变压器绕线和制作方法

变压器绕线和制作方法
变压器绕线和制作方法

变压器的绕制方法计算及注意事项

生活中各种电器的工频变压器无论是自行设计绕制,还是修复烧坏的变压器,都会涉及到部分简单的计算,教科书上的计算公式虽然严谨,但实际运用时显得复杂,不甚方便。本文介绍实用的变压器计算的经验公式。先看一实例:

实例:现要制作一个80W的降压变压器,输入220V 输出45V,

请问用多大胶心,初次级各用什么线径,绕多少匝?

(以下U1为初级电压,U2为次级电压,I1为初级电流,I2为次级电流)

1、根据需要的功率确定铁芯截面积的大小

S=1.25=1.25√80 ≈11.2cm2

2、求每伏匝数

ωo=45/11.2=4.02匝

3、求线圈匝数

初级ω1=U1ωo=220X4.02=884.4匝

次级ω2=1.05 U2ωo =1.05X45X4.02≈189.9匝

4、求一、二次电流

初级I1=P/U1=80/220≈0.36A

次级I2=P/U2=80/45≈1.78A

5、求导线直径

初级d1=0.72 (根号I1)=0.72√0.36≈0.43mm

次级d2=0.72 (根号I2)=0.72√1.78≈1.28mm

注:此为理论计算值,实际绕制可根据结果改变各值。本人绕制线径均大于理论值,扎数比变为88:20使用时并无异常。

单相小型变压器简易计算方法

1、根据容量确定一次线圈和二次线圈的电流

I=P/U

I单位A、P单位vA、U单位v.

2、根据需要的功率确定铁芯截面积的大小

S=1.25√P(注:根号P)

S单位cm2

3、知道铁芯截面积(cm2)求变压器容量

P=(S/1.25)2(VA)

4、每伏匝数

ωo=45/S (注:45为系数,下文提到)

5、导线直径

d=0.72√I (根号I)

6、一、二次线圈匝数

ω1=U1ωo

ω2=1.05U2ω (注:考虑损耗,次级扎数要稍大些,1.05亦可改变)?铁芯的选择

根据自己需要的功率选择合适的铁芯是绕制变压器的第一步。如果铁芯(硅钢片)选用过大,将导致变压器体积增大,成本升高,但铁芯过小,会增大变压器的损耗,同时带负载能力变差。

为了确定铁芯尺寸,首先要算出变压器次级的实际消耗功率,它等于变压器次级各绕组电压、负载电流的乘积之和。如果是全波整流变压器,应以变压器次级电压的1/2计算。次级绕组消耗功率加入变压器本身损耗功率,即为变压器初级视在功率。一般次级绕组功率在10w以下的变压器,其本身损耗可达次级实际消耗功率的30~50%,其效率仅为50~70%。次级绕组功率在30W以下损耗约20~30%,50W以下损耗约15~20%,100w以下损耗约10~15%,100W以上损耗约10%以下,上述损耗参数是关于普通插片式变压器的。如果按照R型变压器、c型变压器、环形变压器的顺序,损耗参数依次减小。

根据上述计算的变压器初级总功率可以选定铁芯。铁芯面积S=a×b (cm2). 如附图所示:

变压器视在功率与s的关系用下述经验公式选用:s=K

P1为变压器初级总视在功率,单位为:VA(伏安),s为应选铁芯截面积,K为一系数,随变压器P1大小不同选用不同的K值。同时考虑到硅钢片之间的绝缘漆、空隙的影响,K与P1关系P1 :K值:

10VA以下2~2.2

50VA以下2~1.5

100VA以下 1.5~1.4

?每伏匝数计算

选定铁芯s以后。再确定每伏匝数,以使绕制的变压器有台理的激磁电流。常用的经验公式为:N=(40~55)/S,N为每伏匝数。

系数取为40

比较高级的高硅钢,用眼观察表面有鳞片结

晶.且极脆,只弯折1~2次即断裂,断处参差

不齐

系数取50以上

硅钢片表面光洁,弯折4~5次仍不易断,断

面为整齐直线

导线有电阻,电流流过时会有电压降,求出的次级匝数应增加5~10%(根据负载电流选择,电流大者可增加较大比例)。

?导线直径的选择

根据各绕组负载电流的大小,选择不同直径的漆包线。可用下列经验公式求出:

d=0.8,(0.8为系数,取值不同,上例采用0.72。深入理解高频还要考虑穿透深度公式:d=66.1/(f)^1/2)

单位:Ⅰ--A. d(导线直径)--mm。

?绕制方法及注意事项

由于现在的漆包线绝缘强度大幅度提高,因此对50W以下的小功率变压器大多采用阻燃塑料骨架叠绕法,但必须选用高强度漆包线,且绕制时仍应逐圈排线,严禁大幅度斜跨,以免增大导线间电位差。

对50W以上的变压器,由于每伏匝数减少,导线间电压差较高,最好采取每层垫绝缘纸(0.05mm厚的电缆纸、牛皮纸)的方法,在绕制中应绝对避免上层导线滑入下层。各绕组间绝缘应视绕组电压决定。初次级之间应垫4层以上0.1mm的电缆纸,忌用不干胶胶带。上述叠绕法

的小功率变压器,如果次级有两组以上绕组,每组之间也应用两层电缆纸绝缘。如果变压器是用在音响或视听器材中.在多层绕制法中初次级之间应垫入静电屏蔽层。

绕好后.插硅钢片也需注意、必须插紧,以避免产生电磁噪音。无论双E形还是EI形,其端口要紧密接触.宜交叉插,不能有空隙。最后的4~5片可从中间插入,以免损坏线包。然后进行烘干、浸漆。对50W以下的变压器可采取内热法烘干。方法是:将变压器所有次级绕组短路,与60~100W/220V灯泡串联接入市电,使其自动升温。灯泡越大温度越高,但在密闭状态下,使其温度在80度以下较安全。

电源变压器简易设计

电源变压器是低频变压器. 本文介绍的方法适合50Hz一千瓦以下普通交流变压器的设计.

(1) 电源变压器的铁心. 它一般采用硅钢片. 硅钢片越薄,功率损耗越小,效果越好.整个铁心是有许多硅钢片叠成的,每片之间要绝缘.买来的硅钢片, 表面有一层不导电的氧化膜, 有足够的绝缘能力.国产小功率变压器常用标准铁心片规格见后续文章.

(2) 电源变压器的简易设计.设计一个电源变压器,主要是根据电功率选择变压器铁心的截面积,计算初次级各线圈的圈数等.所谓铁心截面积S是指硅钢片中间舌的标准尺寸a和叠加起来的总厚度b的乘积.如果电源变压器的初级电压是U1,次级有n个组,各组电压分别是U21,U22,┅,U2n, 各组电流分别是Ⅰ21, Ⅰ22,┅, Ⅰ2n,...计算步骤如下:

第一步,计算次级的功率P2.次级功率等于次级各组功率的和,也就是P2 =U21*I21+U22*I22+┅+U2n*I2n.

第二步, 计算变压器的功率P.算出P2后.考虑到变压器的效率是η,那么初级功率P1=P2/η,η一般在

0.8~0.9之间.变压器的功率等于初,次级功率之和的一半,也就是P=(P1+P2)/2

第三步, 查铁心截面积S.根据变压器功率,由式(2.1)计算出铁心截面积S,并且从国产小功率变压器常用的标准铁心片规格表中选择铁心片规格和叠厚.

第四步, 确定每伏圈数N.根据铁心截面积S和铁心的磁通密度B,由式(2.2)得到初级线圈的每伏圈数N.铁心的B值可以这样选取: 质量优良的硅钢片,取11000高斯(高斯定理);一般硅钢片,取10000高斯;铁片,取7000高斯.考到导线电阻的压降, 次级线圈每伏圈数N'应该比N 增加5%~10%,也就是N'在1.05N~1.1N之间选取.

第五步,初次级线圈的计算.初级线圈N1=N*U1.次级线圈N21=N'*U21,N22=N'*U22 ┅,N2 =N'*U2n. 第六步, 查导线直径.根据各线圈的电流大小和选定的电流密度,由式(2.3)可以得到各组线圈的导线直径.一般电源变压器的电流密度可以选用3安/毫米?

第七步, 校核. 根据计算结果,算出线圈每层圈数和层数,再算出线圈的大小,看看窗口是否放得下.如果放不下,可以加大一号铁心,如果太空,可以减小一号铁心.采用国家标准GEI铁心,

而且舌宽a和叠厚b的比在1:1~1:1.7之间, 线圈是放得下的.各参数的计算公式如下: ln(S)=0.498*ln(P)+0.22 ┅┅┅┅┅┅┅┅┅┅(2.1)

ln(N)=-0.494*ln(P)-0.317*ln(B)+6.439┅┅┅┅┅(2.2)

ln(D)=0.503*ln(I)-0.221┅┅┅┅┅┅┅┅┅┅┅(2.3)

变量说明:

P: 变压器的功率. 单位: 瓦(W)

B: 硅钢片的工作磁通密度. 单位: 高斯(Gs)

S: 铁心的截面积. 单位: 平方厘米(cm2)

N: 线圈的每伏圈数. 单位: 圈每伏(N/V)

I: 使用电流. 单位: 安(A)

D: 导线直径. 单位: 毫米(mm)

GEI铁心规格

铁心片铁心规格尺寸(mm) 中间舌片净截面积(cm2) 型号a*b c H h L 铁心片厚0.2mm 铁心片厚0.3mm

变压器的铁心与绕组

为减小交变磁通在铁心中所引起的涡流损耗,铁心一般用厚为0.35-0.5mm的硅钢片叠装而成;并且在硅钢片两面涂以绝缘漆.信号变压器还采用坡莫合金作铁心.硅钢片有热轧和冷轧两种. 热轧硅钢片的工作磁通密度一般取0.9-1.2T,钢片常冲成"III"形,叠装成铁心.绕组套在中间的铁心柱上. 冷轧硅钢片的导磁性能比热轧好,它的工作磁通密度允许达到1.8T,所以铁心体积可以缩小.它的导磁有方向性, 顺着辗轧方向的导磁性能好,故通常将冷轧硅钢片卷成环形铁心,然后切成两半C形, 将绕组分别套在铁心柱上以后, 再将两半铁心粘成整体. 变压器的绕组由原边绕组和副边绕组组成.原边绕组接输入电压,副边绕组接负载.原边绕组只有一个,副边绕组为一个或多个.原副边绕组套装在同一铁心柱上.套在两个铁心柱上的原边绕组或副边绕组可分别相互串联或并联.

附:变压器原副边绕组要套在同一铁心柱的原因把原副边绕组套在同一铁心柱上时,由于原副边绕组紧挨在一起(间隙实际上很小,它等于原副边绕组之间绝缘纸的厚度)部分漏磁通在空气中的路径大受限制,因此漏磁通小.而边绕组没有套在原边绕组上时,漏磁通在空气中可以自由经过,无空间限制,因此在同样的磁势下漏磁通就大.

将原副边绕组套在一起的合理之处即在于漏抗压降小,对变压器运行有利.因为变压器副边电压是随副边电流变化而变化的,减小原副边的漏阻抗就可以减小电压变化.为了使变压器副边电压比较稳定,总是设法减小变压器的漏抗. 如果把变压器的原副边绕组分开放置, 则漏抗将大大增加,以致负载变动时副边电压变化很大, 这样的变压器就不能满足使用上的要求.

变压器的规格参数与使用

使用变压器首先要弄清并严格遵守制造厂提供的铭牌数据,以避免因使用不当而不能充分利用,甚至损坏.变压器铭牌上的主要额定数据有:

?额定电压U1和U2

原边额定电压U1是指原边绕组上应加的电源电压(或输入电压),副边额定输出电压U2通常是指原边加U1时副边绕组的开路电压.使用时原边电压不允许超过额定值(一般规定电压额定值允许变化±5%).考虑有载运行时变压器有内阻抗压降,所以副边额定输出电压U2应较负载所需的额定电压高5-10%.对于负载是固定的电源变压器, 副边额定电压U2有时是指负载下的输出电压.

