三集合容斥原理问题

合集下载

三集合互斥标准公式

三集合互斥标准公式

三集合互斥标准公式
三集合容斥问题的核心公式如下:
标准型:|A∪B∪
C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|。

非标准型:|A∪B∪C|=|A|+|B|+|C|-只满足两个条件的-2×三个都满足的。

列方程组:|A∪B∪C|=只满足一个条件的+只满足两个条件的+三个都满足的。

|A|+|B|+|C|=只满足一个条件的+2×只满足两个条件的+3×三个都满足的,对于以上三组公式的理解,可以通过想象三个圆两两相交的重叠情况来加深。

容斥原理:
容斥原理指把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

如果被计数的事物有A、B两类,那么,A类B类元素个数总和=属于A类元素个数+属于B类元素个数—既是A类又是B类的元素个数。

(A∪B=A+B-A∩B)
如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和=A类元素个数+B类元素个数+C类元素个数—既是A类又
是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C 类的元素个数+既是A类又是B类而且是C类的元素个数。

(A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C)。

三者容斥问题3个公式

三者容斥问题3个公式

三集合容斥原理按题型可以分为两种题型,一种为标准型公式,另一种为变异型公式,接下来,我们就着重看看三集合容斥原理的标准型公式。

集合Ⅰ、Ⅱ、Ⅲ,满足标准型公式:三集合容斥原理标准型公式:Ⅰ+Ⅱ+Ⅲ-Ⅰ·Ⅱ-Ⅰ·Ⅲ-Ⅱ·Ⅲ+Ⅰ·Ⅱ·Ⅲ=总个数-三者都不满足个数通过观察公式,我们可以看到在公式中,出现了9个量,而这个式子的适用前提就是知8求1,即在题目中,若我们看到了8个已知量,要求1个未知量的时候,就要使用这个公式(注:而题目中有时候也是知7求1,其中的三者都不满足的个数可能为零),具体题目如下:(陕西2015)针对100名旅游爱好者进行调查发现,28人喜欢泰山,30人喜欢华山,42人喜欢黄山,8人既喜欢黄山又喜欢华山,10人既喜欢泰山又喜欢黄山,5人既喜欢华山又喜欢黄山,3人喜欢这三个景点,则不喜欢这三个景点中任何一个的有( )人。

A.20B.18C.17D.15E.14F.13G.12H.10解:通过观察,我们发现了八个已知量,还要我们求另一个未知量,故可以用上述公式,我们将数据逐个代入可得:28+30+42-8-10-5+3=100-x,其中x为我们要求的量,求得x=20,答案选择A。

接着,我们来看一下三集合变异型的公式,如下图示:从上式中,我们可以看出,要使用变异型公式,题目中必须要出现仅满足2个情况的个数,这就是与标准型公式最大的不同,下面我们就看看具体的题目:(广东2015)某乡镇举行运动会,共有长跑、跳远和短跑三个项目。

参加长跑的有49人,参加跳远的有36人,参加短跑的有28人,只参加其中两个项目的有13人,参加全部项目的有9人。

那么参加该次运动会的总人数为( )。

A.75B.82C.88D.95解:由于题目中出现“只参加其中两个项目的有13人”,故使用变异型公式,得到下面列式:49+36+28-1×13-2×9=x,通过尾数法(若题目中选项的尾数都不一样的话,就可以用尾数法快速得到答案),判断出答案为82,选B。

三者容斥问题公式

三者容斥问题公式

三者容斥问题公式三者容斥问题是一种涉及三个集合的计数问题,它的基本思想是利用包含与排除原理,也叫容斥原理,来避免重复计数或漏算。

三者容斥问题有一个基本公式:|A∪B∪C|=|A|+|B|+|C|−|A∩B|−|B∩C|−|C∩A|+|A∩B∩C|这个公式的含义是,要求出三个集合的并集的元素个数,可以先分别求出每个集合的元素个数,然后减去两两相交的部分,因为这些部分被重复计算了,最后加上三个集合都相交的部分,因为这部分被多次减去了。

