高二数学函数模型总结

合集下载

函数模型及应用教案

函数模型及应用教案

函数模型及应用教案函数模型是基于数学函数的一种建模方法,通过将现实问题抽象为数学函数的形式来描述、分析和解决问题。

函数模型的应用非常广泛,涉及到许多领域,包括物理、经济、生物等。

一、函数模型的基本概念1. 函数的定义:函数是一个映射关系,将输入映射到唯一的输出,通常用f(x)表示。

2. 自变量和因变量:函数的自变量是输入值,通常用x表示;函数的因变量是输出值,通常用y表示。

3. 函数图像:函数图像是函数在坐标系中的几何表示,可以通过计算和绘制得到。

4. 函数的性质:函数可以有多个性质,包括定义域、值域、单调性、奇偶性等。

二、函数模型的应用1. 物理学中的应用:物理学中许多自然现象都可以用函数模型来描述,如运动学中的位移函数、速度函数和加速度函数,力学中的万有引力函数等。

2. 经济学中的应用:经济学中常常用函数模型来描述供求关系、成本函数、效用函数等,以便分析经济现象和制定经济政策。

3. 生物学中的应用:生物学中常常用函数模型来描述生物体的生长、代谢和进化过程,以便研究和预测生物现象。

4. 工程学中的应用:工程学中常常用函数模型来描述电路、信号处理、控制系统等,以便分析和设计工程系统。

5. 数据分析中的应用:数据分析中常常用函数模型来描述数据的分布和趋势,以便预测和优化数据。

三、函数模型的教学内容1. 函数的基本概念和性质:教学内容包括函数的定义、自变量和因变量的概念、函数图像的绘制和函数的性质分析等。

2. 函数的分类和常见函数模型:教学内容包括线性函数、二次函数、指数函数、对数函数、三角函数等的定义、图像和性质分析等。

3. 函数的应用实例分析:教学内容包括物理、经济、生物、工程等领域的函数模型实例分析,以及数据分析中的函数模型应用实例。

4. 函数模型的建立和求解:教学内容包括根据实际问题建立函数模型、利用函数模型求解问题等。

四、函数模型的教学方法1. 理论讲解:通过讲解基本概念、定理和性质,帮助学生理解函数模型的基本原理和方法。

高二数学有什么函数知识点

高二数学有什么函数知识点

高二数学有什么函数知识点函数是数学中一种非常重要的概念,它在高二数学中也起着关键的作用。

本文将介绍高二数学中一些常见的函数知识点,包括函数的定义、函数的性质、常见的函数类型以及函数的图像等。

一、函数的定义和表示方式函数是指两个数集之间的一种对应关系,其中一个数集称为自变量的定义域,另一个数集称为函数值的值域。

函数通常用符号表示,例如$f(x)$或$y=f(x)$。

函数的定义通常包括三个要素:定义域、对应关系和值域。

定义域指自变量的取值范围,对应关系指自变量和函数值之间的关系,值域指函数值的取值范围。

二、函数的性质1. 定义域和值域:函数的定义域和值域取决于实际情况,可以是实数集、正整数集等。

2. 单调性:函数的单调性有递增和递减两种情况。

如果对于定义域中的任意两个实数$x_1$和$x_2$,当$x_1<x_2$时,有$f(x_1)<f(x_2)$,则函数是递增的;当$x_1>x_2$时,有$f(x_1)>f(x_2)$,则函数是递减的。

3. 奇偶性:如果对于定义域中的任意实数$x$,有$f(-x)=-f(x)$,则函数是奇函数;如果对于定义域中的任意实数$x$,有$f(-x)=f(x)$,则函数是偶函数。

4. 周期性:如果存在一个正数$T$,使得对于定义域中的任意实数$x$,有$f(x+T)=f(x)$,则函数具有周期性。

5. 零点:函数的零点指的是函数值等于零的自变量取值。

一元函数的零点是方程$f(x)=0$的解。

三、常见的函数类型1. 线性函数:线性函数是指函数的图像为一条直线,表达式一般为$f(x)=kx+b$,其中$k$和$b$为常数,$k$称为斜率,$b$称为截距。