附:输入电压不能超过额定电压的原因变压器中主磁通和激磁电流的关系称为铁心的磁化曲线,它是一条具有饱和特性的非线性曲线.当主磁通小于额定电压时对应的主磁通时, 磁化曲线近似为线形;超过此值后,主磁通就逐渐趋向饱和.此时,如果再增加磁通, 即增加U1,则电流就会急剧增加,这样变压器就会因过热而马上烧毁.因此,在使用变压器时,必须注意变压器的额定电压和电源电压要一致.

?额定电流I1和I2

额定电流是指变压器按规定的工作时间(长时连续工作或短时工作或间歇断续工作)运行时原副边绕组允许通过的最大电流,是根据绝缘材料允许的温度定下来的.由于铜耗,电流会发热.电流越大,发热越厉害,温度就越高.在额定电流下,材料老化比较慢.但如果实际的电流大大超过额定值,变压器发热就很厉害,绝缘迅速老化,变压器的寿命就要大大缩短.

?额定容量S

额定容量是视在功率,是指变压器副边额定电压和额定电流的乘积.它不是变压器运行时允许输出的最大有功功率,后者和负载的功率因数有关.所以输出功率在数值上比额定容量小.

?额定频率

使用变压器时,还要注意它对电源频率的要求.因为在变压器中,在设计变压器时,是根据给定的电源电压等级及频率来确定匝数及磁通最大值的. 如果乱用频率, 就有可能变压器损坏.

例如一台设计用50Hz,220V电源的变压器,若用25Hz,220V电源,则磁通将要增加一倍,由于磁路饱和,激磁电流剧增,变压器马上烧毁.所以在降频使用时,电源电压必须与频率成正比地下降.另外,在维持磁通不变的条件下,也不能用到400Hz,1600V的电源上.此时虽不存在磁路的饱和问题,但是升频使用时耐压和铁耗却变成了主要矛盾.因为铁耗与频率成1.5-2次方的关系.频率增大时, 铁耗增加很多. 由于这个原因, 一般对于铁心采用0.35mm厚的热轧硅钢片

的变压器,50Hz时的磁通密度可达0.9-1T,而400Hz时的磁通密度只能取到0.4T.此外变压器用的绝缘材料的耐压等级是一定的,低压变压器允许的工作电压不超过300-500V. 所以在升频使用时,电源电压不能与频率成正比的增加, 而只能适当地增加.

高频逆变器的变压器线圈绕制方法

简单高频逆变器的绕制方法:首先用纸盒或塑料片根据铁芯面积做一个线圈架.然后在线圈架上绕线圈.先绕初级,初级绕好后,用电容器纸或牛皮纸绕三层,做为初次级的绝缘,再绕次级,次级两个54圈(这个变压器输入是220伏,输出是双27V)按照这样可以得出每圈是0.5V,也就是初级是440圈绕成的.次级绕好后再绕二层电容器纸或牛皮纸与铁芯绝缘.然后插铁芯,可以三片铁芯一起交叉插.铁芯插好后通电试验,如果电压符合要求,浇绝缘漆烘干.线圈的层与层之间可用电容器纸或牛皮纸绝缘.初级用薄纸.也可不用.本人用此方做过好多变压器.运行效果良好.

高频逆变器变压器的制作:可根据自己的需要选用一个机床用的控制变压器.我用的是100W 的控制变压器.将变压器铁芯拆开,再将次级线圈拆下来.并记录下每伏圈数.然后重新绕次级线圈.用1.35mm的漆包线,先绕一个22V的线圈,在中间抽头,这就是主线圈.再用0.47的漆包线线绕两个4V的线圈为反馈线圈,线圈的层间用较厚的牛皮纸绝缘.线圈绕好后插上铁芯.将两个4V次级分别和主线圈连在一起,注意头尾的别接反了.可通电测电压.如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的.可换一下接头.这样变压器就做好了.

高频逆变器电阻的选择:两个与4V线圈串联的电阻可用电阻丝制作.可根据输出功率大小选择电阻的大小,一般的几个欧姆.输出功率大时,电阻越小,偏流电阻用1W的300欧姆的电阻.不接这个电阻也能工作.但由于管子的参数不一致有时不起振,最好接一个.

三极管的选择:每边用三只3DD15并联.共用六只管子.电路连接好后检查无错误,就可以通电调整了.

接上蓄电池,找一个100W的白炽灯做负载.打开开关,灯泡应该能正常发光.如果不能正常发光,可减小基极的电阻.直到能正常发光为止.再接上彩电看能否正常启动.不能正常启动也是减小基极的电阻.调整完毕后就可以正常使用了.

我的高频逆变器和充电器做在了一个机壳内,输出并联在了家里的交流电源上.并安装上了继电器,停电时可自动切换为逆变器供电,并切断外电路,来电时自动接上交流电切断逆变器供电并转入充电状态.如果没有停电来电状态指示灯的话,停电来电时无感觉.

绕制变压器的简单方法

绕制变压器的方法相对比较简单:首先确定你的变压器功率.例如50瓦,先到电器市场去购买绕变压器用的铁芯.那利有适合你适用的各种变压器铁心.这一步很重要.在变压器的面积确定后就要决定铁心的厚度.这里所说的面积主要是指铁心的中间部分的宽度我们叫它舌宽,铁心的面积等于舌宽乘以厚度.具体计算方法为:先计算每伏所需要的匝数.公式为:4.5乘以10的五次方再除以(铁心的磁通密度X铁心的截面积).铁心的磁通密度是要凭经验来判断的一般在1000至20000高斯左右,取一片铁心用手上下来回的折以下,如比较脆容易折断磁通密度就比较高,质量就比较好.大约在15000至20000左右.

接下来根据电压计算匝数,只要每伏匝数乘以电压就是了.计算初级220伏,然后计算次极灯丝,接下来计算屏极电压.

然后就是要具体的绕制了,在绕之前先要做一个线圈的模具,是用硬纸板和胶粘接出来的中间一个方形的筒子大小和铁芯的外径一样(和舌宽与厚度一样),以便绕好了后将铁心一片一片的放进硬纸壳儿.但应该记住铁心在纸壳儿里边是交叉的放进去的目的是为了变压器制作完成后使用时铁芯漏磁少点儿.

还应注意再绕制线圈时一般是先绕出及220伏的.再绕制屏极的,最后绕制灯丝的.另外还要根据它们各个线圈的具体需要电流强度来选择漆包线的线径.

还应注意的是在绕制线圈时必须一圈一圈一层一层的密绕.不能够乱绕.尽管我们现在的漆包线的耐压强度都很高不太会出现匝间短路的现象.但密绕的目的主要是为了能够有效地减

少经整流后的50赫兹交流声.如果能够在初级和次极之间多绕一层隔离层就更好了.隔离层也使用漆包线任意线经只绕一层.只接一端而且是直接接地另一端空着.也可以降低交流声.还要指出的是在初级和次极之间是要使用普通的纸绕上两层为的是把初级和次级进行隔离开来以防触电.

最后一道手续是全部绕制完成后先进行通电试验,用万用表测量一下各个绕组的输出电压是否准确.再确定无误后再进行一道手续:将变压器整体放入容器中倒入绝缘清漆,并使其浸透然后放在炉子边或是烤箱中烤干.这样在工作时铁心就不会因为固定不好而发出振动的翁嗡声.如同老的那种日光灯整流器发出的声音

怎么样,现在知道变压器是怎样绕制了吧.动手试试吧。

电源变压器计算(实例说明)

电源变压器计算

高压输出:260V,150ma ;

灯丝1:5V,3A;

灯丝2:6.3v,3A 中心处抽头;

初、次级间应加有屏蔽层。

根据他的要求铁芯型号采用“GEIB一35”。计算如下:

?计算变压器功率容量(输入视在功率):

P =(1.4×高压交流电压×电流+灯丝1电压×电流+灯丝2电压×电流)/ 效率

=(1.4×260×0.15+5×3+6.3×3)/ 0.9

=(54.6+15+18.9)/ 0.9

=98.33VA

?计算原边电流

I1=1.05×P / 220=0.469A

?按照选定的电流密度(由计划的连续时间决定),选取漆包线直径。

如按照3A/mm2计算:D=0.65× (0.65×电流的开方)

并规整为产品规格里有的线径(可查资料):

选定:

原边直径D1=0.45mm

高压绕组直径D2=0.25mm

灯丝绕组直径D3=D4=1.12mm

(4)铁心截面面积

S0=1.25√(P)=1.25×√98=12.5CM2

(5)铁心叠厚:

根据他的要求铁芯型号采用“GEIB一35”,

查到:舌宽=35MM=3.5CM

则:叠厚=12.5 / 3.5 =3.6CM

一般地(叠厚/舌宽)在1-2之间是比较合适的。

(6)铁心有效截面积:

S1=舌宽×叠厚/ 1.1 =11.454 CM2

(7)计算每伏匝数

计算式:每伏匝数n=(45000)/(B×S1)

其中

B=10000-12000(中等质量硅钢片,如原先上海无线电27厂产品铁心)或15000(Z11等高质量硅硅片)

或8000(电动机用硅钢片)。

S1:铁心有效截面积,等于(舌宽×叠厚)/1.1

假定是中等质量铁心,并且保守点,取B=10000 则:

n=450000 / B×S1

= 450000 /(10000×11.454)

=3.93 (T / V )

(8)计算每组匝数

原边圈数:N1=220n=220×3.93×0.95=822(T)

副边高压:N2=260×1.05×n=1073(T)--这是一半,还要再×2=2146T。

灯丝1(5V):N3=5×1.05×n=21(T)

灯丝2(6.3V):N3=6.3×1.05×n =26(T)

(10)计算每层可绕圈数(窗口高度两端要留下3MM):

查得该铁心窗口高度h=61.5mm,

查表得知:选用的漆包线带漆皮最大外径

D1Max=0.51mm

D2Max=0.30mm

D3Max=1.23mm

D4Max=1.23mm

按照每层可绕:N =(h-0.5-2×3)/(K×DMax)计算

(分子的含义是:由h=61.5mm==》可绕线宽度为61.5-0.5-2×3=55mm)

(分母是排线系数K×最大外径DMax,对于初学者,小于0.3的线K=1.20,0.3-0.8的线K=1.15,大于0.8的线K=1.10。。如您已经有较好的绕线经验,K可以=105~102)

代入上述数据得到:

原边每层可绕:94圈

高压每层可绕:154圈

灯丝每层可绕:39圈(最后有讨论)。

(也可以直接查“每厘米可绕圈数表”得到)

(11)各绕组的层数

前面已经算出各组圈数则,则各绕组的层数:

原边=822/ 94=8.74,取9层

高压=2146/154=13.94,取14层

灯丝1:1层,

灯丝2:1层。

(12)绝缘设计

骨架,用1MM厚红钢纸,外加0.15MM覆膜青壳纸1层+0.08MM电缆纸1层;

原边绕组垫纸用0.08MM电缆纸;

副边高压绕组垫纸用0.05MM电缆纸;

组间绝缘用0.08MM电缆纸1层+0.15MM覆膜青壳纸2层+0.08MM电缆纸1层;(绕组外绝缘同组间绝缘)

(13)计算线包(压实的)厚度:

=(1+0.15+0.08)(骨架及内层绝缘)

+(9×0.51+8×0.08)(原边绕组)

+(0.08×2+0.15×2)(组间绝缘1)

+(隔离层,如可能用0.05铜箔,如无,就用与高压绕组同直径的线绕一层代)

+(0.08×2+0.15×2)(组间绝缘2)