三者容斥问题的推导为了理解这个公式是如何推导出来的,我们可以用维恩图来进行说明。

如下图所示,我们用三个圆形来表示三个集合A、B、C,它们之间有七个不同的区域,分别用1、2、3、4、5、6、7来标记。

如果我们要求出三个集合的并集A∪B∪C,那么就相当于求出这七个区域的总和。

我们可以用下面的方法来计算:首先,我们可以求出每个集合自身的元素个数,即|A|=1+4+5+7,|B|=2+4+6+7,|C|=3+5+6+7。

如果我们把这三个数相加,就得到了1+4+5+7+2+4+6+7+3+5+6+7=63。

但是这个数显然大于A∪B∪C的元素个数,因为有些区域被重复计算了。

其次,我们可以看到两两相交的部分被重复计算了两次,即A∩B=4+7,B∩C=6+7,C∩A=5+7。

如果我们把这三个数相减,就可以消除重复计算的部分。

即63−4−7−6−7−5−7=27。

但是这个数又小于A∪B∪C的元素个数,因为有一个区域被多次减去了。

最后,我们可以看到三个集合都相交的部分被多次减去了,即A∩B∩C=7。

如果我们把这个数再加回来,就可以得到正确的结果。

即27+7=34。

综上所述,我们就得到了三者容斥问题的公式:|A∪B∪C|=|A|+|B|+|C|−|A∩B|−|B∩C|−|C∩A|+|A∩B∩C|三者容斥问题的应用三者容斥问题在实际生活中有很多应用场景,例如:统计某高校做有关碎片化学习的问卷调查结果²。

三者容斥问题3个公式

三者容斥问题3个公式

一、容斥问题的3个公式容斥原理是指一种计数方法。

先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。

1.两个集合的容斥原理:n(A∪B)=n(A)+n(B) -n(A∩B)2.三个集合的容斥原理:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|3.n个集合的容斥原理:要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。

二、容斥问题的应用:对于容斥问题,解题关键做到不重不漏,各个集合相加,理清各集合间的关系,扣掉重复补上遗漏的。

用于理解的主要方法是画文氏图,但考试中应尽量避免画图,这样速度偏慢些。

【例1】:某调查公司对甲、乙、丙三部电影的收看情况向135人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,既看过甲、乙片为30人,既看过乙、丙片为31人,既看过甲、丙片为32人,其中有24人三部电影都看过,问多少人一部也没有看过呢?【解析】:既看过甲、乙片为30人是包含只看过甲乙还有甲乙丙三人两个部分,以M、N、W为既看过甲、乙片的人,N既看过乙、丙片的人,既看过甲、丙片的人,X为三部都看过的人数,这里面W、N、X都是有包含三者这个区域,根据把重复数的次数变为1次,或者说把重叠的面积变为一层,做到不重不漏的原则,则公式转化为I=A+B+C-(M+N+W)+X+Y,135=89+47+63-(30+31+32)+ 24+Y,Y=5人。

结论:三者容斥问题,画图之后可知,三个圆相交的地方有1层、2层、3层三种情况,当将三个集合相加的时候,2层和3层区域分别多计算一次和两次,故若想求全集,需要将重叠区域减掉,故三者容斥问题的公式为:A∪B∪C=A+B+C -A∩B-B∩C-C∩A+A∩B ∩C。

三集合容斥原理公式

三集合容斥原理公式

三集合容斥原理公式
三集合容斥原理公式:A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C。

因为A、B、C与A交B两两的交集它们中都含A交B交C,然而ABC两两交集中应减两次,然而却将ABC 两两交集中的A交B交C减了三次,所以应该加上多减的一次ABC的交集。