线性函数的图像为一条直线,斜率决定了直线的倾斜程度,截距决定了直线与$y$轴的交点位置。

2. 二次函数:二次函数是指函数的图像为一条抛物线,表达式一般为$f(x)=ax^2+bx+c$,其中$a$、$b$和$c$为常数。

高考数学必修知识讲解几类不同增长的函数模型提高

高考数学必修知识讲解几类不同增长的函数模型提高

几类不同增长的函数模型【学习目标】1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.结合实例体会直线上升、指数爆炸、对数增大等几类不同的增长和函数模型的意义.3.通过本节内容的学习,培养用函数的观念、思想和方法去理解、解决实际问题的意识,感悟到现实世界中数学无处不在,世界是数学的物化形式,数学是世界的精髓.【要点梳理】要点一:几类函数模型的增长差异一般地,对于指数函数和幂函数,通过探索可以发现,在区间上,无论比大多少,尽管在的一定范围内,会小于,但由于的增长快于的增长,因此总存在一个,当时,就会有.同样地,对于对数函数增长得越来越慢,图象就像是渐渐地与轴平行一样,尽管在的一定范围内,可能会大于,但由于的增长慢于的增长,因此总存在一个,当时,就会有.综上所述,在区间上,尽管函数、和都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着的增大,的增长速度越来越快,会超过并远远大于的增长速度,而的增长则会越来越慢,因此总会存在一个,当时,就有三类函数模型增长规律的定性描述:1.直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度不变(恒为常数);2.指数爆炸反映了指数函数(底数大于1)的增长趋势,其增长速度迅速(越来越快);3.对数增长反映了对数函数(底数大于1)的增长趋势,其增长速度平缓(越来越慢).如图所示:要点诠释:当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快.要点二:利用函数的增长规律在实际问题中建立函数模型若实际问题的增长规律与一些常见函数的增长规律相吻合,则可在实际问题中建立相应的函数模型,确定其系数,便得到相应的函数模型,从而完成建模.常用的函数模型有以下几类:(1)线性增长模型:;(2)线性减少模型:.(2)二次函数模型:当研究的问题呈现先增长后减少的特点时,可以选用二次函数;当研究的问题呈现先减少后增长的特点时,可以选用二次函数(1)xy a a =>(0)y x αα=>()0,+∞αa x x a x αx a x α0x 0x x >xa >x αlog a y x =x x log a x x αlog a x x α0x 0x x >log a x x α<()0,+∞(1)xy a a =>(0)y x αα=>log (1)a y x a =>x (1)xy a a =>(0)y x αα=>log (1)a y x a =>0x 0x x >log .xa x x a α<<(0)y kx b k =+>(0)y kx b k =+<2(0)y ax bx c a =++<.(3)指数函数模型(a 、b 、c 为常数,a≠0,b >0,b≠1),当时,为快速增长模型;当时,为平缓减少模型.(4)对数函数模型(m 、n 、a 为常数,a >0,a≠1);当时,为平缓增长模型;当时,为快速减少模型.(5)反比例函数模型.当时,函数在区间和上都是减函数;当时,函数在和上都是增函数.(6)分段函数模型当自变量在几个区间上的函数关系式不相同时,问题应用分段函数来解决.【典型例题】类型一、研究函数的变化规律并比较其大小例1. 当x >0时,比较,,的大小.【解析】作出函数,,的图象(如下图所示).由二分法可得,方程的解为x=0.5,方程的近似解为x=0.64118574,方程的近似解为x=0.587774756.由图象及上述近似解可知,当0<x <0.5时,;当x=0.5时,;当0.5<x <0.587774756时,;2(0)y ax bx c a =++>()x f x ab c =+1b >01b <<()log a f x m x n =+1a >01a <<(0)ky k x=≠0k >(),0-∞()0,+∞0k <(),0-∞()0,+∞12log x 12x 12x⎛⎫⎪⎝⎭12log y x =12y x =12xy ⎛⎫= ⎪⎝⎭1212xx ⎛⎫= ⎪⎝⎭121log 2xx ⎛⎫= ⎪⎝⎭1212log x x =12121log 2xx x ⎛⎫<< ⎪⎝⎭12121log 2xx x ⎛⎫=< ⎪⎝⎭12121log 2x x x ⎛⎫<< ⎪⎝⎭当x=0.587774756时,;当0.587774756<x <0.64118574时,;当x=0.64118574时,;当x >0.64118574时,.【总结升华】本例归纳到一般有如下规律:在区间(0,+∞)上,尽管函数y=a x (0<a <1)、y=log a x(0<a <1)和y=x n (n <0)都是减函数,但它们的衰减速度不同,而且不在同一个“档次”上.随着x 的增大,y=log a x (0<a <1)的衰减速度越来越快,直至负值,因而远远大于y=a x (0<a <1)与y=x n (n <0)的衰减速度.而y=a x (0<a <1),y=a n (n <0)都是在正值范围内衰减,随着x 的不断增长,两者的衰减速度差距越来越小,其中y=a n (n <0)的衰减速度会越来越慢.因此,总会存在一个x 0,当x >x 0时,就有x n >a x >log a x .举一反三:【变式1】 比较、、的大小.【答案】【解析】分别画出的图象,可得结论.类型二、利用几类函数的变化规律建立函数模型例2.某种树苗栽种时高度为A (A 为常数)米,栽种n 年后的高度记为f (n ).经研究发现,f (n )近似地满足,其中,a ,b 为常数,n ∈N ,f (0)=A .已知栽种3年后该树木的高度为栽种时高度的3倍.问:栽种多少年后,该树木的高度是栽种时高度的8倍.【答案】9【解析】由题意知f (0)=A ,f (3)=3A .所以,解得a =1,b =8.所以,其中.令f (n )=8A ,得,解得,即,所以n =9.11221log 2xx x ⎛⎫<= ⎪⎝⎭12121log 2xx x ⎛⎫<< ⎪⎝⎭12121log 2xx x ⎛⎫=< ⎪⎝⎭12121log 2xx x ⎛⎫<< ⎪⎝⎭13x⎛⎫⎪⎝⎭13x 13log (1)x x >13x >13x⎛⎫⎪⎝⎭13log x>13131(,,log 3xy y x y x ===9()nAf n a bt=+232t -=99314AA a b A A a b ⎧=⎪+⎪⎨=⎪+⎪⎩9()18n A f n t =+⨯223t =-9818nA A t =+⨯164nt =62122364n --==答:栽种9年后,该树木的高度是栽种时高度的8倍.