+(14×0.30+13×0.05)(高压绕组)

+(0.08×2+0.15×2)(组间绝缘3)

+(1.23)(灯丝1)

+(0.08×2+0.15×2)(组间绝缘4)

+(1.23)(灯丝2)

+(0.08×2+0.15×2)(线包外间绝缘)

=1.23+5.23+0.46+0.30+0.46+4.85+0.46+1.23+0.46+1.23+0.46

=16.37mm

(14)检验“蓬松系数”

蓬松系数=铁片窗口宽度/ 线包(压实的)厚度

“蓬松系数”一般可以在1.2-1.3间,蓬松系数小者要注意绕的十分紧才行,

蓬松系数过大说明选的铁心规格大了,要重选重算。对于经验不多的初学者,不妨以

1.3-1.35进行检验。不然可能绕完了发现装不进铁片。

检验:

蓬松系数=22 / 16.37 =1.34 。

(15)修正方案::

灯丝绕组可以选用0.8nn直径漆包线2根并绕(0.80线最大外径0.89,每层可绕54圈,

6.3V绕组26×2,刚好可以绕下)。这样导线可以分布开来不至于只有半边,绕出来的线

包就比较平整。还可以减小绕组厚度。

这时,计算线包(压实的)厚度:

=1.23+5.23+0.46+0.30+0.46+4.85+0.46+0.89+0.46+0.89+0.46

=15.69mm

蓬松系数=22 / 15.69 =1.41

这就非常之宽松了,说明选的铁心规格大了,利用手头现有铁心当然可以。

(16)当然,也可以选用2.5A/mm2的电流密度。

如何自制环形变压器

家用功放机大都采用环形变压器供电。环形变压器有漏磁小、转换效率高、频率响应宽等特点,可以提高功放机音质。如果环形变压器烧坏,又买不到原配型号来替换,那只有采取手工绕制的方法来复制。

下面介绍手工绕制的方法。

?拆除旧绕组

用剪刀将绝缘纸剪破后即露出变压器的次级绕组,次级绕组线径通常较粗,在实际维修中极少见到有烧坏的情况,因其匝数不太多,故可一匝一匝地拆了以便统计匝数。多个次级绕组均可采取类似方法边拆边计匝数。初级绕组线径较细,烧坏的情况较常见。由于初级绕组的匝数多在千匝以上,加之绝缘材料被烧熔后附着于线匝上,若仍采用上述方法来统计匝数,显然是很麻烦的。快速处理方法是:用剪刀沿圆周上中心线将初级统组线圈一层层剪断,然后将剪断的线圈剥离铁心,再数出根数即得总匝数。

?对环形铁心进行绝缘处理

环形变压器的铁心通常用优质高导磁率硅钢带卷制而成。当初级线圈烧坏后,浸有绝缘漆的环形铁心的绝缘层同时会不同程度地受损,在重新绕线圈前应进行浸漆处理。方法是:将环形铁心浸在绝缘漆中,数分钟后取出晾干,再在烘箱中烘干。然后在内外圆周上各粘贴一层胶带,再将玻璃纸划成宽约2cm的条状,将铁心包裹卷绕一层,并用双面胶带粘连接头。

?线梭制作

为了便于手工操作,必须制作一种专用的绕线线棱。笔者设计了一种“工”字形的线梭,如图2所示。它可用塑料薄片或不锈钢薄片加工而成,可取为单股线匝周长的8倍左右,宽度小于环形铁心内径2cm左右。这样的线核不仅穿绕方便,还可减少穿绕次数。显然,漆包线在线梭上绕一圈的长度为单股线匝周长的8×2=16倍,若采用双线并绕,线梭上每一圈漆包线就可在环形铁心上绕32匝。以影皇AV-228专业功率放大器为例,其环形变压器初级线圈为1068T。双线并绕为534T,因而在线梭上绕534÷I6≈34圈漆包线就够用了。

?绕制线圈

先绕初级绕组,取和原线径相近的优质高强度漆包线,双线并绕在“工”字形线梭上,圈数满足要求后剪下。将双线头用双面胶粘附在环形铁心的外圆周上,使线梭在环形铁心的内孔中穿绕,如图3所示。一层线圈绕好后,刷上一层绝缘漆(有利于线匝定位及绝缘),并用玻璃纸包上一层,再绕第二层线圈。绕好后,将两线圈的头尾相接使其串联,另两根线头用软皮线焊接引出,并做好绝缘。在初级统组上加一层层间绝缘纸后再绕次级绕组,绕制

方法与初级绕组绕法类同。当所有绕组绕制完毕后,将环形变压器放入恒温箱中烘烤一段时间,以使绝缘漆干燥。再在最外层用一层较厚的绝缘纸包好,环形变压器就制作完成了。

环形变压器的手工绕制法

家用功放机大都采用环形变压器供电。环形变压器有漏磁小、转换效率高、频率响应宽等特点,可以提高功放机音质。如果环形变压器烧坏,又买不到原配型号来替换,那只有采取手工绕制的方法来复制。下面介绍手工绕制的方法。互.拆除旧绕组用剪刀将绝缘纸剪破后即露出变压器的次级绕组,次级绕组线径通常较粗,在实际维修中极少见到有烧坏的情况,因其匝数不太多,故可一匝一匝地拆了以便统计匝数。多个次级绕组均可采取类似方法边拆边计匝数。初级绕组线径较细,烧坏的情况较常见。由于初级绕组的匝数多在千匝以上,加之绝缘材料被烧熔后附着于线匝上,若仍采用上述方法来统计匝数,显然是很麻烦的。快速处理方法是:用剪刀沿圆周上中心线将初级统组线圈一层层剪断,然后将剪断的线圈剥离铁心,再数出根数即得总匝数。开剪方法如图所示。

2.对环形铁心进行绝缘处理

环形变压器的铁心通常用优质高导磁率硅钢带卷制而成。当初级线圈烧坏后,浸有绝缘漆的环形铁心的绝缘层同时会不同程度地受损,在重新绕线圈前应进行浸漆处理。方法是:将环形铁心浸在绝缘漆中,数分钟后取出晾干,再在烘箱中烘干。然后在内外圆周上各粘贴一层胶带,再将玻璃纸划成宽约2cm的条状,将铁心包裹卷绕一层,并用双面胶带粘连接头。

3.线梭制作

为了便于手工操作,必须制作一种专用的绕线线棱。笔者设计了一种“工”字形的线梭,如图2所示。它可用塑料薄片或不锈钢薄片加工而成,可取为单股线匝周长的8倍左右,宽度小于环形铁心内径2cm左右。这样的线核不仅穿绕方便,还可减少穿绕次数。显然,漆包线在线梭上绕一圈的长度为单股线匝周长的8×2=16倍,若采用双线并绕,线梭上每一圈漆包线就可在环形铁心上绕32匝。以影皇AV-228专业功率放大器为例,其环形变压器初级线圈为1068T。双线并绕为534T,因而在线梭上绕534÷I6≈34圈漆包线就够用了。

4.绕制线圈

先绕初级绕组,取和原线径相近的优质高强度漆包线,双线并绕在“工”字形线梭上,圈数满足要求后剪下。将双线头用双面胶粘附在环形铁心的外圆周上,使线梭在环形铁心的内孔中穿绕,如图3所示。一层线圈绕好后,刷上一层绝缘漆(有利于线匝定位及绝缘),并用玻璃纸包上一层,再绕第二层线圈。绕好后,将两线圈的头尾相接使其串联,另两根线头用软皮线焊接引出,并做好绝缘。在初级统组上加一层层间绝缘纸后再绕次级绕组,绕制方法与初级绕组绕法类同。当所有绕组绕制完毕后,将环形变压器放入恒温箱中烘烤一段时间,以使绝缘漆干燥。再在最外层用一层较厚的绝缘纸包好,环形变压器就制作完成了。

一台好的功放必须有一只好的电源变压器,这已经是业内的共识。但是选用什么样的变压器才能使功放的声音更符合你的口味,对于不少初级diy爱好者来说,也许并不是很清楚。本文简述几种常用电源变器,希望能够对喜欢焊机初入此道的发烧友有所帮助。

变压器的出现已经有100多年的历史了,六十年代以前,世界上普遍使用的变压器铁芯结构为e形或c形,截面为矩形,采用插片式或中间切割工艺制造,铁芯的质量和一致性都很差。变压器的电性能参数难以得到提高。随着科学技术的进步,变压器铁芯的结构经过了几次大的改进。变压器铁芯材料也由热轧低硅片发展到热轧高硅片、冷轧取向硅片、非晶

态合金片等。电磁性能参数也有了较大的提高。

在功放中最为常见的电源变压器为ei型、环型,其次为双柱型、r型、c型。ei型(见图一)是最为常用和多见的,结构简单.它的优点是加工制作容易绕制方便,成本低廉,抗饱和性能好。缺点为漏磁大、同功率下的体积重量偏大,转换效率相对较低。ei型变压器在音色上的声音走向为厚重浓郁、温暖醇和,音场层次、细节解析力一般。当采用特殊的分层分段绕制方法后(既所谓的发烧绕制法),在细节和解析力上有显著提高,而且高频的幼细延伸感也非常出色,有别于其他类型的电源变压器。如果在使用过程中再针对其缺点增加部分辅助改良措施,例如增加屏蔽罩,采用优质铁芯和无氧铜线,科学合理的绕制方法等,这一最原始古老的电子器件,仍是非常出色的。许多世界名机例如麦精图等一直在坚持沿用这一传统的元器件。经典的胆机制作也一直在沿用它。适合听音口味上喜欢“唯美”的diy爱好者选用。

笔者在使用ei型变压器时,喜欢自己绕制。采用敷铜板制作特殊的具有屏蔽作用的骨架,初级绕组与次级绕组分成上下相互屏蔽、独立的两段绕制。采用这种方法绕制的变压器具有隔离变压器的功效,而没有另外搭配隔离变压器对声音造成的负面影响。听感上层次、细节、音场、定位都要明显好过常规同轴绕制的ei型变压器。感兴趣的爱好者不妨实验一下。由于这种方法磁耦合不如常规变压器的效率高,因此在较大功率功放上使用时,要注意适当增大铁芯截面积来补偿。适合于要求输出功率不是很大的功放使用。

环型变压器(图二)是c型变压器之后开发出来的品种,磁路短,效率高,铜损与铁损均小于ei型变压器,体积和重量小,安装使用方便。缺点为制作费用相对较高,抗直流饱和性能差。环型变压器在音色走向上为清爽亮丽、刚劲,音场层次、细节解析力、速度感优于ei型。但在中频的厚声温暖感上要逊色于ei型。由于环型变压器具有一些优异的性能特点,因此被广泛的应用于各种档次的功放之中。但是由于环型变压器的抗直流饱和性能差,极易产生杂音干扰,因此在一些顶级功放中的应用又受到一定限制,尤其是一些纯a类功放。近年来由于技术的进步,环型变压器的这一先天缺点已经逐步得到改善,在国外的一些高档功放上环型变压器的身影又多了起来。

r型变压器(图三)是九十年代后开发出来的一种性能更为优秀的品种。是由日本北村机电株式会社社长北村文男发明的。r型变压器具有环型变压器的所有优点:1,漏磁极小,仅为ei型变压器的1/10、c型变压器的1/5左右。2,损耗小,温升低,相同功率下温升只有ei型变压器的1/2。3,频率特性好:r形变压器在中频(400hz)工作时显示出极小的空载电流和空载损耗,其数量级甚至可以达到工作在50hz时的量值;r形变压器在音频范围内工作时,显出优于其他任何类形变压器的幅频性好:电压波形失真度<0.2%,频率响应<1db。r型变压器的缺点同环型变压器一样,抗直流饱和性能差!其次就是目前的市场价格还比较昂贵,相同功率下其价格是ei型的一倍,比环型的要贵出1/3多。r型变压器声音非常饱满坚实,乐器质感很好,有着比环型变压器更为出色的解析力和瞬变。低频有着比其他变压器更为清晰的层次表现。但声音偏冷艳,声底淡一些,中频也相对薄一点。低频的量感相对于同功率的环型变压器来说似乎少一些。下潜深度也有所不及。同时r型变压器由于结构上的生理缺陷,抗直流饱和性能也更差。