三集合容斥问题的核心公式:
标准型:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|。

非标准型:|A∪B∪C|=|A|+|B|+|C|,只满足两个条件的-2×三个都满足的。

列方程组:|A∪B∪C|=只满足一个条件的+只满足两个条件的+三个都满足的。

|A|+|B|+|C|=只满足一个条件的+2×只满足两个条件的+3×三个都满足的,对于以上三组公式的理解,可以通过想象三个圆两两相交的重叠情况来加深。

三集合容斥原理满足两项的最大值

三集合容斥原理满足两项的最大值

三集合容斥原理满足两项的最大值三集合容斥原理是概率论中的重要原理之一,被广泛应用于组合数学、图论、计算几何等领域。

它是一种用于计算多个集合交集的概率的方法。

本文将介绍三集合容斥原理的基本概念、性质及其应用案例。

一、三集合容斥原理的基本概念三集合容斥原理是由两集合容斥原理推广而来。

在两集合容斥原理中,我们考虑了两个集合A和B的交集以及它们的并集。

而在三集合容斥原理中,我们考虑了三个集合A、B、C的交集以及它们的并集。

假设A、B、C是三个集合,它们的交集为A∩B∩C,它们的并集为A∪B∪C。

我们希望计算三个集合的交集的概率P(A∩B∩C)。

二、三集合容斥原理的性质三集合容斥原理可以通过反证法来证明。

假设P(A∪B∪C)是三个集合的并集的概率,P(A∩B)是任意两个集合的交集的概率,以此类推,P(A∩C)和P(B∩C)分别是另外两个集合的交集的概率。

根据概率的定义,我们可以得到以下关系:P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) - P(A∩C) - P(B∩C) + P(A∩B∩C)对于三个集合的交集的概率P(A∩B∩C),可以通过求解上述方程得到。

这就是三集合容斥原理的基本公式。

三、三集合容斥原理的应用案例三集合容斥原理在实际问题求解中有广泛的应用。

下面我们以一个实际问题为例来演示如何使用三集合容斥原理。

假设有一批产品,分别由A、B、C三家公司生产。

我们想要计算至少有两家公司生产的产品的概率。

设P(A)、P(B)、P(C)分别为A、B、C公司生产产品的概率,我们可以先求解P(A∪B)、P(A∪C)和P(B∪C)。

然后利用三集合容斥原理,计算如下:P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) - P(A∩C) - P(B∩C) + P(A∩B∩C)根据问题的设定,P(A∩B)、P(A∩C)和P(B∩C)都是已知的,可以通过实际数据获得。

三集合容斥极值

三集合容斥极值在数学中,集合是一种基本的概念,它用来描述一组具有共同特征的对象。

而集合的容斥原理是一种重要的计数方法,它用来计算多个集合的并集和交集的元素个数。

本文将介绍三集合容斥极值,探讨如何利用容斥原理求解极值问题。

一、什么是三集合容斥容斥原理是一种计数方法,用于计算多个集合的并集和交集的元素个数。

在三集合容斥中,我们考虑三个集合A、B和C的情况。

容斥原理告诉我们,三个集合的元素个数可以通过以下公式计算:|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|其中,|A|表示集合A的元素个数,|A ∩ B|表示集合A和B的交集的元素个数。

二、利用三集合容斥求解极值问题容斥原理不仅可以用于计数问题,还可以用于求解极值问题。

在极值问题中,我们希望找到一组满足某些条件的元素,使得某个函数的值达到最大或最小。

下面我们通过一个例子来说明如何利用三集合容斥求解极值问题。

假设有三个集合A、B和C,它们分别表示某个问题中的三个限制条件。

我们希望找到一组满足这三个限制条件的元素,使得某个函数f(x)的值达到最大。

为了求解这个问题,我们可以按照以下步骤进行:1. 首先,我们将问题转化为一个集合的极值问题。

假设集合D表示满足限制条件的元素集合,我们的目标是求解集合D的极值。

根据题目给出的条件,我们可以将集合D表示为D = A ∩ B ∩ C。

2. 然后,我们利用容斥原理计算集合D的元素个数。

根据容斥原理的公式,我们有|D| = |A ∩ B ∩ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|。

3. 接下来,我们根据题目给出的函数f(x)的定义,计算函数f(x)在集合D上的极值。

具体的计算方法要根据函数的性质来确定,可以是直接计算函数的值,也可以是利用导数等方法。

三集合容斥两个公式的用法

三集合容斥两个公式的用法容斥原理是一种集合论中常用的计数技巧,它通过巧妙地组合集合的交集和并集来解决计数问题。

在这篇文章中,我们将介绍三集合容斥原理的基本概念和用法,并通过两个具体的例子来说明容斥原理的运用。

一、三集合容斥原理的基本概念在集合论中,我们经常会遇到要计算若干个集合的并集和交集中元素个数的问题。

三集合容斥原理就是针对三个集合进行计数的一种技巧。

假设有三个集合A、B和C,我们希望计算它们的并集和交集中元素的个数。

根据容斥原理,可以得到如下公式:|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C||X| 表示集合X中元素的个数,A ∪ B 表示集合A和B的并集,A ∩ B表示集合A和B的交集。