【总结升华】本题将指数函数型嵌入树苗种植问题,使问题情景生动而新颖,自然而贴切.同学们不仅要学会二次函数的知识,而且还要会运用所学数学知识分析和解决生活实际问题,体验数学与生活“融合”的乐趣.举一反三:【高清课程:几类不同增长的函数模型377565 例3】【变式1】如图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,设直线x = t (0≤t ≤2)截这个三角形可得位于此直线左方的图形(阴影部分)的面积为f (t ),则函数y = f (t )的图象大致是( )【答案】D【解析】 函数故选 D .【变式2】据调查,某贫困地区约有100万人从事传统农业的农民,人均年收入仅有3000元,为了增加农民的收入,当地政府积极引进资金,建立各种加工企业,对当地的农产品进行加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x (x >0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x%,而进入企业工作的农民的人均年收入为3000a 元(a >0).(1)建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的农民的年总收入,试求x 的取值范围;(2)在(1)的条件下,当地政府应该如何引导农民(即x 多大时),能使这100万农民的人均年收入达到最大.【答案】(1)0<x≤50;(2)50.【解析】(1)由题意得,即x 2-50x≤0,解得0≤x≤50.又∵x >0,∴0<x≤50.(2)设这100万人农民的人均年收入为y 元,则,即,0<x≤50.当0<25(a+1)≤50且a >0,即0<a≤1时,则x=25(a+1)时,y 取最大值.当25(a+1)>50即a >1时,y 在(0,5]上单调递增,∴当x=50时,y 取最大值.答:在0<a≤1时,安排25(a+1)万人进入企业工作,在a >1时安排50万人进入企业工作,才能使这10022(01)()(12)t S t t ≤≤=⎪+<≤⎪⎩23000(100)(11003000100xx -⨯+≥⨯23000(100)(1)3000100100xx ax y -⨯++=603000(1)300000100x a x -+++=223[25(1)]3000375(1)5y x a a =--++++万人的人均年收入最大.【总结升华】本题是一个关注民生的实际问题,应认真阅读,理解题意,转译为数学语言,寻找变量之间的联系.然后对此二次函数进行研究得出相关数学结论,并依此解决实际问题.例3.某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1.2万件、1.3万件、1.37万件.由于产品质量好、服装款式新颖,因此前几个月的产品销售情况良好.为了推销员在推销产品时,接收订单不至于过多或过少,需要估测以后几个月的产量,假如你是厂长,将会采用什么办法?【解析】首先建立直角坐标系,画出散点图(右图);其次,根据散点图,我们可以设想函数模型可能为一次函数型:f (x)=kx+b (k≠0);二次函数型:g (x)=ax 2+bx+c (a≠0);幂函数型:;指数函数型:m (x)=ab x +c .最后,用待定系数法求出各解析式,并验证,选出合适的函数. 设月产量为y 万件,月份数为x ,建立直角坐标系(如右图),可得A (1,1),B (2,1.2),C (3,1.3),D (4,1.37).(1)对于直线,将B 、C 两点的坐标代入,有,,解得k=0.1,b=1,故.将A 、D 两点的坐标代入,得f (1)=1.1,与实际误差为0.1,f (4)=1.4,与实际误差为0.03.(2)对于二次函数,将A 、B 、C 三点的坐标代,有g (1)=a+b+c=1,g (2)=4a+2b=c=1.2,g (3)=9a+3b+c=1.3.解得a=―0.05,b=0.35,c=0.7,故g (x)=―0.05x 2+0.35x+0.7.将D 点的坐标代入,得g (4)=―0.05×42+0.35×4+0.17=1.3,与实际误差为0.07.(3)对于幂函数型,将A 、B 两点的坐标代入,有h (1)=a+b=1,.解得a≈0.48,b≈0.52.故.将C 、D 两点的坐标代入,得,与实际误差为0.05;h (4)=0.48×2+0.52=1.48,与实际误差为0.11.(4)对于指数函数型m(x)=ab x +c ,将A 、B 、C 三点的坐标代入,得m (1)=ab+c=1,m (2)=ab 2+c=1.2,m (3)=ab 3+c=1.3.解得a=―0.8,b=0.5,c=1.4.故m (x)=―0.8×(0.5)x +1.4.将D 点的坐标代入,得m (4)=-0.8×(0.5)4+1.4=1.35,与实际误差为0.02.比较上述四个模拟函数的优劣,既要考虑到剩余点误差值最小,又要考虑生产的实际问题,比如增产的趋势和可能性,可以认为m (x)最佳,一是误差值最小,二是由于新建厂,开始随着工人技术、管理效益逐渐提高,一段时间内产量明显上升,但到一定时期后,设备不更新,那么产量必然要趋于稳定,而m (x)恰好反映了这种趋势,因此选用m (x)=-0.8×(0.5)x +1.4比较接近客观实际.选用y=a·b x +c 模型,且a=-0.8,b=0.5,c=1.4比较接近实际.举一反三:【高清课程:几类不同增长的函数模型377565例4】12()h x ax b =+()(0)f x kx b k =+≠(2)2 1.2f k b =+=(3)3 1.3f k b =+=()0.11f x x =+2()(0)g x ax bx c a =++≠12()h x ax b =+(2) 1.2h b =+=12()0.480.52h x x =+(3)0.480.52 1.35h =+≈【变式1】某山区加强环境保护后,绿色植被的面积每年都比上一年增长10.4%,那么经过x 年绿色植被的面积为y ,则函数y = f (x ) 的图象大致为( ).【答案】D【解析】设某山区原有绿色植被为,则经过第一年增长后面积为,经过第二年增长后面积为,…,经过x 年绿色植被的面积为,是指数型函数,故选D .【变式2】“水”这个曾经人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2000亿元,给我国农业造成的损失达1500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨二不超过6吨时,超过的部分的水费加收200%,若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为x (x≤7)吨,试计算本季度他应交的水费y (单位:元).