.7×1.2×12×2.5×0.05)÷12×10=53.55KN/m6.1.4、弯矩检算M=ql²/8 =53.55×12²/8=963.9KN*m需要贝雷梁片数n=963.9/1687.5=0.57片,下面配置3片,满足要求。
6.1.5、挠度验算【f】=L∕400=30mmf=5qL4∕384EI=5×53.55×120004÷(384×2.1×105×577434×104)=12.48mm需要贝雷梁片数n=12.48/30=0.42片,下面配置3片,满足要求。
贝雷梁计算书

跨彭高河立交桥双层贝雷梁计算书中南大学高速铁路建造技术国家工程实验室二0一^年七月二十日目录1.1...................................................................................................................... 计算依据...................................................................1.2...................................................................................................................... 搭设方案...................................................................、贝雷梁设计验算...........................................................2.1.荷载计算 (4)2.2.贝雷梁验算 (4)方木验算 (4)2.2.2方木下工字钢验算 (5)2.2.3翼缘下部贝雷梁验算 (6)2.2.4腹板、底板下贝雷梁验算 (7)2.3.迈达斯建模验算 (8)2.4.贝雷梁下部型钢验算 (9)2.5.钢管立柱验算 (10)、贝雷梁设计方案1.1.计算依据(1)设计图纸及相关详勘报告;(2)《贝雷梁设计参数》;(3)《装配式公路钢桥多用途使用手册》;(4)《钢结构设计规范》(GB50017-2003);(5)《铁路桥涵设计规范》;12搭设方案图1.1箱梁截面(单位mm图1.2贝雷梁横向布置图(单位m)表1.1贝雷梁参数表1.2工程数量表跨彭高河桥截面现浇箱梁,箱梁截面如图 1.1。
铁路桥32m预应力混凝土箱梁贝雷梁支架计算书

铁路桥32m预应力混凝土箱梁贝雷梁支架检算书Xxx交通大学工程检测有限公司2017年4月项目名称:铁路桥32m预应力混凝土箱梁贝雷梁钢管支架检算计算:复核:审核:检测单位:xxx交通大学工程检测有限公司委托单位:2017年4月25日32m预应力混凝土箱梁贝雷梁钢管支架检算书目录1计算依据及计算方式........................................................................................................ - 1 -1.1计算依据 . (1)1.2计算方式 (1)2工程概况............................................................................................................................ - 1 -3支架布设............................................................................................................................ - 3 -4荷载计算............................................................................................................................ - 3 -4.1腹板部位荷载计算 (4)4.2底板部位荷载计算 (5)4.3翼缘板部位荷载计算 (6)5方木纵梁检算.................................................................................................................... - 