补充:匀变速直线运动的特殊规律
匀变速直线运动公式和规律

匀变速直线运动公式和规律匀变速直线运动可是高中物理里非常重要的一块知识呢!咱们来好好聊聊匀变速直线运动的公式和规律。
还记得我读高中那会,有一次物理课上,老师正在讲匀变速直线运动。
那天阳光透过窗户洒在课桌上,我却有点犯困。
老师突然说:“同学们,咱们来个小实验,看看匀变速直线运动到底是怎么回事。
”老师拿出一个小车,让它在一个倾斜的木板上滑下。
小车一开始速度不快,慢慢地越滑越快。
这时候老师就开始提问啦:“同学们,你们看小车的速度是不是在不断变化呀?这就是匀变速直线运动。
”咱们先来说说匀变速直线运动的速度公式:v = v₀ + at 。
这里的 v是末速度,v₀是初速度,a 是加速度,t 是时间。
比如说,一辆汽车以 10m/s 的初速度开始加速,加速度是 2m/s²,经过5 秒钟,那它的末速度是多少呢?咱们就把数字带进公式里算算,v = 10 + 2×5 = 20m/s 。
是不是还挺简单的?再看看位移公式:x = v₀t + 1/2at²。
假如还是刚才那辆车,初速度10m/s,加速度 2m/s²,行驶 5 秒,位移就是 x = 10×5 + 1/2×2×5² = 75m 。
还有一个推论公式也很重要,v² - v₀² = 2ax 。
这个公式在一些题目里用起来特别方便。
咱们来做道题感受感受。
有一个物体从静止开始做匀加速直线运动,加速度是 3m/s²,经过 6m 的位移,求末速度。
根据推论公式,v² - 0 =2×3×6 ,解得 v = 6m/s 。
在实际生活中,匀变速直线运动的例子也不少。
就像咱们坐电梯,上升或者下降的时候,速度的变化往往就是匀变速的。
还有飞机起飞,刚开始加速的时候也是匀变速直线运动。
匀变速直线运动的规律其实就是描述物体在速度均匀变化的情况下的运动状态。
掌握了这些公式和规律,咱们就能解决很多实际问题啦。
优质课2.匀变速直线运动的规律

(3)寻找问题中隐含的临界条件,例如速度小者加速追 赶速度大者,在两物体速度相等时有最大距离;速度 大者减速追赶速度小者,在两物体速度相等时有最小 距离等。
(4)求解此类问题的方法,除了以上所述根据追及的主 要条件和临界条件解联立方程外,还有利用二次函数 求极值,及应用图象求解等。 4.相遇问题的分析思路 相遇问题分为追及相遇和相向运动相遇两种情形, 其主要条件是两物体在相遇处的位臵坐标相同. (1)列出两物体运动的位移方程,注意两个物体运动时 间之间的关系.
s v t 0.32m
第5s内位移大小
s v t 0.02m
因此从开始运动到5s末物体所经过的路程为0.34m, 而位移大小为0.30m,克服电场力做的功 W=mas5=3×10-5J。
练习1.物体做匀加速运动,已知加速度为2m/s2 , 那么在任意1s内 (B )
A. 物体的末速度一定是初速度的2倍。 B. 物体的末速度一定比初速度大2m/s C. 物体的初速度一定比前1 秒的末速度大2m/s D. 物体的末速度一定比前1 秒内的初速度大2m/s
一、匀速直线运动
定义:物体在任何相等时间内的位移相等.匀速 运动时速度与位臵关系为v=s/t.
二、匀变速直线运动
1.定义:物体在一直线上运动,如果在相等的时间内 速度变化相等,这种运动就叫做匀变速直线运动. 2.匀变速运动中,物体的加速度a为定值.如规定初速 度方向为正方向;当a>0时,物体做匀加速直线运 动;当a<0时,物体做匀减速直线运动.
(2)利用两物体相遇时必处在同一位臵,寻找两物体位 移间的关系. (3)寻找问题中隐含的临界条件.