【思路点拨】根据每一季度每人用水量不超过5吨时,每吨水费收基本价1.2元;若超过5吨而不超过6吨时,超过部分的水费加收200%;若超过6吨而不超过7吨时,超过部分的水费加收400%.分为三段,建立分段函数模型.【答案】【解析】由题意可知:①当x ∈[0,5]时f (x )=1.2x②若超过5吨而不超过6吨时,超过部分的水费加收200%;即:当x ∈(5,6]时f (x )=1.2×5+(x -5)×3.6=3.6x -12③当x ∈(6,7]时f (x )=1.2×5+1×3.6+(x -6)×6=6x -26.4∴【总结升华】本题主要考查将实际应用问题转化为数学问题的能力,解题时要仔细阅读,抓住关键词,关键句来建立数学模型,分段函数的意义和应用.例4.(2016春 江苏启东市月考)某人年初向银行贷款10万元用于购房,(1)如果他向建设银行贷款,年利率为5%,且这笔款分10次等额归还(不计复利),每年一次,并从借后次年年初开始归还,问每年应付多少元?(2)如果他向工商银行贷款,年利率为4%,要按复利计算(即本年的计算计入次年的本金生息),a (110.4%)a +2(110.4%)a +(110.4%)xa +1.2,[0,5]() 3.612,(5,6]626.4,(6,7]x x f x x x x x ∈⎧⎪=-∈⎨⎪-∈⎩1.2,[0,5]() 3.612,(5,6]626.4,(6,7]x x f x x x x x ∈⎧⎪=-∈⎨⎪-∈⎩仍分10次等额归还,每年一次,每年应还多少元?(其中:1.0410=1.4802)【思路点拨】(1)设每年还款x 元,由题意可得,从而解x ;(2)设每年还款y 元,由题意可得,从而解y .【答案】(1)12245;(2)12330【解析】(1)设每年还款x 元,则,即,解得,;(2)设每年还款y 元,则,即,则.【总结升华】上述公式是计算复利的本利和公式,应熟练掌握它,并灵活地运用它解决实际问题中的复利利息计算问题.所谓复利,就是到期后,本期的利息自动计入下一期的本金,类似地,到期后,本期的利息不计作下一期的本金就是单利,单利的计算公式为y =a (1+xr ).其中a 为本金,r 为每一期的利率,x 为期数.举一反三:【变式1】甲、乙两人同一天分别携带1万元到银行储蓄.甲存五年定期储蓄,年利率为2.88%;乙存一年期定期储蓄.年利率为2.25%,并且在每年到期时将本息续存一年期定期储蓄.按规定每次计算时,储户须交纳利息的20%作为利息税.若存满五年后两人同时从银行取出存款,则甲、乙所得本息之和的差为________元.【答案】219.01【变式2】某种商品进价为每个80元,零售价为每个100元,为了促销采用买一个这种商品赠送一个小礼品的办法.实践表明:礼品价值为1元时,销售量增加10%,且在一定范围内,礼品价值为(n+1)元时,比礼品价值为n 元(n ∈N*)时的销售量增加10%.(1)写出礼品价值为n 元时,利润y n (元)与n (元)的函数关系式;(2)请你设计礼品的价值,以使商品获得最大利润.【答案】(1);(2)9元或10元.【解析】第(1)问易得,第(2)问礼品的价值为多少时,使商店获取最大的利润,只需借助于指数函数的单调性,使得n 取某个值时,其前面的取值与后面的取值都比它小即可,即且510(1105%)(195%)(185%)x x x +⨯=+⨯++⨯++ 5109810(14%)(14%)(14%)y y y +=+++++ 510(1105%)(195%)(185%)x x x +⨯=+⨯++⨯++ 510 1.510450.05x x ⨯=+⋅105 1.512245()12.25x ⨯=≈元5109810(14%)(14%)(14%)y y y +=+++++ 105101.04110 1.04 1.041y -⨯=-510 1.48020.0412330()0.4802y ⨯⨯≈≈元(1r)xy a =+(10080)(110%)(20) 1.1nnn y n m n m =--⋅⋅+=-⋅⋅(020,N*)n n <<∈10n n y y +-≥.(1)设未赠礼品时的销售量为m 件,则当礼品价值为n 元时,销售量为m(1+10%)n ;利润.(2)令,即,解得n≤9.所以y 1<y 2<y 3<…<y 9=y 10,令,即,解得n≥8.所以y 9=y 10>y 11>y 12>y 13>…>y 19,所以礼品价值为9元或10元时,商品获得最大利润.【高清课程:几类不同增长的函数模型377565例6】例5.如图,长方形物体E 在雨中沿面P (面积为S )的垂直方向作匀速移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:(1)P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与×S 成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y 为E 移动过程中的总淋雨量,当移动距离d=100,面积S=时.(Ⅰ)写出y 的表达式;(Ⅱ)设0<v≤10,0<c≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.【答案】(Ⅰ) (Ⅱ)当时,;当时,.【解析】(Ⅰ)单位时间的淋雨量为:总的淋雨量为:,即(Ⅱ)①当即时120n n y y ++-≥(10080)(110%)(20) 1.1n nn y n m n m =--⋅⋅+=-⋅⋅(020,N*)n n <<∈10n n y y +-≥1(19) 1.1(20) 1.10n n n m n m +-⋅⋅--⋅⋅≥120n n y y ++-≥12(19) 1.1(18) 1.10n n n m n m ++-⋅⋅--⋅⋅≥v c -11012325(103)15(),5(310)15().c v c vy c v c v -⎧+≥⎪⎪=⎨+⎪-<⎪⎩10v =min 3202y c =-v c =min 50y c=131||1022v c ⨯-+10031||202y v c v ⎡⎤=⨯-+⎢⎥⎣⎦5(103)c y v -∴=5(103)15(),5(310)15().c v c vy c v c v -⎧+≥⎪⎪=⎨+⎪-<⎪⎩1030,c ->1003c <≤在上单调递减时,最小,.②当即时在上单调递减,在上单调递增.当时,最小,.答:当雨速的分速度,时,;当雨速的分速度,时,.y (]0,10v ∈10v ∴=y min 3202y c =-1030,c -<1053c <≤y (0,)v c ∈(,10)v c ∈v c =y min 50y c=1003c <≤10v =min 3202y c =-1053c <≤v c =min 50y c=。