7 -6 I10工字钢横向分配梁检算 ............................................................................................. - 8 -6.1 腹板处分配梁检算................................................................................................. - 8 -6.2 底板处分配梁检算................................................................................................. - 9 -7 贝雷梁检算..................................................................................................................... - 10 -7.1计算说明 .. (10)7.2材料力学特性 (10)7.3贝雷梁检算 (11)7.3.1腹板处贝雷梁检算 (11)7.3.2底板处贝雷梁检算 (12)7.3.3翼缘板处贝雷梁检算 (14)8 双拼I45A工字钢横梁检算 .......................................................................................... - 14 -9 Φ600×8钢管柱检算 ....................................................................................................... - 16 -10基础及地基承载力检算................................................................................................ - 17 -10.1基础承载力检算 (17)10.2地基承载力检算 (18)11建议 ................................................................................................................................ - 18 -1计算依据及计算方式1.1计算依据1、《建筑五金实用手册》;2、《路桥施工计算手册》;3、《钢管结构技术规程》(CECS 280-2010);4、《门式刚架轻型房屋钢结构技术规程》(CECS 102-2012版);5、《公路桥涵施工技术规范》(JTGT F50-2011);6、《钢管混凝土结构设计与施工规范》(CECS 28-2012);7、《建筑地基处理技术规范》(JGJ 79-2012);8、《混凝土结构设计规范》(GB50010-2010);9、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2015);10、《铁路桥涵混凝土结构设计规范》(TB 10092-2017);11、《铁路桥涵地基和基础设计规范》(TB 10093-2017) ;12、《铁路桥涵设计规范》(TB 10002-2017);13、《客运专线铁路桥涵工程施工技术指南》(TZ 213-2005);14、《钢结构设计规范》(GB50017-2003);15、《建筑施工碗扣式脚手架安全技术规范》(JGJ+166-2008);16、《建筑施工临时支撑结构技术规范》(JGJ300-2013);17、《钢筋锚固板应用技术规程》(JGJ256-2011);18、银西施桥参27-1-32m现浇简支梁施工设计图纸。
连续梁贝雷架及门洞计算书

中跨贝雷梁及碗扣架计算一、荷载计算1、荷载计算概述连续梁结构形式为40+60+40m现浇连续梁。
现浇支架结构拟采用钢管做墩、上布设贝雷梁,贝雷梁上布设碗扣钢管支架。
该桥中跨在支架布置时贝雷梁单跨跨度最大,因此,该桥支架计算以中跨为对象。
贝雷梁所承受荷载为梁体重量和碗扣钢管支架重量两部分。