(4)与追及中的解题方法相同 若被追赶的物体做匀减速运动,一定要注意追上前该 物体是否已经停止运动。 相向运动的物体,当各自发生的位移绝对值的和等于 开始时两物体间的距离时即相遇。
匀变速直线运动公式、推论推导、及规律总结

一.基本规律:v =ts 1.基本公式a =t v v t 0- a =tvtv =20t v v + v =t v 21at v v t +=0 at v t =021at t v s +=221at s =t v v s t 20+= t vs t 2=2022v v as t -= 22t v as =注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动。
二.匀变速直线运动的推论及推理对匀变速直线运动公式作进一步的推论,是掌握基础知识、训练思维、提高能力的一个重要途径,掌握运用的这些推论是解决一些特殊问题的重要手段。
推论1 做匀变速直线运动的物体在中间时刻的即时速度等于这段时间的平均速度,即202t t v v t S v +==推导:设时间为t ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度公式at v v +=0得: ⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22202t a v v t a v v t t t ⇒ 202t t v v v += 推论2 做匀变速直线运动的物体在一段位移的中点的即时速度22202t s v v v +=推导:设位移为S ,初速0v ,末速为t v ,加速度为a ,根据匀变速直线运动的速度和位移关系公式as v v t 2202+=得:⎪⎪⎩⎪⎪⎨⎧⨯+=⨯+=22222222022S a v v Sa v v s t s ⇒ 22202t s v v v +=推论3 做匀变速直线运动的物体,如果在连续相等的时间间隔t 内的位移分别为1S 、2S 、 3S ……n S ,加速度为a ,则=-=-=∆2312S S S S S……21at S S n n =-=-推导:设开始的速度是0v经过第一个时间t 后的速度为at v v +=01,这一段时间内的位移为20121at t v S +=, 经过第二个时间t 后的速度为at v v +=022,这段时间内的位移为202122321at t v at t v S +=+=经过第三个时间t 后的速度为at v v +=023,这段时间内的位移为202232521at t v at t v S +=+=…………………经过第n 个时间t 后的速度为at nv v n +=0,这段时间内的位移为202121221at n t v at t v S n n -+=+=- 则=-=-=∆2312S S S S S……21at S S n n =-=-点拨:只要是匀加速或匀减速运动,相邻的连续的相同的时间内的位移之差,是一个与加速度a 与时间“有关的恒量”.这也提供了一种加速度的测量的方法:即2tSa ∆=,只要测出相邻的相同时间内的位移之差S ∆和t ,就容易测出加速度a 。
匀变速直线运动

三、位移变化规律
1、速度公式的推导
x vt
x v0 vt t
2
vt v0 at
x
v0t
1 2
at
2
三、位移变化规律
2、速度公式的理解 ① 公式反应了匀变速直线运动的位移随时间变
化规律,仅适用于匀变速直线运动 ② 公式中x、v0、a都是矢量,应用是必须选取
二、速度变化规律
2、速度公式的物理意义
vt v0 at
③ 速度公式的两种特殊形式
当 a=0 时,vt v0 ,说明物体做匀速直线
运动
当v0=0 时,vt at ,说明物体做由静止开
始的匀加速直线运动
三、位移变化规律
1、速度公式的推导 匀变速直线运动中,速度是均匀变化的,所以 在时间t内的平均速度等于始末速度的平均值
正方向,一般选取初速度v0方向为正方向
三、速度与位移关系
vt v0 at
x
v0t
1 2
at
2
vt2 v02 2ax
当a>0时,a与v0方向相同,匀加速直线运动 当a<0时,a与v0方向相反,匀减速直线运动
二、速度变化规律
2、速度公式的物理意义
vt v0 at
① 公式反映了匀变速直线运动中速度随时间变
化的规律,仅适用于匀变速直线运动
② 公式中的v0、vt、a都是矢量,在直线运动中, 规定正方向后(通常以v0的方向为正方向), 都可以用带正、负号的数值表示
匀变速直线运动规律
一、匀变速直线运动
1. 定义:物体加速度保持不变的直线运动 2. 特点:加速度的大小和方向都不改变 3. 分类:
2022届高考物理一轮复习 第2讲 匀变速直线运动的规律 讲义

第2讲匀变速直线运动的规律双基知识:一、匀变速直线运动的规律1.基本公式(1)速度公式:v=v0+at。