以上对各类型变压器的声音评价只是一般情况下的大概走向,但是经过特殊设计和制作的变压器,其声音特点也是完全可以改变的,国内已经有厂家早就开始了这方面的研究实验,象山西省机电设计研究院声达电器厂等。还有其他几种形式的变压器,例如c型、双柱型等,由于在功放中少有采用,这里就不叙述了。业余制作功放时,经常遇到变压器功率的选取问题,按照常规计算出来的数据是没有问题的,但实际应用时由于音质校音的需要,往往要比实际的计算值大很多。那么到底选取多大功率的变压器合适呢?我个人认为如果选用环型变压器的话,最好大于总输出功率的三倍以上为好,可以放宽到6-10倍。例如krell fpb300功放(图四),每声道输出动态甲类300w,内部使用了一个五千瓦的环型变压器。如果选用ei型变压器的话,由于不易饱和,以及声音调校上的原因,相对的可以放宽对功率的要求。r型的可参照环

5环形变压器的设计计算

通过设计一台50Hz石英灯用的电源变压器,其初级电压U1=220V,次级电压U2=11.8V,次级电流I2=16.7A,电压调整率ΔU≤7%,来说明计算的方法和步骤。

?计算变压器次级功率

P2 P2=I2U2=16.7×11.8=197VA(5)

?计算变压器输入功率P1(设变压器效率η=0.95)与输入电流I1

式中:K——系数与变压器功率有关,K=0.6~0.8,取K=0.75;

根据现有铁心规格选用铁芯尺寸为:高H=40mm,内径Dno=55mm,外径

Dwo=110mm。

式中:f——电源频率(Hz),f=50Hz;

B——磁通密度(T),B=1.4T。

N2=N20·U2=3.23×11.8=38.1匝,取N2=38匝。

6)选择导线线径

绕组导线线径d按式(10)计算

式中:I——通过导线的电流(A);

j——电流密度,j=2.5~3A/mm2。

当取j=2.5A/mm2时代入式(10)得

用两条d=2.12mm(考虑绝缘漆最大外径为2。21mm)导线并绕。因为Φ2.94导线的截面积Sd2=6.78mm2,而d=2.12mm导线的截面积为3.53mm2两条并联后可得截面积为:2×3.53=7.06mm2,完全符合要求且裕度较大。

6环形变压器的结构计算

环形变压器的绕组是用绕线机的绕线环在铁心内作旋转运动而绕制的,因此铁心内径的尺寸对加工过程十分重要,结构计算的目的就是检验绕完全部绕组后,内径尚余多少空间。若经计算内径空间过小不符合绕制要求时,可以修改铁心尺寸,只要维持截面积不变,电性能也基本不变。已知铁心内径Dno=55mm,图7中各绝缘层厚度为to=1.5mm,t1=t2=1mm。

?计算绕完初级绕组及包绝缘后的内径Dn2

计算初级绕组每层绕的匝数n1

式中:Dn1——铁心包绝缘后的内径,Dn1=Dno-2t0=55-(2×1.5)=52mm;

kp——叠绕系数,kp=1.15。

则初级绕组的层数Q1为初级绕组厚度δ1为

2)计算次级绕组的厚度δ2

计算次级绕组每层绕的匝数n2,考虑到次级绕组是用2×d2=2×2.21mm导线并绕,则可见绕完绕组后,内径还有裕量,所选铁芯尺寸是合适的。

7环形变压器样品的性能测试为检验设计方法的准确性,对按设计参数制成的环形变压器样品进行了性能测试,结果如下。

7.1空载特性测试

测量电路如图8所示。测得的数据列于表4,按照表4的数据,绘出图9所示的空载特性曲线。

从变压器的空载特性看出设计符合要求,在额定工作电压220V时(工作点为A),变压器的空载电流只有13.8mA,即使电源电压上升到240V变压器工作在B点铁心还未饱和,有较大的裕度。

7.2电压调整率测量

变压器在空载时测得的次级空载电压U20=12.6V,当通以额定电流I2=16.7A时,次级输出电压为U2=11.8V,按式(2)计算电压调整率为变压器电压调整率达到ΔU<7%的指标。7.3温升试验

用电阻法对变压器绕组进行温升试验,在通电4h变压器温升稳定后进行测试,并按式(12)计算绕组平均温升Δτm。

测量的数据及计算结果列于表5 从温升试验结果看出所设计的变压器已达到标准型温升标准,即Δτm<40℃,初次级绕组温升基本相等,即两绕组功耗较均衡。

7.4绝缘性能试验

1)绝缘电阻用500V摇表测试绝缘电阻,初次级绕组之间的绝缘电阻在常态下均大于100MΩ。

2)抗电强度变压器初级与次级绕组之间能承受50Hz,4000V(有效值)电压1min,而无击穿和飞弧。限定漏电流为1mA,此项试验证明变压器的抗电强度达到IEC标准。

8结语

环形变压器以其优良的性能和有竞争力的性能价格比,可以预期它会在较大领域内取代传统的叠片式变压器,随着环形变压器技术性能进一步提高,它将会在电子变压器领域中有更广阔的应用前景

变压器磁心型式的选取原则与绕制方法

变压器的磁心和结构参数,取决于在装配中所选用的磁心型式和绕制技术。当选择磁心时,通常其物理高度和成本是最重要的。这对于交流电网转换器中的开关电源是十分重要的,因为通常它们是封装在密闭的塑料盒内。当应用元件的高度允许的尺寸要求较小时,可以使用低成本的BE型或者是EI型磁心(如日本的TDK和TOKIN公司产品,或者是欧洲的PHILIPS、SIEMENS和THOMSON公司产品)。

当设计应用需要较小的磁心截面积时,可以选用BPD型的磁心产品,如果要设计多重输出电源时,PER型磁心提供了一个大的窗口面积,它需要的匝数较少,真绕线架的可用引出脚较多。当空间不是问题时,ETD型磁心通常用于较高的功率。PQ型磁心比较昂贵,但它所占据的印制板空间较少,并且比E型磁心需要的匝数少些。对于安全绝缘要求高的场合,应选用罐型磁心、RM磁心。环型磁心通常不适合反激式开关电源变压器使用。

反激式变压器在绕制时,应在初级与次级之间加入绝缘措施。例如,通信技术设各必须满足欧洲的IEC950和美国的UL1950的电气绝缘标准的要求。这些文件同时还详细地说明了使用于变压器结构的绝缘系统的漏电和间隔距离。通常在变压器初级与次级之间需要有5~6 mm的漏电距离(符合规范和要求)。电气绝缘指标通常是指定电气强度的测试,施加典型值3000 V交流高压的时间长达60 s而不被击穿。如果每个绝缘隔层的电气强度不满足规范要求,那么在变压器初级与次级之间可以采用两个绝缘层,一层是基本的,另一层是补充的。如果两个绝缘层组合仍不符合电气强度要求,也可以采用带增强的三个绝缘层。

图1给出了大多数反激式变压器在绕组两侧边缘使用的限制技术。通常,边缘限制是用胶带来隔层的,胶带开缝的宽度要求留有边限,以便包裹封装,以足够的隔层来配合绕组高度。在一般情况下,绕组单侧绝缘限度是半个初级绕组到次级绕组的漏电距离(通常是2.5 mm)。磁心的骨架应当选择得足够大,实际上绕组的绝缘宽度最小是两倍的总漏电距离。注意保持变压器的耦合并减小漏感。初级绕组是在边框之内卷绕的。为了减少因绝缘磨损而引起的隔层电压击穿,改进层与层之间的绝缘,并减少分布电容,初级绕组的隔层应最少用一层UL规范要求的聚酯薄膜胶带(3M1298)绝缘隔离,在边框之间胶带应有适合的宽度。

图1 变压器骨架两种不同的边缘卷绕方法的示意图

用清漆或环氧树脂浸渍也可以改善隔层之间的绝缘性能与电气强度,但不能减少分布电容。偏置绕组可以随后卷绕在初级绕组之上。补充的或增强的绝缘,由两层或三层符合UL规范要求的聚酯薄膜胶带剪成骨架的满宽度,然后再包裹在初级绕组与偏置绕组外。边缘部分还需要再三卷绕隔离。次级绕组被卷绕在边界之内。另外,还要增加两层或三层胶带来固定绕组。绝缘套管常用于套隔导线跨越所有绕组时,以确保在导线穿越之处符合漏电距离的要求。

应采用最小壁厚为0.41 mm的尼龙或四氟乙烯套管,使绕组符合安全的绝缘要求。考虑到因为变压器磁心是被隔离的无电压金属材料,也就是说磁心虽然导电,但没有任何部分接触电路,因此它是安全的。从初级绕组(或者是导线通过之处)到磁心的距离,以及从磁心到次级绕组(或者是导线通过之处)增加的距离,必须等于或大于规范要求的漏电距离。

当初级绕组有多个绝缘隔层时,图1给出了初级的Z形绕制法和C形绕制法。注意接漏极的初级端绕线,它被埋在第二个隔层之下,可以做自身屏蔽,减少电磁干扰EMI(共模传导辐射电流)。Z形绕法减少了变压器的分布电容,也就减少了高频交变损耗,提高了效率,但绕制比较困难,成本较高。而C形绕法比较容易实现,绕制成本也比较低,但它的损耗较大,效率较低。

图2给出了一种新的工艺:在次级采用了双重绝缘导线或三重绝缘导线,以消除所需的边缘限制(绝缘导线的规范,可在有关的资料中查到)。在双重绝缘导线中,通常每个绝缘隔层都能符合安全的电气强度要求;在三重绝缘导线中,每两个隔层之间都起绝缘效果,通常应符合电气强度要求。在变压器骨架的绕制和焊接过程中,特别要注意防止绝缘层的损伤,细心总结实际的制作工艺与技巧。

图2 卷绕变压器骨架的三重绝缘导线的示意图

上述工艺减小了变压器的尺寸,并且降低了增加边缘界线的工作量,但其材料成本较高,增加了绕组的成本。初级绕组被卷绕在骨架边缘的全部宽度上,可以考虑把偏置绕组覆盖在初级绕组上。在初级或偏置绕组与次级绕组之间,通常需有一层胶带,以防止绝缘导线的磨损。为了固定绝缘绕组,还需另外增加一层胶带。

图3还标出了卷绕偏置绕组的交替绕制位置,它直接覆盖了次级绕组,可以改进与次级绕组的耦合效果,并且减少漏感(即改进了偏置绕组反馈电路中的负载调整率)。请注意,由于偏置绕组是属于初级电路,在次级绕组与交替的偏置绕组之间,应在卷绕变压器边缘界线时,必须加有另外的绝缘隔层,以补充或增强绝缘性能

图3 变压器的绕制工艺示意图

小型变压器的简易计算:

以下为举例:

?求每伏匝数

每伏匝数=55/铁心截面

你的铁心截面=3.5╳1.6=5.6平方厘米

故,每伏匝数=55/5.6=9.8匝

?求线圈匝数

初级线圈n1=220╳9.8=2156匝

次级线圈n2=8╳9.8╳1.05=82.32 可取为82匝

次级线圈匝数计算中的1.05是考虑有负荷时的压降

?求导线直径

你未说明你要求输出8伏的电流是多少安?