考虑到梁体沿桥纵向横截面变化、支架钢管间距变化等原因,为方便计算,现沿桥梁中跨纵向将荷载分为A~H区(1/2跨),横向将荷载分为1~5区,如图1、2、3所示。
12345图1 荷载纵向分区示意图(单位:cm) 图2 荷载横向分区示意图(单位:cm)图3 荷载横、纵向分区编号示意图(单位:cm)2、现以B1区为例,对其进行荷载计算:(1)梁体自重为简化计算,在该区内忽略梁体沿纵桥向横截面变化,梁体横截面按照该段内最大C-C 截面进行计算,这样计算的结果比实际结构的重量要大,肯定是偏于安全的C-C截面1区域面积:S= 0.68 m2;此区域梁体纵向长度为5.0m,横向长度为1.95m;混凝土容重26kN/m3。
故B1区域总荷载为:F梁=0.68×5.00×26kN=88.4kN此区域内沿梁纵向支架立杆共分为8排,故将B1区域荷载纵向分为8排,每排荷载:Fˊ =88.4/8=11.05kN。
因加载时为线荷载,转化为线荷载为:q1=11.05kN/1.95=5.67kN/m(2)支架重量B1区域内,取支架立杆高度均为5.00米,立杆根数:n=3×8=24根则B1区域内立杆总重量:S钢管= 489.055mm2F立杆=78.5kN/m3×489.055mm2×10-6×5m×24=4.61 kNB1区域内,3层支架横杆总长度为:(1.95×8+3×5)×3=91.8m则B1区域内横杆总重量:F横杆=78.5kN/m3×489.055mm2×10-6×91.8m=3.52kN故B1区域支架总荷载为:F支架= F立杆+F横杆=4.61 +3.52=8.13 kN同上,将B1区域荷载纵向分为8排,每排荷载:Fˊ =8.13/8=1.02kN因加载时为线荷载,转化为线荷载为:q2=1.02kN/1.95=0.52kN/m(3)荷载组合:考虑模板、施工机具和人员重量,因此梁体自重荷载分项系数取1.3,碗扣支架自重荷载分项系数取1.4,故在B1区域内,荷载纵向分为8排,每排荷载q=1.3×5.67+1.4×0.52=8.10kN/m。
贝雷片计算书

大岗沥大桥L2、L4联支架跨水中段支撑体系施工计算一、工程概况大岗沥大桥8#~9#墩、10#~11#墩桥跨部分位于河道内,桥梁上部结构为现浇梁。
为便于施工,在紧靠9墩(小里程侧)、10#墩(大里程侧)分别设置一排钢管桩,钢管桩上放置工字钢,并在河岸上设置砼地梁,然后在砼地梁与工字网上设置贝雷片,贝雷片上铺设工字钢,槽钢上搭设WDJ碗扣支架进行现浇梁施工。
现就贝雷片与钢管桩内力分析,选取大岗沥大桥L4联进行计算。
二、结构简介1、在紧靠9墩(小里程侧)、10#墩(大里程侧)单幅分别设置一排Ф529mm 钢管桩(16根),在钢管桩上放置2根32a工字钢用于贝雷梁支点,工字钢顶标高为7.6m。
2、贝雷梁的另一个支点采用钢筋砼地梁,设置于河堤岸上,长*宽*高=24.6*0.6*2.5m,砼等级C30,基底换填1.0m厚片石并压实至180Kpa,地梁顶面标高为7.6m,方向平行于9#、10#墩盖梁中心线。
3、在地梁与工字钢上架设21m长321双排双层贝雷片,两片1组,组间每节及端头均用0.45m宽花窗连接,共11组,计算跨度18.2m,方向平行于道路中心线(详见平面布置图)。
4、贝雷梁上铺设每2根1组14工字钢(2根1组并列排放),间距按支架立杆间距定(详见平面布置图)。
三、构件力学计算(一)、荷载分析根据支架立杆布置图,跨水中段箱梁支架立杆纵、横向间距有60cm、90cm 两种。
鉴于安全考虑,计算时立杆纵向间距取90cm,横向间距取60cm,将支架计算书内的各项均布荷载相加,则:q=(q1+q2+q3+q4)/9.54+(q5+q6+q7)=(353.6+15.83+5.262+10.2)/9.54+(2.0+4.0+1.0)=47.35KN/m2单根立杆传递至水平分布槽钢的力为:P=47.35*0.6*0.9=25.57KN(二)、水平分布工字钢验算根据水平工字钢布置图,其最大跨度为1.8m,为简化计算,按最不利位置受集中力以简支梁建模,受力模型如下图:选取14工字钢(2根1组并列排放),单根自重16.9kg/m=0.169KN/m,I x=712cm4,W x=102cm3,t w=5.5mm,S=35mm,E=206*103N/mm2,截面塑性发展系数r x=1.05根据《路桥施工计算手册》,弯矩、剪力计算如下:M1=ql2/8=0.169*2*1.82/8=0.14KN.mM2=Pl/4+Pa=25.57*1.8/4+25.57*0.3=19.18KN.mM max=M1+M2=19.32KN.mV1=ql/2=0.169*2*1.8/2=0.30KNV2=P+P/2=25.57+25.57/2=38.36KNV max=V1+V2=38.66KN1、抗弯强度验算σmax=M max/(r x W x)=19.32*106/(1.05*102*2*103)=90.20MPa<[σw]=145MPa,满足要求。