(2)位移公式:x=v0t+12at2。
(3)速度—位移关系式:v2-v02=2ax。
2.重要推论(1)平均速度:v=v t2=v0+v2,即一段时间内的平均速度等于这段时间中间时刻的瞬时速度,也等于这段时间初、末时刻速度矢量和的一半。
(2)任意两个连续相等时间间隔(T)内的位移之差相等,即Δx=x2-x1=x3-x2=…=x n-x n-1=aT2。
此公式可以延伸为x m-x n=(m-n)aT2,常用于纸带或闪光照片逐差法求加速度。
(3)位移中点速度:v x2=v02+v t22。
[注2] 不论是匀加速直线运动还是匀减速直线运动,均有:v x2>v t2。
(4)初速度为零的匀加速直线运动的比例①1T末,2T末,3T末,…,nT末的瞬时速度之比:v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n。
②第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比:x1∶x2∶x3∶…∶x n=1∶3∶5∶…∶(2n-1)。
③通过连续相等的位移所用时间之比:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n -n-1)。
三、自由落体运动和竖直上抛运动1.自由落体运动(1)条件:物体只受重力,从静止开始下落.(自由落体运动隐含两个条件:初速度为零,加速度为g。
)(2)基本规律 ①速度公式:v =gt . ②位移公式:x =12gt 2.③速度位移关系式:v 2=2gx . (3)伽利略对自由落体运动的研究①伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论.②伽利略对自由落体运动的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)结合起来. 2.竖直上抛运动(1)运动特点:初速度方向竖直向上,加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动. (2)运动性质:匀变速直线运动. (3)基本规律①速度公式:v =v 0-gt ; ②位移公式:x =v 0t -12gt 2.考点一 匀变速直线运动的基本规律及其应用1.解决匀变速直线运动问题的基本思路 画过程示意图→判断运动性质→选取正方向→选用公式列方程→解方程并加以讨论注意:x 、v 0、v 、a 均为矢量,所以解题时需要确定正方向,一般以v 0的方向为正方向.2.匀变速直线运动公式的选用一般问题用两个基本公式可以解决,以下特殊情况下用导出公式会提高解题的速度和准确率;(1)不涉及时间,选择v 2-v 02=2ax ;(2)不涉及加速度,用平均速度公式,比如纸带问题中运用2t v =v =x t 求瞬时速度;(3)处理纸带问题时用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度. 3.逆向思维法:对于末速度为零的匀减速运动,采用逆向思维法,倒过来看成初速度为零的匀加速直线运动.4.图像法:借助v-t 图像(斜率、面积)分析运动过程.例1我国首艘装有弹射系统的航母已完成了“J -15”型战斗机首次起降飞行训练并获得成功.已知“J -15”在水平跑道上加速时产生的最大加速度为5.0 m/s 2,起飞的最小速度为50 m/s.弹射系统能够使飞机获得的最大初速度为25 m/s ,设航母处于静止状态.求:(1)“J -15”在跑道上至少加速多长时间才能起飞; (2)“J -15”在跑道上至少加速多长距离才能起飞; 答案 (1)5 s (2)187.5 m解析 (1)根据匀变速直线运动的速度公式:v t =v 0+at 得t =v t -v 0a =50-255s =5 s(2)根据速度位移关系式:v t 2-v 02=2ax 得x =v t 2-v 022a =502-2522×5 m =187.5 m1.刹车类问题(1)其特点为匀减速到速度为零后即停止运动,加速度a 突然消失. (2)求解时要注意确定实际运动时间.(3)如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零的匀加速直线运动. 2.双向可逆类问题(1)示例:如沿光滑斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变.(2)注意:求解时可分过程列式也可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义.