这里我假定为2安。

变压器的输出容量=8╳2=16伏安

变压器的输入容量=变压器的输出容量/0.8=20伏安

初级线圈电流I1=20/220=0.09安

导线直径d=0.8√I

初级线圈导线直径d1=0.8√I1=0.8√0.09=0.24毫米次级线圈导线直径d2=0.8√I2=0.8√2=1.13毫米注:复制别人的答案。

变压器安装步骤及流程

变压器安装步骤及流程 一、设备及材料准备 变压器应装有铭牌。铭牌上应注明制造厂名、额定容量,一二次额定容量,一二次额定电压,电流,阻抗,电压%及接线组别等技术数据。 变压器的容量,规格及型号必须符合设计要求。附件备件齐全,并有出厂合格证及技术文件。 型钢:各种规格型钢应符合设计要求,并无明显锈蚀。 螺栓:除地脚螺栓及防震装置螺栓外,均应采用镀锌螺栓,并配相应的平垫圈和弹簧垫。其它材料:电焊条,防锈漆,调和漆等均应符合设计要求,并有产品合格证。 二、主要机具 搬运吊装机具:汽车吊,汽车,卷扬机,吊链,三步搭,道木,钢丝绳,带子绳,滚杠。 安装机具:台钻,砂轮,电焊机,气焊工具,电锤,台虎钳,活扳子、鎯头,套丝板。 测试器具:钢卷尺,钢板尺,水平尺,线坠,摇表,万用表,电桥及测试仪器。 三、作业条件 施工图及技术资料齐全无误。土建工程基本施工完毕,标高、尺寸、结构及预埋件强度符合设计要求。 屋面、屋顶喷浆完毕,屋顶无漏水,门窗及玻璃安装完好。 室内粗制地面工程结束,场地清理干净,道路畅通。 四、操作工艺

设备点检查 设备点件检查应由安装单位、供货单位、会同建设单位代表共同进行,并做好记录。 按照设备清单,施工图纸及设备技术文件核对变压器本体及附件备件的规格型号是否符合设计图纸要求。是否齐全,有无丢失及损坏。变压器本体外观检查无损伤及变形,油漆完好无损伤。 绝缘瓷件及环氧树脂铸件有无损伤、缺陷及裂纹。 变压器二次搬运 变压器二次搬运应由起重工作业,电工配合。最好采用汽车吊吊装,也可采用吊链吊装。变压器搬运时,应注意保护瓷瓶,最好用不箱或纸箱将高低压瓷瓶罩住,使其不受损伤。变压器搬运过程中,不应有冲击或严重震动情况,利用机械牵引时,牵引的着力点应在变压器重心以下,以防倾斜,运输倾斜角不得超过15 度,防止内部结构变形。 大型变压器在搬运或装卸前,应核对高低压侧方向,以免安装时调换方向发生困难。 变压器稳装变压器就位可用汽车吊直接甩进变压器室内,或用道木搭设临时轨道,用三步搭、吊链吊至临时轨道上,然后用吊链拉入室内合适位置。变压器就位时,应注意其方位和距墙尺寸与图纸相符,允许误差为±25mm, 图纸无标注时,纵向按轨道就位,横向距墙不得小于800mm ,距门不得小于1000mm 。附件安装 变压器的交接试验变压器交接试验的内容: 测量线圈连同套管一起的直流电阻;检查所有分接头的变压器的变压比;检查三相变压器的接线组别和单项变压器引出线的极性;测量线圈同套管一起的绝缘电阻;线圈连同套管一起做交流耐压试验。 变压器送电前检查变压器送电试运行前做全面检查,确认符合试运行条件时方可投入运行。变压器试运行前,必须由质量监督部门检查合格。

变压器生产流程

变压器生产流程 原材料领料 变压器图纸确认 绕组首先确认图纸是否与生产产品相符,确认其容量无误后再看线规,找出线规后确认匝数。其次确认是何种接线方式(星型和三角型),高压图纸要看其分接出头,数好出头匝数,低压看好是何种绕线方式,出头长度,换位位置,绕组的内外径,幅向大小等。 绝缘首先根据线圈内经算出纸筒纸板长宽度,其次从图纸编号找出端绝缘长度图纸,包括油道垫块和瓦楞纸油道厚度,依次找出端圈及上下铁轭绝缘 一二次侧绕组、绝缘 一次绕组 看图纸确认出头长度,用红蓝铅笔在导线标出,如果是螺旋式需不同的尺度,后一组比前一组多量出一根导线的长度,以便保持出头整齐美观。出头折弯后要用皱纹纸半迭式包一层,出头要弧度角度一致,出头整理好后用皱纹纸包三毫米厚,外用白布带绑紧(不可用紧缩带,焊接时容易烧坏)。 纸筒绕之前要先用卡尺把模具外径量准,需要加垫纸板的要裁好。纸筒纸板选一毫米为宜两头搭接绕制用紧缩带绕紧,绕制中辅助工要用锤沿着紧缩带敲紧。 圆筒式绕法端绝缘由纸条制成时,用直纹布带将其绑扎在第一匝导线上开始绕第一匝时,边绕边再线匝下面沿圆周放四处拉紧布带(紧缩带)。端绝缘的绑扎成8字形。拉紧布带将第一匝和端绝缘绑扎在一起,绕第二匝时将拉紧布带翻到上面来,绕第三匝时在压到下面去,这样曲折的将端圈拉紧。圆筒式绕组中间换位一次,换位后要用皱纹纸包一层再用半毫米纸板垫在里面用白布带绑紧。绕制时辅助工要不断的靠紧和控制幅向,层间用0.08毫米电缆纸三层绝缘,第二匝与出头要用半毫米纸板隔开以免破坏绝缘同样在底部升层时的剪刀口处也要加。 结束时两个出头要对齐,同样出头与倒数第二匝也用纸板隔开,两出头要扎紧。剪断线前要用紧缩带扎紧整个线圈。 螺旋式绕组主要是630千伏安以上的低压绕组,出头与圆筒式相同,需要注意的是出头折弯处用斜拉紧缩带与前面的拉紧布带一样压紧并一直压到结束出头并绑紧防止出头弹出和线圈张力作用。 (1) 绕组绕制要紧密无间隙

图解如何绕制型变压器

图解如何绕制E型变压器 --------谢谢原创作者经验分享 事出有因一:享受的乐趣 音频频道10月19日前不久泡硬件论坛里一位网友发表了一篇自绕“牛”的强帖,内容十分详细。从自绕“牛”的初衷到“牛”材料的选择再到最终的成型、测试,经过了多重关卡以海量图片的形式为大家展现相信的制作过程。今天在这里小编就将其整理,与大家一起分享。 自本人《烂牛是怎样做成的?(25步学做牛)》和《配对输出牛的业余绕制技巧》上贴后,受到不少同学的关注,也收到一些同学发来的短信,希望了解和掌握与胆机牛制作有关的技巧。刚好前阶段受本坛一位广东同学的多次要求,为其绕制了一套重料300B电牛(一套6只),经测试,自己也非常满意,特将制作过程整理成贴发表,希望对有自己绕制胆机牛意愿的同学有所帮助,同时也望得到绕牛高手的指点,以共同促进绕牛技艺。 《大刀阔斧玩另类!音频烧友自绕变压器》 一、为什么要自己绕牛(特别声明:本条有些观点只是个人看法,例举也只是个案,不特别针对本坛卖牛的商户,请别对号入座,不想引起纷争):首先,自己绕牛的第一动因是的乐趣,当自己成功制作一个自己满意的牛是,其中的成就感非花钱买牛可比的。同时也培养了自己的制作手艺。其次,出于对纷杂的成品牛品质的疑惑。本同学也有过化钱买成品牛制作胆机的经历,但其中感受并不十分满意。 就是大厂名牌的货也并不怎么的,如93年买过当时非常有名的50w推挽输出牛(现在恐怕也在500元/对),测量两臂直流电阻误差达3欧姆,配对误差高达5欧姆,虽然听感上并不觉得有什么突出的问题,但总感觉不是滋味。再一就是去年上半年帮朋友摩机(国内鼎鼎有名的厂机xx35,市价3500左右)的过程中,总感觉中低音部分某个地方不对劲,音场随音量偏移。于是调工作点,换耦合电容,除了音色有所变化外,问题如旧。查到最后发现输出牛一只电阻201欧姆、电感44H,另一只电阻204欧姆、电感37H,两臂电阻误差1.2到1.8欧姆,按理说电阻误差不是太大的问题,并且应该是电阻大的一只相应电感也应该大些,但问题刚好相反,于是没辙,只好把机器大卸八块,将电感小的输出牛狠狠地砸了几锤,勉强把电感调到42H多,结果感觉才好了一些。 ● 音频外设群组更多精彩内容 事出有因二:假货多,做工差 最让我惊愕的是在今年十一长假期间,本地同好小王拿来2只96片做的电牛要求改制,一只已经击穿,系在交易坛买的200W全波整流牛,铁芯截面32×60;另一只牛吼,是在本地向正规厂家X通电器有限公司定制的昌X牌250VA桥式整流牛,商标、铭牌、参数一应俱全,铁芯截面32×65。2只牛外观都还可以,不像是粗制滥造的货色,但拆开后竟然让我感到无语。200W牛的铁芯还好,有2个品种的片子,0.35白片和0.35退火片(见图1),250VA的竟然有6个品种的片子,还夹杂了15%左右的废片(见图2、3)。 0.35白片和0.35退火片(图1)

变压器绕制方法

1 开关电源变换器的性能指标 开关电源变换器的部分原理图如图1所示。 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率f=38kHz; 变换器输入直流电压Ui=310V; 变换器输出直流电压Ub=14.7V; 输出电流Io=25A; 工作脉冲的占空度D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯的选择以及工作磁感应强度的确定 2.1 变压器磁芯的选择 目前,高频开关电源变压器所用的磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品的成本方面来考虑不宜采用。非晶合金和超微晶材料的饱和磁感应强度虽然高,但在假定的测试频率和整个磁通密度的测试范围内,它们呈现的铁损最高,因此,受到高功率密度和高效率的制约,它们也不宜采用。虽然铁氧体材料的损耗比坡莫合金大些,饱和磁感应强度也比非晶合金和超微晶材料低,但铁氧体材料价格便宜,可以做成多种几何形状的铁芯。对于

大功率、低漏磁变压器设计,用E-E型铁氧体铁芯制成的变压器是最符合其要求的,而且E-E型铁芯很容易用铁氧体材料制作。所以,综合来考虑,变换器的变压器磁芯选择功率铁氧体材料,E-E型。 2.2 工作磁感应强度的确定 工作磁感应强度Bm是开关电源变压器设计中的一个重要指标,它与磁芯结构形式、材料性能、工作频率及输出功率的因素有关关。若工作磁感应强度选择太低,则变压器体积重量增加,匝数增加,分布参数性能恶化;若工作磁感应强度选择过高,则变压器温升高,磁芯容易饱和,工作状态不稳定。一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些,对于铁氧体材料,工作磁感应强度选取一般在0.16T到0.3T之间。在本设计中,根据特定的工作频率、温升、工作环境等因素,把工作磁感应强度定在0.2 T。 3 变压器主要设计参数的计算 3.1 变压器的计算功率 开关电源变压器工作时对磁芯所需的功率容量即为变压器的计算功率,其大小取决于变压器的输出功率和整流电路的形式。变换器输出电路为全波整流,因此 式中:Pt为变压器的计算功率,单位为W; Po为变压器的输出功率,单位为W; 3.2 磁芯设计输出能力的确定 磁芯材料确定后,磁芯面积的乘积反映了变压器输出功率的能力。其磁芯面积为 式中:Ap为磁芯截面积乘积,单位为cm4;