二、三集合容斥原理的两个具体例子接下来,我们通过两个具体的例子来说明三集合容斥原理的用法。

1. 例子一:三个班级学生参加数学竞赛,其中A班有40名学生,B班有35名学生,C 班有30名学生。

如果A班有12名学生参加了英语竞赛,B班有10名学生参加了英语竞赛,C班有8名学生参加了英语竞赛,而且有3名学生同时参加了数学竞赛和英语竞赛。

那么参加了数学竞赛或者英语竞赛的学生总数是多少?根据容斥原理,我们可以利用上面的公式来计算参加了数学竞赛或者英语竞赛的学生总数:|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|= 40 + 35 + 30 - 12 - 10 - 8 + 3= 78参加了数学竞赛或者英语竞赛的学生总数是78人。

2. 例子二:某餐馆供应三种果汁,分别是橙汁、苹果汁和西瓜汁。

一天内统计发现,有30人点了橙汁,25人点了苹果汁,20人点了西瓜汁,同时有7人点了橙汁和苹果汁,6人点了橙汁和西瓜汁,5人点了苹果汁和西瓜汁,而且有2人同时点了三种果汁。

三集合容斥原理

三集合容斥原理
三集合容斥原理是一种常见的概率理论,它有助于解决一些复杂的概率问题。

它可以用来解释一些现象,如天气预报中的概率降雨或概率暴风雨。

三集合容斥原理的核心思想是:如果有三个互不相交的集合A,B 和C,则A,B和C的总体概率等于A的概率加上B的概率加上C 的概率减去A与B的共同概率减去A与C的共同概率减去B与C 的共同概率再加上A,B和C的共同概率。

用数学表示,三集合容斥原理可以表示为:P(A∪B∪C)=P(A)+P(B)+P(C)-P(A∩B)-P(A∩C)-P(B∩C)+P(A∩B∩C) 。

三集合容斥原理可以被用来研究一些概率问题。

例如,假设有三个不同的事件A,B和C,计算它们的概率的总和,可以使用三集合容斥原理:P(A∪B∪C)=P(A)+P(B)+P(C)-P(A∩B)-P(A∩C)-P(B∩C)+P(A∩B∩C) 。

另一个例子是,假设有三个不同的事件A,B和C,那么在这三个事件中,有多少种可能的组合,可以使用三集合容斥原理:P(A∪B∪C)=2^3-1=7 。

总之,三集合容斥原理是一种有用的概率理论,它可以帮助我们解决一些复杂的概率问题。

它的核心思想是:如果有三个互不相交的
集合A,B和C,则A,B和C的总体概率等于A的概率加上B的概率加上C的概率减去A与B的共同概率减去A与C的共同概率减去B与C的共同概率再加上A,B和C的共同概率。

三集合容斥标准公式

三集合容斥标准公式
二集合容斥原理的公式为:|A∪B|=|A|+|B|-|A∩B|,三集合容斥原理的本质和二集合容斥原理是一样的,只不过由于又多了一个集合,公式和图形描述都变得更加复杂。

其中A和B是两个集合,|A|表示集合A中的元素个数。

在理解容斥原理时,完全可以把元素的个数类比做图形的面积,从而二集合容斥原理可以用下面的图形来表示:
扩展资料:
三集合容斥问题的核心公式如下:
标准型: |A∪B∪C | = | A | + | B | + | C | - | A∩B | - | B∩C | - | C∩A | + | A∩B∩C |。