高二数学选择性必修一知识点总结

高二数学选择性必修一知识点总结

高二数学选择性必修一知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学选择性必修一知识点总结本店铺为各位同学整理了《高二数学选择性必修一知识点总结》,希望对你的学习有所帮助!1.高二数学选择性必修一知识点总结篇一幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

2024年高二数学函数基本性质知识总结

2024年高二数学函数基本性质知识总结

2024年高二数学函数基本性质知识总结____年高二数学函数基本性质知识总结(____字)一、函数的定义和基本性质函数是一种特殊的关系,每一个自变量只对应一个因变量。

函数的定义包括定义域、值域、对应关系和表达式。

函数的基本性质包括单调性、奇偶性、周期性和界值性。

1.1 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

定义域可以通过解不等式或考察定义域的连续性来确定。

值域可以通过求导或考察函数的图像来确定。

1.2 对应关系函数的对应关系决定了自变量和因变量之间的对应关系。

函数可以用图像、显式表达式、隐式表达式或递推关系来表示。

对应关系可以用一一对应、多对一或一对多来描述。

1.3 单调性一个函数的单调性是指函数在定义域上的变化趋势。

函数可以是上下单调递增、上下单调递减、左右单调递增或左右单调递减。

单调性可以通过求导数或摸底函数的上下凸性来判断。

1.4 奇偶性一个函数的奇偶性是指函数在定义域上的对称性。

一个函数是奇函数,当且仅当对于任意x,f(-x)=-f(x)。

一个函数是偶函数,当且仅当对于任意x,f(-x)=f(x)。

奇偶性可以通过观察函数的对称性或通过代入-x来判断。

1.5 周期性一个函数的周期性是指函数具有重复出现的规律。

周期函数满足f(x+T)=f(x),其中T为函数的周期。

周期性可以通过观察函数的周期性或通过解函数的方程来判断。

1.6 界值性一个函数的界值性是指函数在定义域或值域上的极大值或极小值。

界值性可以通过求导数或考察函数的图像来判断。

二、高中数学中常见的函数高中数学中常见的函数包括常函数、一次函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