现浇箱梁水上钢管桩贝雷梁支架计算书

水上现浇箱梁贝雷梁支架计算书水上施工,需采用钢管桩搭设贝雷梁作为支架基础,再在贝雷梁上搭设钢管支架的方案。
以27m跨径为例,其中贝雷梁按三跨连续梁,每跨9m,横向设置18组双排单层贝雷梁,在腹板下设置2组双排单层贝雷梁,每个桥跨之间的贝雷梁下设置4排钢管(直径60cm),每排钢管13根,钢管长度19.5m,入土长度19m。
(一)计算荷载1、箱梁恒载计算:C50砼荷载:1943.2m3/4*24KN/m3=11659.20KN钢筋及钢绞线荷载:712.10KN+141.13KN=853.23KN恒载:P1=11659.20+853.23=12512.43KN2、支架模板荷载:(1)底模自重荷载:(底模重量按8.0KN/m3)P1'=0.015m*17m*28m*8.0KN/m3=57.12KN(2)侧模自重荷载:P2'=0.015m*1.7m*28m*2*8.0KN/m3=11.42KN(3)翼缘板底模自重荷载:P3'=0.015m*3.75m*28m*2*8.0KN/m3=25.20KN(4)内模自重荷载:P4'=0.015m*38m*28m*8.0KN/m3=127.68KN(5)模板底小肋自重荷载:(小肋横桥向布置,间距0.2m,尺寸0.1m*0.1m)P5'=(17m+1.7m*2+3.75m*2)*28m*0.1m*0.1m*8.0 KN/m3/0.2m=312.48KN(6)模板底大肋自重荷载:(大肋纵桥向布置,间距0.6m,尺寸0.1m*0.15m)P6'=(17m+1.7*2m+3.75m*2)*28m*0.1m*0.15m*8.0 KN/m3/0.6m=156.24KN(7)支架自重荷载:立杆横桥向0.6m布置,纵桥向0.9m布置,支架平均高度4m,水平杆按1.2m布置立杆自重荷载:25.5*28*4/0.6/0.9=203.09KN横杆自重荷载:25.5*28*4/0.6+25.5*28*4/0.9=304.64KN支架自重荷载:P7'=203.09+304.64=507.73KN支架及模板荷载:P2=P1'+P2'+P3'+P4'+P5'+P6'+P7'=1197.87KN3、人和机具在模板上移动荷载(取2.5KN/m2):P3=25.5*28*2.5=1785KN4、振捣混凝土产生的荷载(取2.0KN/m2):P4=25.5*28*2=1428KN5、倾倒混凝土时产生的荷载(取2.0KN/m2)P5=25.5*28*2=1428KN6、28a工字钢自重荷载:P6=34*26.5*43.47=391.66KN平均荷载:Q6=0.534KN/m27、贝雷梁自重荷载P7=9*36*2.7=874.8KN8、36a工字钢自重荷载:P8=25.5*8*59.9=122.2KN9、20mm厚钢板自重荷载(与钢管桩焊接,0.8m*0.8m):P9=52*0.8*0.8*0.02*78KN=51.92KN10、钢管桩自重荷载:(4排,每排13根Φ600mm钢管桩)钢管桩由钢板卷制而成,钢板选用10mm厚度。
贝雷梁支架受力计算
重庆市机场专用快速路北段工程第I标段(跑马坪立交至石坝子立交含段)贝雷梁支架受力计算书编制:复核:批准:单位总工批准:重庆市涪陵路桥工程有限公司机场专用快速路工程北段Ⅰ标项目部二○一一年六月贝雷梁支架设计计算取第一联第二左幅跨计算。
箱梁顶面宽22m,底宽13.5m,梁高2.2m,单箱三室,中腹板宽0.6m,边斜腹板宽0.6m,顶板厚0.28m,底板厚0.22m,悬臂3.5,厚0.55~0.2m。