工程师必备变压器绕制工艺秘笈

工程师必备变压器绕制工艺秘笈 电源网讯许多的工程师对变压器的绕制工艺把握不准,导致做出来的产品,反复的调试才能符合初始的设计参数要求,变压器的工艺设计涉及到的东西很多,下面我就这个问题向达家介绍一下各种绕制工艺对电源各项参数的影响,希望能对大家有锁帮助。 要想把变压器设计好,首先就需要选择好变压器,变压器的选择受到很多的因素制约,首先,需要计算好变压器的Ap值,得到Ap值之后,我们就要根据电源的结构尺寸来初步选择变压器,包括变压器的高度,宽度以及长度。当电源的整体高度有限制时,就需要考虑扁平型的变压器,卧式变压器是首选。常见的有EE 系列,EC系列,ER系列的卧式变压器,EF系列与EFD系列变压器;如果是超薄的适配器与LED日光灯内置电源,可以考虑平面变压器。而如果PCB的空间有限,应该选择PQ,RM,或者罐形磁芯,因为这些磁芯的截面积大,占用空间小,可以输出更大的功率 其次,在选择变压器的时候我们要根据电路的参数与侧重点不同,而选择不同的变压器。 比如,在反激电源中,我们希望漏感越小越好,因为漏感大小会影响功率器件的电压与电流应力,同时对EMC也有不可忽视的影响,那么我们就找对漏感控制有利的变压器,如PQ型,RM型,

以及ERL型的变压器,再加上合理的绕法,可以将漏感控制在3%以下。又如LLC电源,我们希望用变压器的漏感来作为谐振电感,所以我们需要刻意加大漏感,选用分槽的骨架来绕制比较理想。 再次,在选择变压器的时候,要考虑到成本与通用性。成本不仅仅是每个企业老板关心的问题,同样是我们广大研发工程师最纠结的问题,除非是少数军品级别或高档不计成本的电源,我们在设计的时候要在性能参数与成本之间找到一个平衡点,不要刻意去追求某个参数而忽略带来的成本影响,有时哪怕每个变压器增加几分钱的成本,如果批量起来,都是不可忽略的一笔开支。除非由于商业因素的考虑,希望自己的产品不被其它的厂商所抄袭,一般不考虑私模或偏门的变压器磁芯与骨架,因为量产的时候,供货的渠道与周期都会受到很大的制约,而通用的磁芯,无论在价格上还是在供货渠道与周期都有很大的可选择性。看以下图片:

高频变压器绕制工艺

高频变压器绕制工艺 一:绕线(1)winding the copper wire on the bobbin by machine 根据生产工艺设定绕线圈数,包括总圈数与每工序的绕线圈数;慢车功能设置来控制柔和起步与停车缓冲;绕线速度设置;这些将决定变压器的电气性能。 二:包胶纸(1)wrapping the insulating tape 绝缘胶纸的采用长度、宽度、位置都必须有明确规定,保证完全遮蔽导体,防止绝缘失效! 三:焊接铜箔Soldering the copper foil 焊接的温度、时间、焊点的光滑度都要有明确规定。 四:包铜箔wrapping the foil on the bobbin 将铜箔(附焊线)包于图示位置。 五:包胶纸(2)wrapping the tape 六:绕线(2)winding the wire 七:浸锡(1)dip the pin into the tin 骨架的PIN位浸锡;浸锡高度、时间、锡炉温度都要明确规定。 八:包胶纸(3)wrapping the tape 九:绕飞线winding the wire 依据指示图绕线 十:包胶纸(4)wrapping the tape 十一:剪线头cut the surplus wire 把飞线依据图示尺寸剪平。 十二:浸锡(2)dip the wire into tin 十三:浸锡检查check the soldering point and joint 检查浸锡点是否平滑、是否被污染、短路等

十四:装磁芯fit the ferrite core into the bobbin 依据图示装磁芯 十五:包胶纸(5)wrapping the outside tape 将磁芯用绝缘胶纸包绕 十六:电气性能测试tesing electric features 测试火牛绝缘、包绕后的电气性能是否达标。 十六:高温干燥(1) drying in high temperature 在恒温100度的环境里干燥30分钟左右。 十七:浸油impregnation the transformer by varnish oil 常温下放在治具里浸绝缘油5分钟;捞出晾30分钟左右。 十八:保温干燥(2)drying it once more 80度高温密闭环境里干燥2H 十九:高压测试testing high voltage 分初级到次级(3600VAC 2mA 3sec.)、初级到初级(1200VAC 2mA 3sec.)、线圈到磁芯(1400VAC 2mA 3sec.)里作3种测试 二十:绝缘电阻测试testing the insulating resistance 分初级到次级(500VDC 100M ohm.)、初级到初级(500VDC 100M ohm)、线圈到磁芯(500VDC 100M ohm)里作3种测试 二十一:电感与漏电感测试testing the inductor and the leak inductor 二十二:外观检查与包装tesing the appeariance and packing 因其电气性能的敏感性,所以要对原料规格与品牌、操作指示标准化、设备设定条件等要特别关注! 主要材料:塑胶骨架、绝缘铜线、铜箔、绝缘胶纸、锡线锡条、铁氟龙绝缘套管、磁芯、绝缘快干油

怎样绕制高频变压器

怎样绕制高频变压器 你如果用EE55等高频磁芯制作高频逆变器, 其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已. 以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例, 功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T. 要制作好它就要注意两点: 一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的单根漆包线,导线的截面积为4.9平方毫米,

而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可. 二是高频逆变器中高频变压器最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是:①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半.②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一

变压器制造过程质量验收检验大纲

大型变压器制造过程质量验收检验大纲 1总则 1.1内容和适用范围 1.1.1本大纲主要规泄了采购单位(或使用单位)应对石油化工用35kV及以上大型变压器制造过程进行质疑验收检验的基本内容及要求,也可作为委托驻厂监造的主要依据。 1.1.2本大纲适用于石汕化工工业使用的输变电用35kV及以上大型变压器。 1.2.1GB 1094.1-5《电力变压器》; 1.2.2IEC 60076 ?电力变压器》; 1.2.3GB/T6451-2008《油浸式电力变压器负载导则》; 1.2.4GB311.1-1997《高压输变电设备的绝缘配合》; 1.2.5GB/T 1094.7-2008《汕浸式电力变压器负载导则》: 1.2.6GB 5273《变压器、髙压电器和套管的接线端子》: 1.2.7GB 2536《变压器油》; 1.2.8GB 7449《电力变压器和电抗器等雷电冲击试验和操作冲击试验导则》; 1.2.9国家及行业相关标准规范等。 2原材料 2.1依据采购《技术协议》核对铜导线供应商,并审查原始质保书中的化学成分、机械性能、导电率、电阻率、截而积及绝缘等级: 2.2根据采购《技术协议》核对硅钢片供应商,并审査原始质保书中的化学成分、机械性能、磁感强度、单耗、厚度: 2.3根据采购《技术协议》核对绝缘材料供应商,并审査原始质保书中的机械性能、电气性能及绝缘等级: 2.4根据采购《技术协议》审查变压器用汕的供应商、牌号、油基、化学成分、物理性能、抗氧化剂含量: 2.5根据采购《技术协议》及施工图要求审查钢板的供应商,并审查原始质保书中的化学成分、机械性能、规格等: 2.6根据采购《技术协议》及施工图要求审查外购仪表的供应商、规格及型号。 3主要组件检测 3.1电容式套笛、分接开关耐压试验抽查比例按采购《技术协议》规左; 3.2电容式套管介质损耗因数测左按采购《技术协议》规泄: 3.3电容式套管的电容值测定按采购《技术协议》规左; 3.4硅钢片、铁芯对地、绕组对地绝缘电阻测左。 4几何尺寸 4.1按制造厂图纸及工艺规定验收; 4.2线圈高度、内径、外径、出线线头及位置偏差应进行核查; 4.3外绝缘距离应进行核査; 4.4套管爬电距离应进行核査: 4.5变压器本体轨距与地脚螺栓配合尺寸应进行核查。

变压器基本绕制方法

来更新变压器的基本绕制方法: 工具:剪刀,胶带,挡墙胶带4MM,铜皮,相关线材,当然少不到绕线机; 线上骨架:估计自身带有隔带,绕初级的一半时就方便多了; 骨架上绕线机,配有专用的固定器,开绕: 我这个计算好了,正好一层,回头先要加上套管,铁氟龙,然后胶带三层:

绕制的线包必须整齐,不应出现乱的现象。 接着准备屏蔽层,先绕制两边的当前,一边一个4MM: 屏蔽层铜皮为0.1MM铜皮,预先焊接连接线,套上铁氟龙套管,我采取1.1屏蔽绕制 铜皮两边用胶带包好,防止短路。 绕完屏蔽的变压器图,我一般挂脚地线上,注意屏蔽铜箔的接头处。绕弯后再绕制3层胶带:

下面就是次级了,还是先绕制两边的挡墙,还是一边4MM。将起头用铁氟龙套管套好,压在挡墙下面以方便绕制,我一般在圈数少的时候都是居中密绕,回线同样用套管套好。 当然也有人用均绕的方法。 绕完后同样是三层胶带接着准备绕制第二个屏蔽,在绕制前一样要挡墙,做好屏蔽,套好套管: 挂脚同样与第一个屏蔽再三层胶带:

再下面就是初级的另一半了,同样要挡墙,一边4MM起头为第一个半初级的尾头,同样套上套管,绕制必须精密,不得重叠,如有第二层,必须有一层胶带隔离: 回头同样是套管,然后胶带三层: 绕完后同样是挡墙,一边4MM,起头套套管居中密绕:

回头同样套管,三层胶带,但是注意胶带的结尾出,一般结尾处才估计的侧面: 绕制基本完成,接着做头,一般粗线绕制完整的一圈就够了,较细的先多绕几圈,但是都不能超过估计得固定位: 接着搪锡,磨磁芯调电感量,用合适的胶带固定磁芯:

磁芯手工带水,用细磨石磨的。 当然标准工艺要溱漆处理,并点胶固定磁芯。

电力变压器安装工艺标准

3.1 工艺流程: 设备点件检查→变压器二次搬运→变压器稳装→附件安装→变压器吊芯检查及交接试验→送电前的检查→送电运行验收 3.2 设备点件检查: 3.2.1 设备点件检查应由安装单位、供货单位、会同建设单位代表共同进行,并作好记录。 3.2.2 按照设备清单,施工图纸及设备技术文件核对变压器本体及附件备件的规格型号是否符合设计图纸要求。是否齐全,有无丢失及损坏。 3.2.3 变压器本体外观检查无损伤及变形,油漆完好无损伤。 3.2.4 油箱封闭是否良好,有无漏油、渗油现象,油标处油面是否正常,发现问题应立即处理。 3.2.5 绝缘瓷件及环氧树脂铸件有无损伤、缺陷及裂纹。 3.3 变压器二次搬运: 3.3.1 变压器二次搬运应由起重工作业,电工配合。最好采用汽车吊吊装,也可采用吊链吊装,距离较长最好用汽车运输,运输时必须用钢丝绳固定牢固,并应行车平稳,尽量减少震动;距离较短且道路良好时,可用卷扬机、滚杠运输。变压器重量及吊装点高度可参

照表2-24及表2-25。 树脂浇铸干式变压器重量表2-24 3.3.2 变压器吊装时,索具必须检查合格,钢丝绳必须挂在油箱的吊钩上,上盘的吊环仅作吊芯用,不得用此吊环吊装整台变压器(图2-63)。 图2-63 3.3.3 变压器搬运时,应注意保护瓷瓶,最好用木箱或纸箱将高低压