例2汽车以20 m/s 的速度在平直公路上行驶,急刹车时的加速度大小为5 m/s 2,则自驾驶员急踩刹车开始,经过2 s 与5 s 汽车的位移之比为( ) A.5∶4 B.4∶5 C.3∶4 D.4∶3答案 C 解析 汽车速度减为零的时间为:t 0=Δva=0-20-5s =4 s ,2 s 时位移:x 1=v 0t +12at 2=20×2 m -12×5×4 m =30 m ,刹车5 s 内的位移等于刹车4 s 内的位移,为:x 2=0-v 022a =40 m ,所以经过2 s 与5 s 汽车的位移之比为3∶4,故选项C 正确.考点二 匀变速直线运动的推论及其应用1.六种思想方法2.方法选取技巧(1)平均速度法:若知道匀变速直线运动多个过程的运动时间及对应时间内位移,常用此法.(2)逆向思维法:匀减速到0的运动常用此法.例3中国自主研发的“暗剑”无人机,时速可超过2马赫.在某次试飞测试中,起飞前沿地面做匀加速直线运动,加速过程中连续经过两段均为120 m的测试距离,用时分别为2 s和1 s,则无人机的加速度大小是( )A.20 m/s2B.40 m/s2C.60 m/s2D.80 m/s2答案B解析第一段的平均速度v1=xt1=1202m/s=60 m/s;第二段的平均速度v 2=xt2=1201m/s=120 m/s,某段时间内的平均速度等于中间时刻的瞬时速度,两个中间时刻的时间间隔为Δt=t12+t22=1.5 s,则加速度为:a=v2-v1Δt=120-601.5m/s2=40 m/s2,故选B.例4取一根长2 m左右的细线,5个铁垫圈和一个金属盘.在线端系上第一个垫圈,隔12 cm再系一个,以后垫圈之间的距离分别为36 cm、60 cm、84 cm,如图2所示,站在椅子上,向上提起线的上端,让线自由垂下,且第一个垫圈紧靠放在地上的金属盘.松手后开始计时,若不计空气阻力,则第2、3、4、5个垫圈( )A.落到盘上的时间间隔越来越大B.落到盘上的时间间隔相等C.依次落到盘上的速率关系为1∶2∶3∶2D.依次落到盘上的时间关系为1∶(2-1)∶(3-2)∶(2-3) 答案 B考点三 自由落体运动与竖直上抛运动1.竖直上抛运动的重要特性 (1)对称性如图所示,物体以初速度v 0竖直上抛,A 、B 为途中的任意两点,C 为最高点,则:(2)多解性当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,形成多解,在解决问题时要注意这个特性。
高中物理精品课件:匀变速直线运动规律应用

(二)解匀变速直线运动问题的步骤
1、正确判断研究对象的运动性质
2、作草图,并找出已知量
3、分析已知量和所求量之间的关系,选用
适当的公式
4、求得结果后必须分析答案的合理性
一、典型例题
一个滑雪的人,从85m长的山坡上匀变速滑下,
初速度是1.8m/s,末速度是5m/s,他通过这段山坡
需要多长时间?
• 2、做匀加速直线运动的物体途中依次经过A、B、C三点,
2T
x2
(n-1)T
3T
x3
Xn-1
nT
xn
(3)第一个T内,第二个内,第三个T内,…位移之
比
xⅠ:xⅡ:xⅢ:…xN=1:3:5: …(2N-1)xⅡxⅠ来自0xⅢT
2T
xN
3T
(n-1)T
nT
(4)第一个L,第二个L,第三个L,…
所用时间之比
tⅠ:tⅡ:tⅢ:…tN=1:( 2 1 ):( 3 2 ):
2a
故 6 s 内的位移为 x+x1=25 m.
重点探究
变式 如图Z1-1所示是某同学研究匀变速直线运动规律时得到的一条纸带(实验
中交流电源的频率为50 Hz),依照打点的先后顺序取计数点1、2、3、4、5、6、
7,相邻两计数点间还有4个点未画出,测得x1=1.42 cm,x2=1.91 cm,x3=2.40 cm,
(一)匀变速直线运动规律:
速度公式:
v v 0 at
(Ⅰ)
位移公式:
1 2
x v0 t at
2
(Ⅱ)
速度位移关系式:
v v 2ax
(Ⅲ)
平均速度:
v0 v
v
高三一轮复习 第一章_运动的描述 第二课时 匀变速直线运动的规律
×5×42 m=40 m,x1∶x2=3∶4,C 选项正确.
答案
C
考点一
匀变速直线运动公式的应用
对三个基本公式的理解
3. 某做匀加速直线运动的物体初速度为 2 m/s,经过一段时
t 间 t 后速度变为 6 m/s,则 时刻的速度为 2 t A.由于 t 未知,无法确定 时刻的速度 2 t B.虽然加速度 a 及时间 t 未知,无法确定 时刻的 2 速度 C.5 m/s D.4 m/s ( ).
解析
中间时刻的速度等于这段时间内的平均速度
法二
比例法
对于初速度为零的匀变速直线运动,在连续相等的时间里通 过的位移之比为 x1∶x2∶x3∶…∶xn=1∶3∶5∶…∶(2n-1) xAC 3xAC 现有 xBC∶xBA= ∶ =1∶3 4 4 通过 xAB 的时间为 t,故通过 xBC 的时间 tBC=t.