一、结构图1二、.材料参数及特性①钢筋砼跨中正截面A=14.722m2 容重Q1= 26 kN/m3 超载系数 1.05②木材Q2=7.50 kN/m3[σ]=11 MPa [τ]=1.3 MPa10×10木方q1=0.075kN/m A=1.0×104㎜2=1.667×105㎜ 3Ⅰx=8.33×106 ㎜ 4 WX12×12木方q2=0.108kN/m A=1.44×104㎜2=2.88×105㎜Ⅰx=1.728×107 ㎜ 4 WX③贝檑梁q3=1 kN /m A=5.1×103㎜2 [σ]=220 MPa=3.5785×106㎜ 3Ⅰx=2.50497×109 ㎜ 4 WX④设上、下加强弦杆贝檑梁q4=1.4 kN /m A=1.02×104㎜2 [σ]=220 MPaⅠ,x=2.50497×109 + 4×1274×8002 =5.766×109= Ⅰ,x/750=7.6885×106㎜ 3WX⑤Ⅰ50a q5=0.9361kN/m A=1.1925×104㎜2[σ]=215 MPa [τ]=125 MPa=1.859×106㎜3Ⅰx=46472×108㎜ 4 WX⑥[10a q6=0.1 kN /m A=1.274×103㎜2 [σ]=215 MPaⅠx=1.983×106 ㎜ 4 W=3.97×104㎜ 3X⑦竹胶板18mm q7=0.135 kN/m2 A=1.8×104㎜2/m [σ]=11 MPa=5.4×104㎜3/mⅠx=4.86×105㎜4/m WX=4494㎜3,,υ=⑧脚手架钢管Φ48×3,A=424㎜2,,I=107859㎜ 4 ,WX步距1.2m,三、箱梁荷载钢筋砼容重26 kN/m31.箱梁正截面:A=14.72㎡,qc1=38.27t/m=382.7kN/m×1.05=402kN/m2.跨中横梁0.3m, A=31.765㎡,qc2=86.72(沿桥长分布)3.支点横梁2.0m, A=32.52㎡, qc3=88.78t/m(沿桥长分布)4.端横梁1.5m, A=32.52㎡, qc4=88.78t/m(沿桥长分布)5.腹板qc5=0.6×2.0×26×1.05=32.76 kN/m26.顶板qc6=0.28×1.0×1.0×26×1.05=7.644 kN/m27.底板qc7=0.22×1.0×1.0×26×1.05=6.00 kN/m28.悬臀板qc6=(0.2+0.55)÷2×3.5×2.6×1.05=35.8 kN/m四、施工荷载1.人群及小型机具荷载g1=1.00 kN/m22.砼振捣冲击g2=2.00 kN/m23.模板体系g3=1.00 kN/m2五、安全系数K2=1.3六、支架受力计算1、正截面设三个支墩,分别设立于距墩中心2.0m处和跨中,梁长38.4m,计算跨度17.2m 箱梁正截面:A=14.72㎡,qc1=14.72×2.6×1.05=40.2t/m=402 kN/m=402N/㎜,K=1.3计算式:按两等跨连续梁计算,查表得:跨内最大弯矩Mmax=0.07qL2 ,中间支点最大负弯矩Mmax=0.125qL2,支点反力QA=0.375qL,支点反力QB=0.625qL,跨中挠度f=0.521×qL4/100EI荷载组合∑q=箱梁砼qc1+顶、底板模板体系g3+人群荷载g1+砼振捣冲击g2=402kN/m +(1+1+2)×22=490 kN/m取∑q=490×1.3=637 kN/m①.支点最大负弯矩Mmax=0.125q1L2=0.125×637×172002=2.355626×1010 N·㎜需用贝雷梁n=M/[σ]W=2.355626×1010/(3.5785×106×220)=30片,②.跨内最大弯矩Mmax=0.07qL2=0.07×637×172002=1.31915056×1010 N·㎜需用贝雷梁n=M/[σ]W=1.31915056×1010/(3.5785×106×220)=17片,2.腹板下计算qc5=32.76KN/m,取∑q=(32.76+4×0.6)×1.3=45.708 KN/m支点最大负弯矩Mmax=0.125q1L2=0.125×45.708×172002=1.69×109 N·㎜跨内最大弯矩Mmax=0.07qL2=0.07×45.708×172002=9.466×108 N·㎜需用贝雷梁n=M/[σ]W=1.846×109 /(3.5785×106×220)=2.2片,3.悬臀板qc6=35.8 kN/m取∑q=(35.8+4×3.5)×1.3=64.74 kN/㎜支点最大负弯矩Mmax=0.125q1L2=0.125×64.74×172002=2.39408×109 N·㎜跨内最大弯矩Mmax=0.07qL2=0.07×64.74×172002=1.34069×109 N·㎜需用贝雷梁n=M/[σ]W=2.39408×109 /(3.5785×106×220)=3.片,七、贝雷梁支架验算:根据上述计算,结合箱梁结构情况,决定采用加强弦杆贝雷梁18片,腹板下2片一组,腹板2片一组,悬臂各2片一组,共9组。