瓷瓶罩住,使其不受损伤。 3.3.4 变压器搬运过程中;不应有冲击或严重震动情况,利用机械牵引时,牵引的着力点应在变压器重心以下,以防倾斜,运输倾斜角不得超过15°,防止内部结构变形。 3.3.5 用干斤顶顶升大型变压器时,应将千斤顶放置在油箱专门部位。 3.3.6 大型变压器在搬运或装卸前,应核对高低压侧方向,以免安装时调换方向发生困难。 3.4 变压器稳装: 3.4.1 变压器就位可用汽车吊直接甩进变压器室内,或用道木搭设临时轨道,用三步搭、吊链吊至临时轨道上,然后用吊练拉入室内合适位置。 3.4.2 变压器就位时,应注意其方位和距墙尺寸应与图纸相符,允许误差为±25mm,图纸无标注时,纵向按轨道定位,横向距离不得小于800mm,距门不得小于1000mm,并适当照顾屋内吊环的垂线位于变压器中心,以便于吊芯,干式变压器安装图纸无注明时,安装、维修最小环境距离应符合图2-64要求。

变压器实习报告1汇总

电气2012级“卓班” 企业课程(电机学)实习与实训报告 专业:电气工程及其自动化 班级:电气1201 姓名:张娟 学号:201209608 指导教师:赵峰 兰州交通大学自动化与电气工程学院 2014年7月27日

1 实习报告 1.1 实习项目 1.1.1 实习项目1 时间:2014-7-16,上午8:00至12: 00 地点:甘肃宏宇变压器有限公司指导教师:赵峰 实习内容:了解变压器生产、制造的工艺流程及测试方法 这是暑假的第一次实习,我们所有的同学与老师们一起坐车去甘肃宏宇变压器有限公司参观学习变压器的制造原理、工艺和测试方法。在总工的带领下我们进入了变压器制造厂房。 我们首先看到了涂有绝缘漆的硅钢片,硅钢片经叠压工艺最终构成变压器的铁芯。铁芯既是变压器的磁路部分,又是套装绕组的骨架。铁芯由芯柱和铁轭两部分组成。芯柱上套装着绕组,铁轭将心柱连接起来,使之形成闭合磁路。让我吃惊的是,铁芯的一层是由多片人工裁制好的不同尺寸的硅钢片组成的,这和我所理解的完全不同。 通过总工的讲解后,我才终于理解和明白为何要这样做了。由于目前的制造工艺和技术设备的限制,对于铁芯做成整体型看似合理,简便,但实际却不然。虽然这样构成的铁芯没有接缝,损耗会更小,然而却存在着许多问题。首先,对于绕组的绕制不易实现,其次,当绕组损坏后无法及时更换,最后,会造成对硅钢片的浪费,从而降低了经济效益。而铁芯做成组合型后,虽然会因为接缝的存在而造成损耗,但可以通过提高剪切的精度、接缝处选取45等方法减小损耗。组合型铁芯最大的好处就是铁轭与芯柱是分离的,当绕组损坏后可以及时更换,并且操作简单。 如图1所示。 图1

变压器(绕制工艺)

华为PA-2481-1H(42-M24811P01)电源变压器绕制工艺 1.将PQ32/30骨架拔去第1、2、7、9、10、12脚,引脚朝内装入绕线机。用1根线径0.7mmQA-2漆包线, 放入第4槽搭在第3脚上,排绕18圈。抽头折角成90度下垫宽18.5mm玛拉胶带,放入第4槽搭在第5脚上,玛拉胶带缠绕2层。(初级) 2.用宽16mm背胶铜(用18.5mm玛拉胶带将两边贴住),引骨架中心缠绕一圈,用18.5mm玛拉胶带贴住, 用直径0.5mm导线焊在背胶铜上放入第5槽搭在第6脚上(导线套长20mm直径0.76铁弗龙套管)。 (屏蔽层) 3.用2根线径1.2mm三层绝缘线,从次级侧上端引入(抽头预留82mm并套长77mm直径2.7mm的白色铁 弗龙套)排绕6圈,下垫宽18.5mm玛拉胶带2层,继续排绕6圈下垫宽18.5mm玛拉胶带2层从次级侧上端引出(抽头预留70mm并套长65mm直径2.7mm的黑色铁弗龙套)。(次级) 4.用宽16mm背胶铜(用18.5mm玛拉胶带将两边贴住),引骨架中心缠绕一圈,用18.5mm玛拉胶带贴住, 用直径0.5mm导线焊在背胶铜上放入第5槽搭在第6脚上(导线套长20mm直径0.76铁弗龙套管)(屏蔽层) 5.用1根线径0.7mmQA-2漆包线,放入第4槽搭在第5脚上,排绕18圈。抽头折角成90度下垫宽18.5mm 玛拉胶带,放入第3槽搭在第4脚上(引脚套长12mm直径1.2mm铁弗龙套管),18.5mm玛拉胶带缠绕2层。(初级) 6.用玛拉胶带分别将开气隙PQ32/30磁芯表面包住并与骨架进行装配,并进行电感量测量,3对4脚之 间电1.5mH±100uH。选用12mm玛拉胶带在变压器上缠绕三层加固处理。送入90℃的烘箱中预热60分钟后,取出浸入稀释绝缘漆中5分钟。取浸泡好的变压器自然去漆10分钟,送入90℃的烘箱中加温烘2小时。 7.将骨架上的引出线,对应各自引脚进行缠绕,焊接处理。并剪掉第5脚.

变压器安装工艺流程

变压器安装工艺流程控制 美文欣赏 1、 走过春的田野,趟过夏的激流,来到秋天就是安静祥和的世界。秋天,虽没有玫瑰的芳香,却有秋菊的淡雅,没有繁花似锦,却有硕果累累。秋天,没有夏日的激情,却有浪漫的温情,没有春的奔放,却有收获的喜悦。清风落叶舞秋 韵,枝头硕果醉秋容。秋天是甘美的酒,秋天是壮丽的诗,秋天是动人的歌。 2、 人的一生就是一个储蓄的过程,在奋斗的时候储存了希望;在耕耘的时候储存了一粒种子;在旅行的时候储存了风景;在微笑的时候储存了快乐。聪明的人善于储蓄,在漫长而短暂的人生旅途中,学会储蓄每一个闪光的瞬间,然后用它们酿成一杯美好的回忆,在四季的变幻与交替之间,散发浓香,珍藏一生! 3、 春天来了,我要把心灵放回萦绕柔肠的远方。让心灵长出北归大雁的翅膀, 乘着吹动彩云的熏风,捧着湿润江南的霡霂,唱着荡漾晨舟的渔歌,沾着充盈夜窗的芬芳,回到久别的家乡。我翻开解冻的泥土,挖出埋藏在这里的梦,让她沐浴灿烂的阳光,期待她慢慢长出枝蔓,结下向往已久的真爱的果实。 4、 好好享受生活吧,每个人都是幸福的。人生山一程,水一程,轻握一份懂得,将牵挂折叠,将幸福尽收,带着明媚,温暖前行,只要心是温润的,再遥远的路也会走的安然,回眸处,愿阳光时时明媚,愿生活处处晴好。 5、 漂然月色,时光随风远逝,悄然又到雨季,花,依旧美;心,依旧静。月的柔情,夜懂;心的清澈,雨懂;你的深情,我懂。人生没有绝美,曾经习惯漂浮的你我,曾几何时,向往一种平实的安定,风雨共度,淡然在心,凡尘远路,彼此守护着心的旅程。沧桑不是自然,而是经历;幸福不是状态,而是感受。 6、 疏疏篱落,酒意消,惆怅多。阑珊灯火,映照旧阁。红粉朱唇,腔板欲与谁歌?画脸粉色,凝眸着世间因果;未央歌舞,轮回着缘起缘落。舞袖舒广青衣薄,何似院落寂寞。风起,谁人轻叩我柴扉小门,执我之手,听我戏说? 7、 经年,未染流殇漠漠清殇。流年为祭。琴瑟曲中倦红妆,霓裳舞中残娇靥。冗长红尘中,一曲浅吟轻诵描绘半世薄凉寂寞,清殇如水。寂寞琉璃,荒城繁心。流逝的痕迹深深印骨。如烟流年中,一抹曼妙娇羞舞尽半世清冷傲然,花祭唯美。邂逅的情劫,淡淡刻心。那些碎时光,用来祭奠流年,可好? 施工准备 检验 变压器就位、安装 检验 配线 接地、补漆 试运行前检查 试运行 检验 检验 检验 检验 交工验收 基础预制加工 不合格 不合格 不合格 不合格 不合格

环形变压器设计和绕制

这个是我在其他坛子上和一些发烧友们探讨的帖子,很多评论直接合并一起了. 下面是我看到的一篇关于环型变压器比较权威的计算方法和公式,看完以后有些糊涂,按照下面的计算方法,铁心截面积20平方CM的牛 20/= 按照磁通密度来计算,220VA,初级绕组V每匝= B——磁通密度(T),B=。代入得N10==匝/V,取N10=3匝/V,则 N1=N10U1=3×220=660匝 我的计算方法,50/11平方厘米=匝/V =匝!相差340匝! 难道我的计算方法太保守? RE:他里面有个的系数,好象是说EI牛的效率=环牛的所以,计算环牛功率按照E牛的公式要除以这个系数,下来正好202W,我也做过一些实验,我自己饶的铁心截面积18平方MM的环牛,接在专用仪器上,负载达到600W牛也不叫,不振动,不发热,2小时以后才微微有一些温度,这个文章的观点好象牛的功率和多少高斯铁心还有是否整带的关系很大.我从声达弄回来的样品700W牛,要是按照我自己的计算方法,最多也就是300-400W的样子,但是负载600多W好象也没有什么问题. 现在厂家的计算方法大约是:优质牛是,每1MM平方4A电流,理论是. 通过设计一台50Hz石英灯用的电源变压器,其初级电压U1=220V,次级电压U2=,次级电流I2=,电压调整率ΔU≤7%,来说明计算的方法和步骤。 1)计算变压器次级功率P2 P2=I2U2=×=197VA(5) 2)计算变压器输入功率P1(设变压器效率η=)与输入电流I1P1===207VA(6)I1=== 3)计算铁心截面积SS=K(cm2)(7) 式中:K——系数与变压器功率有关,K=~,取K=; PO——变压器平均功率,Po===202VA。则S==,取S=11cm2。 根据现有铁心规格选用铁芯尺寸为:高H=40mm,内径Dno=55mm,外径Dwo=110mm。核算所选用的铁心的截面积S=H=×40×10-2=11cm2 4)计算初级绕组每伏匝数N10与匝数N1N10=(匝/V)(8) 式中:f——电源频率(Hz),f=50Hz; B——磁通密度(T),B=。代入得N10==匝/V,取N10=3匝/V,则 N1=N10U1=3×220=660匝。 5)计算次级绕组每伏匝数N20与匝数N2N20=(匝/V)(9)代入得N20==匝/V,则 N2=N20·U2=×=匝,取N2=38匝。 6)选择导线线径 图7环形变压器截面图 绕组导线线径d按式(10)计算d=(mm)(10) 式中:I——通过导线的电流(A); j——电流密度,j=~3A/mm2。 当取j=mm2时代入式(10)得d=(mm)则初级绕组线径d1==,选漆包线外径为。次级绕组线线径d2==,选用两条d=(考虑绝缘漆最大外径为221mm)导线并绕。因为导线的截面积Sd2=,而d=导线的截面积为两条并联后可得截面积为:2×=,完全符合要求且裕度较大。 6环形变压器的结构计算 环形变压器的绕组是用绕线机的绕线环在铁心内作旋转运动而绕制的,因此铁