法三
中间时刻速度法
利用教材中的推论:中间时刻的瞬时速度等于这段位移 v+v0 v0+0 v0 内的平均速度. v AC= = = 又 v2=2axAC ① 0 2 2 2 v2 =2axBC B 1 xBC= xAC 4 v0 解①②③得:vB= . 2 可以看出 vB 正好等于 AC 段的平均速度, 因此 B 点是中 间时刻的位置.因此有 tBC=t. ② ③
【典例1】
物体以一定的初速度冲上固定的光滑斜面,到 达斜面最高点 C 时速度恰为零,如图 1-2-1 3 所示.已知物体第一次运动到斜面长度 处的 B 4 图1-2-1 点时,所用时间为t,求物体从B滑到C所用的时间. 解析 法一 基本公式法 设物体的初速度为 v0,加速度为 a 1 则:xAC=v0(t+tBC)- a(t+tBC)2 ① 2 1 xAB=v0t- at2 ② 2 3 xAB= xAC ③ 4 联立①②③解得 tBC=t.
高三物理一轮复习 1-1-2:匀变速直线运动规律及应用课件
答案:(1)8 s (2)大小为10 m/s,方向与初速度方向相反
1.任意相邻两个连续相等的时间里的位移之差是一个恒量,
即x2-x1=x3-x2=…=xn-xn-1=at2. 2.某段时间内的平均速度,等于该时间的中间时刻的瞬时
速度,
即
.
3和.一某半段的位平移方中根点,的即瞬时速度等于初速度.v0和末速度vt平方
4.初速度为零的匀加速直线运动的规律(设T为等分时间间隔)
(1)1T内、2T内、3T内……位移之比x1∶x2∶x3…= 12∶22∶32 … . (2)1 T末、2T末、3T末……速度之比v1∶v2∶v3…= 1∶2∶3 … .
(3) 第 一 个 T 内 、 第 二 个 T 内 、 第 三 个 T 内 …… 的 位 移 之 比 为
把运动过程的“末态”作为“初态”的反向研究问题的方 法.一般用于末态已知的情况
应用v t图象,可把较复杂的问题转变为较为简单的数学问题 解决
对一般的匀变速直线运动问题,若出现相等的时间间隔问题, 应优先考虑用Δx=at2求解
1-1 一个匀加速直线运动的物体,在头4 s内经过的位 移为24 m,在第二个4 s内经过的位移是60 m.求这个物 体的加速度和初速度各是多少?
2.竖直上抛运动的重要特性
(1)对称性
如图1-2-2,物体以初速度v0竖直上抛,
图1-2-2
A、B为途中的任意两点,C为最高点,则
①时间对称性
物体上升过程中从A→C所用时间tAC和下降过程中 从C→A所用时间t 相等,同理t =t .
②速度对称性 物体上升过程经过A点的速度与下降过程经过A点
分别为AB=2.40 cm,BC=7.30 cm,CD=12.20 cm,DE=17.10 cm.由此可知,
初速度为零的匀变速直线运动的几个特殊规律
初速度为零的匀变速直线运动的几个特殊规律:一、等分运动时间(初速度为零的匀变速直线运动)。
⑴1t 末、2t 末、3t 末、…、nt 末瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =⑵1t 内、2t 内、3t 内、…、nt 内位移之比为s 1∶s 2∶s 3∶…∶s n =⑶在连续相等的时间间隔内的位移之比为s Ⅰ∶s Ⅱ∶s Ⅲ∶…∶s n =二、等分运动位移(初速度为零的匀变速直线运动)。
⑷通过1m 、2m 、3m 、…、nm 的位移所用的时间之比为t 1∶t 2∶t 3∶…∶t n =⑸经过连续相同位移所用时间之比为t Ⅰ∶t Ⅱ∶t Ⅲ∶…∶t n =(6)经过1x 处、2x 处、3x 处、…、nx 处的速度之比:【典型例题】例1、 一个小石块从空中a 点自由落下,先后经过b 点和c 点,不计空气阻力.已知它经过b 点时的速度为v ,经过c 点时的速度为3v ,则ab 段与ac 段位移之比为( )A .1∶3B .1∶5C .1∶8D .1∶9例2、一滑块以某一速度从斜面底端滑到顶端时,其速度恰好减为零.若设斜面全长L ,滑块通过最初34L 所需时间为t ,则滑块从斜面底端到顶端所用时间为( ) A.43t B.53t C.32t D .2t例3、一列火车作匀变速直线运动驶来,一人在轨道旁观察火车的运动,发现在相邻的两个10s内,火车从他面前分别驶过8节车厢和6节车厢,每节车厢长8m(连接处长度不计)。
求:⑴火车的加速度a;⑵人开始观察时火车速度的大小。