盖梁贝雷支架计算书
盖梁贝雷支架计算书盖梁贝雷支架计算书一、贝雷梁支架整体受力计算共计4排贝雷梁,每排由4片贝雷标准节组成,共16片贝雷标准节段组成。
上部荷载、模板、钢管、施工、贝雷梁自重均视为均布荷载考虑。
1、荷载分析混凝土按高配筋计算,容重取26KN/m3,贝雷梁按3KN/片,钢管(φ48×3.5)按3.84kg/m ,混凝土设计方量为11.1m 3。
a .混凝土自重)/(05.24121.1126m KN =? b .贝雷梁自重 )/(412163m KN =? c .钢管:3m 管50根, 6m 管48根,1m 管30根,钢管共长468m 。
钢管自重 )/(498.11001284.3468m KN =??d .模板自重模板采用组合钢模,按40kg/m 2计,约计40m 2,则有:)/(333.1100124040m KN =??e .施工荷载(人员、设备、机具等):2.5KN/ m 2 ,即为:1.47KN/mf .振捣砼时产生的荷载:2KN/ m 2,即为:1.18KN/mg .倾倒砼时产生的冲击荷载:2KN/m 2即为:1.18KN/m 综合以上计算,取均布荷载为:35KN/m (计算值为34.711) 2、贝雷梁内力计算贝雷梁为悬臂梁,其计算简图如下所示:弯矩图:剪力图:由内力图可知:贝雷梁承受的最大弯矩M max 、最大剪力Q max 、最大支座反力R 1,2分别为:M max =157.5KN ·m Q max =105KN R 1,2=210KN则单排贝雷梁受力情况为:M max =157.5/4=39.375KN ·m <[M 0]=975 KN ·mQ max =105/4=26.25KN <[Q]=245.2KN 贝雷梁抗弯、抗剪均满足使用要求。
每组贝雷梁对支座(牛腿)的作用力N= R 1,2/4=52.5KN 3、贝雷梁位移计算:单层4片贝雷梁的抗弯刚度为2104200KN ·m 2 位移图:由位移图有:悬臂端位移最大,为:f max =0.39mm<="">二、牛腿强度及刚度计算 1、牛腿受力分析由贝雷片传来的荷载N1=N2=52.5KN ,间距为45cm 。
现浇箱梁贝雷支架计算书
现浇箱梁贝雷支架计算书建安大道与益民路分离式立交桥位于拟建的建安大道与益民路交叉处,该工程采用建安大道下穿益民路的方式。
建安大道与益民路呈80度交角,桥梁中心对应于建安大道里程桩号为K0+450、384,对应于益民路的里程桩号为LK0+450、384,桥上部采用三跨一联跨径为15、46+26+15、46m的等截面连续梁预应力混凝土梁桥。
梁桥为单箱四室结构,箱梁顶板宽18、5m,底板宽8、0m(计算按12米计),悬臂板端部厚20cm,中腹板厚均为50cm,顶板厚25cm,底板厚25cm,梁高1、4m,桥面横坡为双向人字坡1、5%。
箱梁顶面横坡采用箱梁绕桥面设计高程旋转而成,箱梁截面左右对称。
一、计算依据㈠、《路桥施工计算手册》;㈡、《安溪益民路分离式立交桥工程》施工图;㈢、《装配式公路钢桥多用途使用手册》;㈣、《公路桥涵施工技术规范》;㈤、《公路桥涵设计规范》;㈥、《贝雷梁使用手册》;㈦、《建筑荷载设计规范》。
二、支架设计要点㈠、钢管桩基础支架基础采用钢管桩做为基础。
现浇箱梁支架基础平面布置图详见图ZJ-1, 现浇箱梁支架横断面图详见图ZJ-2。
1、两边跨跨径L=15、46m桥宽18、5m等截面标准现浇箱。
距桥台台身边缘0、75m设置一排钢管桩做为第一支墩;距1#桥墩边缘0、75m设置一排钢管桩做为第二支墩。
两支墩之间的钢桩中心距中心的距离为12、45m。
单中支墩:钢管桩φ50*0、7cm,7根,钢管桩间距按2、5m和3、0m两种间距布置。
钢管桩上布置2I36b、L>1800cm工字钢作横梁。
横梁上布置支架贝雷片纵梁。
支架及工字钢、贝雷梁计算书1
跨绕城高速连续梁支架检算书一、设计方案:1、门洞:按箱梁6m跨径重量作门洞支架设计荷载标准,纵向采用贝雷片组拼成承重主梁,横向在贝雷梁上按60cm的间距铺设15×15cm方木作为分配梁;采用标号C30,高度1米的砼条形基础作为门洞支架的基础。