2.1 常函数常函数是一个常数,其函数图像是一条平行于x轴的直线。

常函数的定义域是整个实数集,值域是只有一个值的数集。

2.2 一次函数一次函数是一个一次多项式,函数表达式为f(x)=ax+b,其中a和b为常数,a称为斜率,b称为截距。

高中数学二轮复习关于三角函数解题中常用数学模型构造

高中数学二轮复习关于三角函数解题中常用数学模型构造

二轮复习关于三角函数解题中常用数学模型构造构造数学模型是一种比较重要、灵活的思维方式,它没有固定的模式。

在解题中要想用好它,需要有敏锐的观察、丰富的联想、灵活的构思、创造性的思维等能力。

应用好构造思想解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是弄清条件的本质特点和背景,以便重新进行逻辑组合。

常用的有构造命题、构造表达式、构造几何体等,本文拟就通过介绍几种解三角函数的具体问题,对构造的各种思维方式作一些探讨。

1 构造直角三角形例1 设x ∈[4π,2π],求证:cscx -ctgx ≥2-1 思路分析:由2、1联想等腰直角三角形,不仿构造一个等腰直角三角形来研究。

作Rt ⊿ABC ,令∠C=900,AC=1,在AC上取一点D ,记∠CDB=x ,则BD=cscx ,CD=ctgx ,AD=1-ctgx ,利用AD+DB≥AB=2,可得cscx -ctgx ≥2-1,等号仅在x =4π时成立。

2 构造单位圆例 2若0<β<α<2π,求证:α-β<tg α-tg β 思路分析:构造单位圆,借助三角函数线与三角函数式的关系,把数的比较转化为几何图形面积的比较。

作单位圆O ,AP 1=β,AP 2=α,∴ P 1P 2=α-β,AT 1=tg β,AT 2=tg α,S ⊿AT O =21tg α,S ⊿AP O =21tg β,由于S 扇形OAP=21α,S 扇形OAP =21β。

∴S 扇形OP P =21(α-β),S ⊿OT T=21tg α-21tg β。

则S ⊿OT T>S 扇形OP P即 21(α-β)<21(tg α-tg β) 所以 α-β<tg α-tg β3 构造函数表达式例3已知x 、y ∈[-4π,4π],a ∈R ,且⎩⎨⎧=++=-+0cos sin 402sin 33a y y y a x x ,求cos (x+2y )思路分析:由x 3+sinx 与2(4y 3+sinycosy ),这两部分形式完全类似,由此可构造函数形式。