例4.2009年3月29日,中国女子冰壶队首次夺得世界冠军,如图1-2-7所示,一冰壶以速度v垂直进入三个矩形区域做匀减速运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是()A.v1∶v2∶v3=3∶2∶1 B.v1∶v2∶v3=3∶2∶1C.t1∶t2∶t3=1∶2∶ 3 D.t1∶t2∶t3=(3-2)∶(2-1)∶1【巩固练习】1.四个小球在离地面不同高度处,同时从静止释放,不计空气阻力,从某一时刻起每隔相等的时间间隔,小球依次碰到地面.则刚刚开始运动时各小球相对地面的位置可能是下图中的()2.一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1 s.分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2 m;在第3次、第4次闪光的时间间隔内移动了8 m,由此不可求得()A.第1次闪光时质点的速度B.质点运动的加速度C.从第2次闪光到第3次闪光这段时间内质点的位移 D.质点运动的初速度。
匀变速直线运动公式、规律总结
匀变速直线运动公式、规律总结一.基本规律:v =ts 1. 公式a =t v v t 0-a =tv tv =20t v v + v =t v 21 at v v t +=0 at v t =021at t v s +=221at s = t v v s t 20+= t v s t 2= 2022v v as t -=22t v as =注意:基本公式中(1)式适用于一切变速运动,其余各式只适用于匀变速直线运动..................................。
二.匀变速直线运动的两个重要规律:1.匀变速直线运动中某段时间内中间时刻的瞬时速度等于这段时间内的平均速度:即2t v =v ==ts 20t v v + 2.匀变速直线运动中连续相等的时间间隔内的位移差是一个恒量:设时间间隔为T ,加速度为a ,连续相等的时间间隔内的位移分别为S 1,S 2,S 3,……S N ; 则∆S=S 2-S 1=S 3-S 2= …… =S N -S N -1= aT 2注意:设在匀变速直线运动中物体在某段位移中初速度为0v ,末速度为t v ,在位移中点的瞬时速度为2s v ,则中间位置的瞬时速度为2s v =2220t v v + 无论匀加速还是匀减速总有2t v =v =20t v v +<2s v =2220t v v +三.自由落体运动和竖直上抛运动:v=2tvgtvt=s=212gt22tvgs=总结:自由落体运动就是初速度v=0,加速度a=g的匀加速直线运动.gtvvt-=2.竖直上抛运动2021gttvs-=222vvgst-=-总结:竖直上抛运动就是加速度ga-=的匀变速直线运动.四.初速度为零的匀加速直线运动规律:设T为时间单位,则有:(1)1s末、2s末、3s末、…… ns末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n同理可得:1T末、2T末、3T末、…… nT末的瞬时速度之比为:v1∶v2∶v3∶……:vn=1∶2∶3∶……∶n(2)1s内、2s内、3s内……ns内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2同理可得:1T内、2T内、3T内……nT内位移之比为:S1∶S2∶S3∶……:S n=12∶22∶32∶……∶n2(3)第一个1s内,第二个2s内,第三个3s内,……第n个1s内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)同理可得:第一个T内,第二个T内,第三个T内,……第n个T内的位移之比为:SⅠ∶SⅡ∶SⅢ∶……:S N=1∶3∶5∶……∶(2n-1)(4)通过连续相等的位移所用时间之比为:t1∶t2∶t3∶……:t n=1∶(12-)∶(23-)∶………∶(1--nn)课时4:匀速直线运动、变速直线运动基本概念(例题)一.变速直线运动、平均速度、瞬时速度:例1:一汽车在一直线上沿同一方向运动,第一秒内通过5m,第二秒内通过10m,第三秒内通过20m,第四秒内通过5m,则最初两秒的平均速度是_________m/s,则最后两秒的平均速度是_________m/s,全部时间的平均速度是_________m/s.例2:做变速运动的物体,若前一半时间的平均速度为4m/s,后一半时间的平均速度为8m/s,则全程内的平均速度是_________m/s;若物体前一半位移的平均速度为4m/s,后一半位移的平均速度为8m/s,则全程内的平均速度是_________m/s.二.速度、速度变化量、加速度:提示:1、加速度:是表示速度改变快慢的物理量,是矢量。