本设计计算结构强度验算采用容许应力计算,不考虑荷载分项系数,但按有关规定钢材容许应力按临时性结构提高系数为1.25,即 A3钢材弯曲容许应力〔σw〕=145×1.25=181Mpa,抗压轴向容许应力〔σ〕=140×1.25=175 Mpa,抗剪容许应力〔τ〕=85×1.25=106 Mpa进行验算。
结构刚度验算时,按荷载乘以相应的分项系数,进行荷载组合。
2、支架:①底板下,支架按照60×60cm间距搭设,平杆步距120cm;②腹板宽度90cm梁段的腹板下,按照30×60cm的间距搭设,平杆步距60cm;③腹板宽度60cm梁段的腹板下,按照30×60cm的间距搭设,平杆步距120cm;④翼缘板下,按照60×90cm的间距搭设,平杆步距120cm。
二、门洞荷载分析:1、梁砼重量:门洞跨度6米最大梁体砼92.3m3,砼容重26KN/m3箱梁砼重量:g1=92.3×26 KN/m3=2400KN。
2、底模重量:1.5cm竹胶板重量:7.6×6×0.015×9.0KN/m3=6.2KN;15×15纵向主梁方木重量:13×6×0.15×0.15×7.5 KN/m3=13.2KN 10×10横向分配梁方木重量:30×7.6×0.1×0.1×7.5 KN/m3=17.1KN;底模总重量:g2=6.2+13.2+17.1=36.5KN。
3、侧模重量:1.2cm竹胶板面积:S=2×6.857×6=82.3m2;重量:82.3×0.012×7.5KN/m3=7.4KN;竖向10×10cm方木靠条(间距30cm):21根;21×6.857×0.1×0.1×2×7.5KN/m=21.6KN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简支箱梁贝雷支架现浇施工方案计算书
一、工程概况
为加快现浇简支箱梁施工进度,确保施工工期,施工单位决定增加2套贝雷支架和1套箱梁模板,进行现浇简支箱梁的施工。
计划采用贝雷支架进行箱梁现浇的桥梁孔跨位置见下表:
表1 计划采用贝雷支架的桥梁孔跨
序号桥梁名称制梁位置孔跨数备注
2孔24m梁,
1 东边山大桥全桥
梁高3.05m
2孔32m梁
1孔24m梁,
2 陈福湾1#大桥全桥
梁高3.05m
9孔32m梁
3孔24m梁,
合计
11孔32m梁
贝雷支架现浇梁施工就是用贝雷片组装成箱梁施工的支撑平台,在贝雷架上进行箱梁模板安装、模板预压、钢筋安装、砼浇注、预应力初张拉等施工项目。
它与移动模架的区别在于,支撑系统与模板系统是分离的,且没有液压和走行系统。
贝雷支架经受力检算后,必须能满足制梁过程的各种荷载及形变。
二、贝雷支架施工方案介绍
针对最不利的墩高19.5m,跨度32m的梁,设计两种方案。
这里对这两种方案进行检算。
方案1的贝雷支架布置图见图1、图2。
图2 32m现浇梁现浇支架横向布置(方案1)方案2的贝雷支架布置图见图3、图4。
图3 方案2中的贝雷梁纵桥向布置
图4 方案2中的贝雷梁横桥向布置
三、贝雷支架施工计算内容
1、贝雷梁强度、位移计算
2、立柱强度、稳定计算
3、立柱基础即承台抗剪切破坏检算
4、横梁计算
四、贝雷支架施工计算
(一)荷载分析
1、箱梁自重
32m梁体混凝土用量为334.5m3,容重按2.6t/m3计,则梁体重量为870t。
2、箱梁内外模板重量
根据现浇箱梁定型模板图按150t考虑,呈均布荷载形式布置在底板上面。
3、人、机、料及施工附加荷载
人、机、料及其他施工附加荷载取4.5kN/m2。
(二)方案1的贝雷梁及立柱承载能力计算
1、腹板正下方贝雷梁计算
将混凝土的重量考虑1.1倍的增大系数,人、机、料及其他施工附加荷载按箱梁底宽5m考虑,则每延米的荷载集度为:
所以参与计算的作用于支架上的荷载实际为:
为安全计,假定半个箱梁的重量及施工机具、模板重量均由腹板正下方的6片贝雷梁承受。
共6片,分2组,每组承受
折算到两排,则为60.3kN/m,贝雷梁每延米自重(双层双排)5.8kN/m,贝雷梁的计算跨度为27m,则跨中的最大弯矩为:
剪力为:
最大弹性挠度:
非弹性挠度估计为:
总挠度:49.8mm+17.2mm=67mm。
kN⋅,剪力双片双层贝雷梁普通型的承载能力:弯矩3265.4m
490.5kN;
kN⋅,剪力双片双层贝雷梁加强型型的承载能力:弯矩6750.0m
490.5kN;
容许挠度:
可见,加强型贝雷梁弯矩和弹性挠度均满足要求,但剪力超出要求,所以在支撑处必须用双竖杆,而且竖杆杆件不得变形最好予以加强,此时,再考虑到双层的斜杆数量比单层多一倍,剪力抵抗能力应当提高一倍,即
5.
490>
=
⨯。
981
2
kN4.