非标准型:|A∪B∪C | = | A | + | B | + | C | -只满足两个条
件的- 2×三个都满足的。

列方程组:|A∪B∪C | =只满足一个条件的+只满足两个
条件的+三个都满足的。

| A | + | B | + | C | =只满足一个条件的+2×只满足两个条件
的+3×三个都满足的,对于以上三组公式的理解,可以通过想
象三个圆两两相交的重叠情况来加深。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行测数学运算技巧:三集合容斥原理问题的解决方法
容斥原理类型是目前国家、各地区公务员考试数学运算的“常客”题型,对于大部分应试者来说,还是比较头痛的一种类型。

这里我们介绍一下三集合容斥原理问题的解决方法。

1、三个集合的容斥关系公式:
A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
2、三个集合的容斥关系(三元)
例题:假设有100人参加了三个兴趣小组。

其中参加数学兴趣小组的有55人,参加语文兴趣小组的有65人,参加英语兴趣小组的有70人,同时参加语文和数学兴趣小组的人数是31人,同时参加数学和英语兴趣小组的人数是40人,同时参加语文和英语兴趣小组的有25人,则三个兴趣小组都参加的人数是多少人?
(1) A+B+T=至少参与一项的总人数(无重叠)
(2) A+2B+3T=至少参与一项的总人数(含重叠部分)
(3) B+3T=至少参与两项的总人数(含重叠)
(4) T三项都参与的人数。

这里介绍一下A、B、T分别是什么
A=x+y+z;表示只参加一个兴趣小组的人数,在图中反应的区域就是每个圆圈互不重叠的部分。

B=a+b+c;表示仅参加了两个兴趣兴趣小组的人数,是图中两两相交的部分总和(不含中间的T区域)
T=全部都参加的人数。

也就是图形当中最中间的部分T。

例题通过公式有如下解法:
(1) A+B+T=100;
(2) A+2B+3T=55+65+70=190
(3) B+3T=31+40+25=96
实际上我们要求的是T, (1)+(3)-(2)=T。

即得到答案T=100+96-190=6
3、三元容斥公式应用实例
三元容斥涉及的对象比较多。

我们通常建议考生根据不同提问情况区别对待。

本小节先对一般情况的题目做一些分析。

例:如图所示,X、Y、Z分别是面积为64、180、160的三个不同形状的纸片,覆盖住桌面的总面积是290,其中X与Y、Y与Z、Z与X重叠部分的面积依次是24、70、36,那么阴影部分的面积是:【09国考】
A.15
B.16
C.14
D.18
【解析】参考答案为B。

这就是典型的容斥原理图形。

求解的阴影面积即为三个集合都相交的区域。

根据公式(1) A+B+T=290
(2) A+2B+3T=64+180+160=404
(3) B+3T=24+70+36=130
则组合这些表达式就会得到:(1)+(3)-(2)=T=290+130-404=16 故答案是16
例:某市对52种建筑防水卷材产品质量抽检,其中8种产品的低温度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?【11国考】
A.37
B.36
C.35
D.34
【解析】参考答案D。

这个题目很有意思,他把我们传统做容斥原理的习惯思维颠覆了一下。

通常我们都是根据已知条件多少合格的人后求多少不合格的。

那么这里我们也可以把公式所代表的含义颠倒过来用,A表示至少有一项不合格,B表示至少有2项不合格,T表示三项都不合格。

根据公式:
(1) A+2B+3T=8+10+9=27;
(2) B=7;
(3) T=1.
可得到A+B+T=27-B-2T=27-7-2=18. 因此合格的有52-18=34.
例:甲、乙、丙三个人共解出20道数学题,每人都解出了其中的12道题,每道题都有人解出。

只有一人解出的题叫做难题,只有两人解出的题叫做中等题,三人解出的题叫做容易题,则难题比容易题多()题?
A.6
B.5
C.4
D.3
【解析】参考答案C。

稍微整理一下题目,难题也就是三个圆圈中不参与重叠的部分,也就是公式当中的A所表示的;中等题目是只重叠过1次,也就是公式当中的B,简单题则是公式当中的T。

(1)A+B+T=20
(2)A+2B+3T=12×3=36
要求解的是A-T=?;通过上述两个表达式变型可得到:(1)×2-(2)=A-T=20×2-36=4.
如果不知道怎么变型求解。

可以利用我们上面讲的代入消去法去做,令B=0, 则可把三元变为2元。

即 T=8,A=12. 即A-T=4.
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档