高二数学知识点归纳及总结

高二数学知识点归纳及总结高二数学是中学数学学科的重要阶段,学生在这个阶段需要掌握并深入理解更多复杂的数学知识点。

本文将对高二数学涉及的各个知识点进行归纳和总结。

一、函数与方程1. 一次函数:表达式为y=ax+b,其中a和b为常数。

一次函数的图像是一条直线,具有常见的线性关系特征。

要掌握一次函数的图像特征及其应用。

2. 二次函数:表达式为y=ax²+bx+c,其中a、b和c为常数且a≠0。

二次函数的图像是抛物线,包括开口向上和开口向下两种情况。

要学会分析二次函数的图像、性质及其应用。

3. 指数函数:表达式为y=a^x,其中a为正数且不等于1。

指数函数的图像是一条曲线,具有递增或递减的特征。

要熟悉指数函数的性质、指数规律及其应用。

4. 对数函数:表达式为y=loga(x),其中a为正数且不等于1。

对数函数是指数函数的逆运算,应学会对数函数的性质、对数规律及其应用。

5. 不等式:要掌握解一元一次不等式、一元二次不等式和绝对值不等式的方法,并能应用于实际问题。

二、解析几何1. 直线与圆:要掌握直线和圆的方程及其性质,能够确定直线与圆的位置关系。

2. 三角函数与三角恒等式:要熟悉常见三角函数的定义、性质和图像,掌握三角函数的基本关系式和恒等式。

3. 三角函数的应用:了解三角函数在解决实际问题中的应用,如测量、航海、建筑等。

4. 平面向量:要理解平面向量的概念和运算法则,掌握平面向量的线性运算和几何应用。

三、概率与统计1. 概率的基本概念:掌握随机事件、样本空间、事件的概率、概率的性质等基本概念。

2. 条件概率与独立性:了解条件概率和独立性的概念,并能应用于实际问题。

3. 排列与组合:熟悉排列与组合的基本概念和计算方法,能够解决与排列组合相关的问题。

4. 统计分布与统计图表:了解常见的统计分布,如二项分布、正态分布等,以及各种统计图表的制作与应用。

四、导数与微分1. 函数的导数:理解导数的定义及其几何意义,熟悉常见函数的导数计算方法。

高中数学必修一函数知识点总结

高中数学必修一函数知识点总结高中数学必修一的函数部分主要包括函数的定义、函数的性质、函数的图像与变化规律、函数的应用等方面的知识点。

下面是一份关于该部分知识点的详细总结。

一、函数的定义1. 定义域和值域:函数的定义域是指使函数有意义的自变量的取值范围,值域是函数的所有可能的因变量的取值范围。

2. 函数的表示方法:函数可以用公式、关系式、图像、表格等形式表示。

3. 函数的图像:函数的图像是由函数的各个值构成的点的集合,可以用直角坐标系来表示。

二、函数的性质1. 奇函数和偶函数:若对于定义域内的任何实数x,有f(-x) = -f(x),则函数f为奇函数;若对于定义域内的任何实数x,有f(-x) = f(x),则函数f为偶函数。

2. 单调性:函数在定义域上的增减关系称为函数的单调性。

若对于定义域内的任意两个实数x1和x2,有f(x1) ≤ f(x2),则函数f在该区间上递增;若对于定义域内的任意两个实数x1和x2,有f(x1) ≥ f(x2),则函数f在该区间上递减。

3. 周期性:若存在常数T>0,对于定义域内的任意实数x,有f(x+T) = f(x),则称函数f具有周期性,T为函数f的周期。

4. 奇偶性:若函数f(x)满足f(-x) = f(x),则称函数f为偶函数;若函数f(x)满足f(-x) = -f(x),则称函数f为奇函数。

三、函数的图像与变化规律1. 零点:函数f(x)在定义域内的一个实数x,使得f(x) = 0,称为函数f(x)的零点。

即f(x) = 0的解即为函数的零点。

2. 极值点:函数在定义域内取得最大值或最小值的点称为函数的极值点。

极大值点是局部最大值点,极小值点是局部最小值点。

3. 拐点:函数图像上的一点,使得该点两侧的曲线分别凸向上和凸向下,并且在该点的左右连续性方向上函数的变化趋势相反,称为函数的拐点。

4. 渐近线:若函数的图像在某个方向上无限地靠近一条直线,且与该直线的距离无限缩小,那么称该直线为函数图像的渐近线。

2024年高二数学函数基本性质知识总结(2篇)

2024年高二数学函数基本性质知识总结____年高二数学函数基本性质知识总结(____字)一、函数的定义和基本性质函数是一种特殊的关系,每一个自变量只对应一个因变量。

函数的定义包括定义域、值域、对应关系和表达式。

函数的基本性质包括单调性、奇偶性、周期性和界值性。

1.1 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

定义域可以通过解不等式或考察定义域的连续性来确定。

值域可以通过求导或考察函数的图像来确定。

1.2 对应关系函数的对应关系决定了自变量和因变量之间的对应关系。

函数可以用图像、显式表达式、隐式表达式或递推关系来表示。

对应关系可以用一一对应、多对一或一对多来描述。

1.3 单调性一个函数的单调性是指函数在定义域上的变化趋势。

函数可以是上下单调递增、上下单调递减、左右单调递增或左右单调递减。

单调性可以通过求导数或摸底函数的上下凸性来判断。

1.4 奇偶性一个函数的奇偶性是指函数在定义域上的对称性。

一个函数是奇函数,当且仅当对于任意x,f(-x)=-f(x)。

一个函数是偶函数,当且仅当对于任意x,f(-x)=f(x)。

奇偶性可以通过观察函数的对称性或通过代入-x来判断。

1.5 周期性一个函数的周期性是指函数具有重复出现的规律。

周期函数满足f(x+T)=f(x),其中T为函数的周期。

周期性可以通过观察函数的周期性或通过解函数的方程来判断。

1.6 界值性一个函数的界值性是指函数在定义域或值域上的极大值或极小值。

界值性可以通过求导数或考察函数的图像来判断。

二、高中数学中常见的函数高中数学中常见的函数包括常函数、一次函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