kN
892
为了谨慎起见,建立总体模型计算杆件的受力情况。
采用的软件为ANSYS11.0。
计算时建立了一片贝雷梁的模型,相应受载为33.05kN/m (含自重),ANSYS模型如图3所示。
图3 单片贝雷梁的ANSYS模型
图4 贝雷梁的变形
经计算,贝雷梁的最大变形(包含非弹性变形)为73.5mm,杆件的最大轴力发生在支点处的非标准杆件的竖杆上,达到212kN,斜杆的最大内力发生在支点内侧下层贝雷梁斜杆上,最大轴力为150.8kN。
竖杆的理论容许承载力为210kN,斜杆的理论容许承载力为171.5kN,所以抗剪没有问题。
但是考虑到支点处竖杆的内力较大,应该予以加强。
2、底板正下方贝雷梁计算
kN/,从上面的计算可从荷载上看,此处混凝土的重量荷载集度为58.4m
知,只用两片加强型贝雷梁即可(双层),但考虑到横向连接,可以适当增加到3片。
3、翼缘板下方贝雷梁设置
若按图2所示的箱梁外侧模浇筑混凝土,翼缘板下方贝雷梁只承受外侧模重及翼缘板混凝土重,假定外侧模重与底板混凝土重相当,而翼缘板混凝土重与顶板混凝土重相当,则此处的贝雷梁受力与底板下方混凝土受力一致,采用3片双层加强型贝雷梁足够。
4、支垫横梁承载能力计算
杆件截面为2工45b。
kN/外(两片),其余基经上面计算,除腹板正下方贝雷梁受力为65.8m
kN/(两片)。
计算得到支反力如下:
本一致,均为50m
腹板正下方贝雷梁支反力:383.5kN/片;
底板正下方贝雷梁支反力:279.9kN/片;
翼缘板正下方贝雷梁支反力:279.9kN/片。
用ANSYS建立支垫横梁的模型。
图5 支垫横梁的模型
图6 支垫横梁变形
图7 支垫横梁正应力(最大应力112MPa)
计算结果显示:从应力角度看是安全的,但是支垫横梁两侧的悬臂位移稍大,达到6mm。
得到的支反力即为钢管柱的受力,最大为中间4根立柱,大小为1196kN。
5、立柱承载能力计算
立柱的最大高度为15.5m,外径600mm,壁厚10mm,承受的最大轴向压力约为1200kN。
立柱必须在顺桥向至少在柱顶与桥墩可靠连接,此时的计算长度可取为15.5m。
立柱截面面积:18535.4mm2,则立柱的轴向应力为64.7MPa。
材料为q235,容许的轴向应力为140MPa。
立柱抗弯惯矩8.048×108mm4,回转半径208.4mm。
长细比为74.3,查得稳定系数0.818,则考虑稳定时的折算应力为79.1MPa,安全。
但考虑到立柱较高,壁厚较薄,建议在顺桥向增加与桥墩的连接。
(三)方案2的贝雷梁承载能力计算
1、腹板正下方贝雷梁计算
将混凝土的重量考虑1.1倍的增大系数,人、机、料及其他施工附加荷载按箱梁底宽5m考虑,则每延米的荷载集度为:
所以参与计算的作用于支架上的荷载实际为:
为安全计,假定半个箱梁的重量及施工机具、模板重量均由腹板正
下方的6片贝雷梁承受。
共6片,分2组,每组承受
折算到两排,则为60.3kN/m,贝雷梁每延米自重(双层双排)5.8kN/m,贝雷梁的计算跨度为13.5m+13.5m,为了简化计算,偏于安全地采用单跨跨长为13.5m的简支梁模型计算,则跨中的最大弯矩为:剪力为:
最大弹性挠度(单层不加强):
非弹性挠度估计为:
总挠度:28.5mm+7.1mm=35.6mm。
kN ,剪力双排单层贝雷梁普通型的承载能力:弯矩1576.4m
490.5kN;
容许挠度:
可见,加强型贝雷梁弯矩、剪力和弹性挠度均满足要求。
2、横梁及立柱计算
横梁计算同方案1。
因为立柱形式未变,荷载减小,所以安全。
五、结论与建议
(一)结论
采用方案1和方案2均可,若采用方案1必须按本计算书图2的形式在横桥向排列各片贝雷梁,同时支点处采用双竖杆且予以加强。
(二)建议
1、沙箱必须做抗压试验,落架高度最小不得低于15cm;
2、沙箱与立柱、与横梁必须可靠连接;
3、仔细检查贝雷梁的杆件变形情况,特别注意在支点附件的贝雷梁斜杆和竖杆要保持没有变形,且由于此处的双竖杆受力较大,建议予以加强;跨中处的上下弦杆保证没有变形。
4、计算采用双层加强型贝雷梁,所以施工时注意必须用加强型贝雷梁,双层梁之间必须连接可靠,横向的连接必须可靠。
5、在顺桥向增加立柱与桥墩的连接,以防止立柱顺桥向的失稳。
6、结构需进行分级堆载预压,记录弹性变形值与非弹性变形值,以便设置预拱度。
分级加载应与浇筑混凝土的顺序与位置尽量相同。