变压器绕法

高频逆变器中高频变压器的绕制方法 来源:dianyuan 你如果用EE55等高频磁芯制作高频逆变器,其中高频变压器的线包绕制最好参考一下电子管音响功率放大器中音频输出变压器的绕制方法.这种变压器因为要在音频20Hz~20KHz范围内力求做到平坦响应,绕法讲究,顶级的电子管音频输出变压器的频响范围甚至做到了10Hz~100KHz,而用的磁芯不过就是高矽硅钢片而已. 以大家在坛子中讨论最多也用得最多的“SG3525A(或KA3525A、UC3525)+场管IRF3205(或MTP75N06等)+EE55磁芯变压器”组合为例,功率可做到500W以上,工作频率一般在20~50KHz.其中的EE55磁芯变压器,大家一般是低压绕组(初级)3T+3T,中心抽头,高压绕组(次级)75T. 要制作好它就要注意两点: 一是每个绕组要采用多股细铜线并在一起绕,不要采用单根粗铜线,因为高频交流电有集肤效应.所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强).采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线.例如初级的3T+3T,你如果用直径2.50mm的单根漆包线,导线的截面积为4.9平方毫米,而如果用直径0.41mm的漆包线(单根截面积0.132平方毫米)38根并绕,总的截面积也达到要求.然而,第二种方法导线的表面积大得多(第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍),导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制.次级75T高压绕组用3~5根并绕即可. 二是最好采用分层、分段绕制法,这种绕法主要目的是减少高频漏感和降低分布电容.例如上述变压器的绕法,初级分两层,次级分三层三段.具体是:①绕次级高压绕组第一段.接好引出线(头),先用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半.②绕初级低压绕组的一半.预留引出线(头),注意是预留,因为后面要统一并接后再接引出线,以下初级用“预留”一词时同理.用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断.在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整.注意三次的头、中、尾放在一起,且绕向要相同.然后又包一层绝缘纸,准备绕次级高压绕组第二段.③绕次级高压绕组第二段.将前面没有剪断的次级高压绕组线翻转上来(注意与前面的初级绕组线不要相碰,必要时可用绝缘纸隔开),又并绕25T,注意绕向要与前面的第一段相同,线仍不剪断.又包一层绝缘纸,准备绕初级低压绕组的另一半.④绕初级低压绕组的另一半.再按步骤②同样的方法绕一次初级低压绕组,注意绕向要与前面的一半相同.同样线剪断,包一层绝缘纸,准备绕次级高压绕组第三段.⑤绕次级高压绕组第三段.再按步骤③提示的方法绕完剩下的次级高压绕组25T,仍注意绕向与前面的两段相同.接好引出线(尾),线剪断.至此,所有的绕组都绕完了.⑥合并初级低压绕组.将前面两次绕的初级低压绕组,头与头并接,中心抽头与中心抽头并接,尾与尾并接(这样绕组匝数仍是3T+3T,而总的并线为38根),接好引出线,即得到初级低压绕组的头、中、尾三个引出端.最后缠一层绝缘胶带,至此线包制作完成. 以上叙述起来显得很复杂,实际熟悉后并不难.按此方法绕制的高频变压器肯定好用;如果再参考高档电子管音频变压器的对称交叉绕制法,并讲求制作上的精细工艺,只要磁芯适应,工作频率可以提升到100KHz以上.不过对称交叉绕法最复杂最难搞(绕组分段更细,每一层都对称地分为两组,接法复杂,稍一疏忽大意就会接错绕组中某一段的相位),就不介绍了.为什么有的人做的高频变压器频率总是提不高,功率做不大(做大功率需要提升频率),而且发热严重,就是因为漏感大,分布电容大,高频电流集肤现象严重等等. 自激式高频变压器绕法也一样.

变压器基础知识 制作流程 详解

员 工 专 业 知 识 培 训 教 材 确认审核作成 承认日期 作成日期2004 – 11 – 28 初版页数共 53页 工程部

第一章 变压器的概述 变压器的最基本型式,包括两组绕有导线的线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率) 流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率的交流电压,而感应的电压大小取决于两线圈耦合及磁交链的程度。 一般指连接交流电源的线圈称之为“一次线圈”(Primamary Coil) ;而跨于此线圈的电压称之为“一次电压”。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈间的“匝数比”所决定的。因此,变压器区分为升压与降压变压器两种。 大部份的变压器均有固定的铁心,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部份磁通量局限在铁心里,因此,两组线圈藉此可以获得相当高程度的磁耦合。在一些变压器中,线圈与铁心二者间紧密地结合,其一次与二次电压的比值几乎与二者的线圈匝数比相同。因此,变压器的匝数比,一般可作为变压器升压或降压的参考指标。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附属物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,我们可以这幺说,倘无变压器,则现代工业实无法达到目前发展的现况。 电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。一般提供60Hz电力网络的电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部份属放大电力者,但如果与电力系统发电能力相比较,它仍然归属于小电力的范围。 各种电子装备常用到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部份得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。“阻抗”的其中一项重要概念,即电子学特性,是一种假想的设备,即当电路组件阻抗系从一阶层改变到另外的一个阶层时,其间要使用到一种设备—变压器。 对于电子装置而言,重量和空间通常是一项努力追求的目标,至于效率、安全性与可靠性,更是重要的考虑因素。变压器除了能够在一个系统里占有显着百分比的重量和空间外,另一方面在可靠性方面,它亦是衡量因子中的一个要项。因为上述与其它应用方面的差别,使得电力变压器并不适合应用于电子电路上。

变压器、箱式变电所安装作业工艺流程图

变压器、箱式变电所安装作业工艺流程 1 适用围 适用于一般工业与民用建筑电气安装工程10kV及以下中小型室变压器及箱变式变电所的安装。 2 施工准备 2.1技术准备 2.1.1熟悉图纸资料,弄清设计图的设计容,注意图纸和产品技术资料提出的具体施工要求。 2.1.2考虑与主体工程和其他工程的配合问题,确定施工方法。 2.1.3技术交底。施工前要认真听取工程技术人员的技术交底,弄清技术要求,技术标准和施工方法。 2.1.4必须熟悉有关电力工程的技术规。 2.2设备及材料要求 2.2.1变压器应装有铭牌。铭牌上应注明制造厂名,额定容量,一、二次额定电压,电流,阻抗电压及接线组别等技术数据。 2.2.2变压器的容量、规格及型号必须符合设计要求。附件、备件齐全,并有出厂合格证及技术文件。 2.2.3干变式变压器的局放试验PC值及噪声测试器dB(A)值应符合设计及标准要求。 2.2.4带有防护罩的干变式变压器,防护罩与变压器的距

离应符合标准的规定。 2.2.5查验箱式变电所合格证和随带技术文件,箱式变电所应有出厂试验记录。 2.2.6外观检查。有铭牌,箱门侧应有主回路线路图、控制线路图、操作程序和使用说明,以及附件齐全,绝缘件无损伤、裂纹,箱接线无脱落脱焊,箱体完好无损,表面涂膜应完整。 2.2.7安装时所选用的型钢和紧固件、导线的型号和规格应符合设计要求,其性能应符合相关性技术标准的规定。紧固件应是镀锌制品标准件。 2.2.8型钢:各种各样规格型钢应符合设计要求,并无明显锈蚀;螺栓:除地脚螺栓及防震装置螺栓外,均应采用镀锌螺栓,并配相应的平垫圈和弹簧垫。 2.2.9其他材料:蛇皮管、耐油塑料管、电焊条、防锈漆、调合漆及变压器油,均应符合设计要求,并有新产品合格证。 3 施工工艺 3.1变压器 3.1.1工艺流程。

变压器绕制工艺

注意绕线的时候不能弄破漆包线对于绝缘要求高的变压器还要上绝缘漆 变压器绕制工艺 一、绕线 1、绕线前准备 (1)按图纸要求选择漆包线、骨架、黄蜡绸、聚脂薄膜等; (2)按要求剪好各颜色的套管。 2、绕线要求 (1)线圈必须绕齐、排平,导线不得有打结和反扣现象。 (2)线圈层间和线圈间的绝缘应按规定符合要求,绕毕后的线圈(包括最外层的黄蜡绸)高度不得超过线圈骨架(即绕组不得鼓起超过线圈骨架)。 (3)线圈绕毕后必须有代号标记和工作者代号。 3、引出线的使用规定 (1)线径在0.25mm以上者均用本线引出(特殊要求例外); (2)线径在0.25mm以下者(包括0.25mm)用多股软线引出; (3)引出线外面必须有塑料套管或耐热塑管,套管内径应选择和线径最配合,引出线露出套管的长度为40~70mm。 4、塑料套管的规定 (1)套管颜色即表示出线号码(有特殊规定的例外); 表示方法如下: 0 1 2 3 4 5 6 7 8 9 黑棕红橙黄绿兰紫灰白 (2)套管长度除有特殊要求外,自线圈骨架边缘算起,长度根据铁芯型号而定。 长度单位:毫米 5、 (1)引出线必须去漆干净,去漆可用砂布也可用除漆剂,在用砂布去漆时应根据线径粗细选用粗细适当的砂布,去漆时必须均匀,不得使导线损伤和变 形。 (2)用除漆剂去漆时必须用酒精清洗,程序不少于两次。 (3)引出线搪锡必须均匀、光亮,无残留松香痕迹。 6、线圈绝缘 (1)线圈骨架、线圈绕组、线圈与隔离层、线圈最外层均应按图纸要求垫聚脂薄膜和黄蜡绸。 (2)在图纸未规定时,线圈绕组间、线圈与隔离层之间均垫电容器纸二层,线

圈最外层包黄蜡绸二层,层间不垫。 7、线圈绕好后,变压器要测定圈数和直流电阻,测完后方能进行浸漆。 二、浸漆绝缘处理 1、浸漆目的:浸漆主要目的为了防潮,当变压器线圈和铁芯受潮之后将会使线圈的绝 缘下降,通电后,容易发生击穿而造成线圈匝间短路,对于线径较细的变压器,受 潮后可能引起线圈霉断,硅钢片也易生锈。浸漆处理后不仅可以防潮,而且可以提 高变压器耐热程度,空气隙和空气层被绝缘物质填充后,改善了散热性,耐热性可 以从80℃~85℃提高到100℃~105℃。浸漆后还可以提高线圈机械强度。 2 3 (1)预烘 预烘以驱去线圈中的潮气。预烘的温度保持在65℃~75℃为宜,烘烤时间为小线圈2小时,大线圈4小时。 (2)浸漆 浸漆时,要将整个变压器沉没在漆溶液中,这时会看到漆中慢慢逸出气泡,这是由于绝缘漆浸入变压器的空隙,挤出了里面的空气,待气泡终了,再等一、二分钟,便可将变压器自漆中取出,挂在支架上将漆滴干。浸漆的配制及时间的掌握注意不使塑料套管发硬变脆。(3)复烘 等变压器的漆滴干后,便可进行复烘,复烘的温度仍保持在65℃~75℃,烘烤时间为4~8小时。 3、烘烤、浸漆过程中应注意的几个问题 (1)烘烤时应有人守护,温度过高或时间过长会使漆包线变脆或烧焦,复烘时尤其应该注意,防止因烘烤前漆未滴干,在复烘时滴入火源而引起火灾。 (2)变压器预烘好后,应立即浸漆,否则因变压器温度高于环境温度,容易吸收潮湿空气。(3)浸漆时漆溶液应稠稀程度合适,太稠(粘度大),不易浸入变压器内部,并且滴干时外部易残留不均匀漆层;漆溶液太稀会造成漆膜太薄,内部气隙充填不严,浸漆后要求变压器外表漆层均匀,没有严重流挂现象。 三、测试 线圈必须经绝缘处理后才能进行测试。测试时应用圈数测试仪,测量线圈是否有短路现象,合格后方能进行组装。 四、装配 1、紧固铁芯夹件时,铁芯上、下应各垫泡沫塑料一层,大小与铁芯一致,厚度为3~5mm, 夹件必须夹紧,夹脚位置应在两个铁芯缺口中间。 2、铁芯装配后应打印代号标记(即线圈名称代号和工作者代号)字迹必须清晰,标志 必须明显。 3、夹紧后的铁芯对口: (1)不作特殊规定的要求时,用万能胶封口胶粘,要求万能胶在接缝处涂抹均匀,第一次胶粘烘干后再涂抹一次万能胶烘干以加强粘结程度。

相关文档
最新文档