2.1 常函数常函数是一个常数,其函数图像是一条平行于x轴的直线。

常函数的定义域是整个实数集,值域是只有一个值的数集。

2.2 一次函数一次函数是一个一次多项式,函数表达式为f(x)=ax+b,其中a 和b为常数,a称为斜率,b称为截距。

二次函数的模型建立与解题技巧分享

二次函数的模型建立与解题技巧分享二次函数是一种常见的数学函数,广泛运用于各个领域。

在建立二次函数的模型时,需要考虑诸多因素,并掌握一些解题技巧。

本文将分享一些关于二次函数模型建立与解题的技巧和方法。

1. 二次函数模型建立二次函数的一般形式是:f(x) = ax^2 + bx + c,其中a、b、c为常数。

建立二次函数模型时,需要根据具体问题中的已知条件,确定函数的具体形式。

首先,我们需要找到二次函数的顶点,即函数曲线的最高或最低点。

若已知顶点的坐标为(h, k),则二次函数的一般形式可以简化为:f(x) =a(x - h)^2 + k。

通过确定顶点坐标,我们可以快速确定函数的形状。

其次,我们需要根据已知条件来确定二次函数的系数。

已知条件可以是函数经过某点的坐标,函数的对称轴,或者函数的导数等。

根据这些已知条件,可以得到一系列的方程,通过求解这些方程来确定a、b、c的值。

最后,通过将得到的系数代入二次函数的一般形式,就可以建立起具体的二次函数模型。

2. 解题技巧分享(1)寻找函数的顶点:通过求解二次函数的导数,可以得到函数的极值点,从而确定函数的顶点。

具体而言,对于f(x) = ax^2 + bx + c,导数为f'(x) = 2ax + b。

将f'(x) = 0,解得x = -b/(2a),代入原函数,即可求得顶点的坐标。

(2)确定函数的对称轴:二次函数的对称轴是函数曲线的镜像轴,使得函数关于对称轴对称。

对称轴的方程为x = -b/(2a),通过这个方程可以方便地确定函数的对称轴。

(3)求解函数与坐标轴的交点:对于二次函数f(x) = ax^2 + bx + c,当x = 0时,可以求得函数与x轴的交点为(0, c)。

而当y = 0时,可以通过求解二次方程ax^2 + bx + c = 0,来确定函数与y轴的交点。

(4)应用完全平方式解题:在某些情况下,我们可以通过完全平方式,将二次函数转化为完全平方的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学函数模型总结
高二数学学习中,数学公式具有复杂的结构信息和语义信息,下
面是店铺给大家带来的高二数学函数模型总结,希望对你有帮助。
高二数学函数模型
(1)一次函数模型:f(x)=kx+b (k、b为常数,k≠0);
(2)反比例函数模型:f(x)=+b (k、b为常数,k≠0);
(3)二次函数模型:f(x)=ax2+bx+c (a、b、c为常数,a≠0);
注意:二次函数模型是高中阶段应用最为广泛的模型,在高考的
应用题考查中最为常见.
(4)指数函数模型:f(x)=abx+c (a、b、c为常数,a≠0,b>0,
b≠1);
(5)对数函数模型:f(x)=mlogax+n (m、n、a为常数,a>0,
a≠1);
说明:随着新课标的实施,指数、对数函数模型将会起到越来越
重要的作用,在高考的舞台上将会扮演愈来愈重要的角色.
(6)幂函数模型:f(x)=axn+b(a、b、n为常数,a≠0,n≠1);
(7)分段函数模型:这个模型实际是以上两种或多种模型的综合,
因此应用也十分广泛。
高二数学学习方法
抓好基础是关键
数学习题无非就是数学概念和数学思想的组合应用,弄清数学基
本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是
正确把握解题方法的依据。只有概念清楚,方法全面,遇到题目时,
就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们
平时做过的习题的方法,达到迅速解答。弄清基本定理是正确、快速
解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定
理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。反之,会
使解题速度慢,逻辑混乱、叙述不清。
严防题海战术
做习题是为了巩固知识、提高应变能力、思维能力、计算能力。
学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,
有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎
而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的
展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造
型、能力型的考查上。因此要精做习题,注意知识的理解和灵活应用,
当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我
们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现
问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟
性与创造性,开发其创造力。也将在遇到即将来临的期末考试和未来
的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。
归纳数学大思维
数学学习其主要的目的是为了培养我们的创造性,培养我们处理
事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维
的掌握显得特别重要,在平时的学习时应注重归纳它。在平时听课时,
一个明知的学生,应该听老师对该题目的分析和归纳。但还有不少学
生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步
推证过程。听课是认真,但费力,听完后是满脑子的计算过程,支离
破碎。老师的分析是引导学生思考,启发学生自己设计出处理这些问
题的大策略、大思维。当教师解答习题时,学生要用自己的计算和推
理已经知道老师要干什么。另外,当题目的答案给出时,并不代表问
题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。要把这
些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一
类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的
坏毛病。
积累考试经验
本学期每月初都有大的考试,加之每单元的单元测验和模拟考试
有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技
巧,使自己应有的水平在考试中得到充分的发挥。其实,考试是单兵
作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力
的战场。这些能力的只有在平时的考试中得到培养和训练。

相关文档
最新文档