《应用离散数学》方景龙版群的性质循环群

《应用离散数学》方景龙版群的性质循环群
《应用离散数学》方景龙版群的性质循环群

习题4.3

1. 设>*<,

G 是群,若G x ∈?有e x =2,证明>*<,G 为交换群。 解 略

2. 设>*<,

G 是群,证明G 是交换群的充分必要条件是G b a ∈?,有222)(b a b a *=*。

解 必要性:如果G 是交换群, G b a ∈?,有222)(b a b a *=*是显然的。

充分性:根据222)(b a b a *=*得b b a a b a b a ***=***,再由消去律得b a a b *=*,即交换律成立,所以G 是交换群。

3. 设>*<,G 是群,并且对任意的G b a ∈,都有3

33)(b a b a *=*,555)(b a b a *=*,证明G 是交换群。

解 略

4. 设>*<,

G 是有限半群,且满足消去律,证明G 是群。 解 对于G a ∈?,考虑集合

},,,,,{32 m a a a a a G =

由封闭性可知G G a ?。又由于G 是有限集,所以a G 也是有限集。故

必有0,>k n ,使得

k n n a a += 所以G b ∈?有

b a b a k n n *=*+ 由消去律可得

b a b k *= 这表明k a 是左单位元,同理可证它是右单位元,所以k

a 是单位元。又因为 e a a a a a k k k ==*=*--11

所以,a 有逆元1-k a 。因此,>*<,

G 是群。

5. 设>*<,

G 是群,G c b a ∈,,,证明 ||||||b a c a c b c b a **=**=**

解 略

6. 设>*<,G 是群,G b a ∈,且a b b a *=*。如果m b n a ==||||,

且n 与m 互质,证明m n b a ?=*||。

解 略

7. 证明循环群一定是交换群,举例说明交换群不一定是循环群。

解 略

8. 证明由1的n 次复根的全体所组成的集合在复数乘法下构成一个n 阶循环群。

解 由代数的知识可知,1的n 次复根的全体所组成的集合为

}1,,2,1,0|{2-==n k e

G i n k π }1,,2,1,0{,,,22-∈∈?n q p G e e i n q i n p ππ,有i n q p i n q i n p e e e

πππ)(222+=?。若n q p <+,

则G e i n q p ∈+π)(2;若n q p >=+,则存在}1,,2,1,0{-∈n k ,使得k n q p +=+,而

G e

e e i n k i n k n i n q p ∈==++πππ2)(2)(2。因此G 关于数的乘法是封闭的。故>?<,G 是代数系统。

数的乘法运算满足结合律。故>?<,G 是半群。 因为G e

i n k ∈?π2,有i n k i n k i n k i n k e e e e ππππ2)0(22211==?=?+,所以i n e π??=021是G 的么元。故>?<,G 是有幺半群。 G e

i n k ∈?π2,存在G e i n k n ∈-π)(2,使得 122)(2)(22==?=?--i i n k i n k n i n k n i n k e e

e e e

πππππ,所以i n k e π2的逆元存在。故>?<,G 是群。 因为k i n i n k e e

][22ππ=,故i n e π2是群G 的一个生成元,因此G 是循环群。

9. 阶数为5、6、14、15的循环群的生成元分别有多少个?

解 设a 是阶数为5的循环群的生成元,因在比5小的正整数中有且仅有2,3,4与5

互质,所以432,,a a a 也是生成元,因此生成元个数为4。

设a 是阶数为6的循环群的生成元,因在比6小的正整数中有且仅有5与6互质,所以5a 也是生成元,因此生成元个数为2。

设a 是阶数为14的循环群的生成元,因在比14小的正整数中有且仅有3,5,9,11,

13与14互质,所以1311953,,a a a a a 也是生成元,因此生成元个数为6。

设a 是阶数为15的循环群的生成元,因在比15小的正整数中有且仅有2,4,8,11,13,14与15互质,所以

141311842,,a a a a a a 也是生成元,因此生成元个数为7。 10. 设}11751{,,,=G ,对于G 上的二元运算“模12乘法12?”:

)12)(mod (12j i j i ?=?

(1)证明>?<12,G 构成群。 (2)求G 中每个元素的次数。

(3)>?<12,

G 是循环群吗?

伴随矩阵的性质知识讲解

伴随矩阵的性质

编号2009011118 毕业论文(设计) ( 2013 届本科) 论文题目:伴随矩阵的性质 学院:数学与统计学院 专业:数学与应用数学 班级:09级本科1班 作者姓名:魏瑞继 指导教师:俱鹏岳职称:副教授 完成日期:2013年 4 月20日

目录 陇东学院本科生毕业论文(设计)诚信声明 (4) 摘要 (5) 关键词 (5) 0引言 (5) 1主要结论 (6) 1.1伴随矩阵的基本性质 (6) 1.2伴随矩阵的特征值与特征向量的性质 (9) 1.3矩阵与其伴随矩阵的关联性质 (10) 1.4两伴随矩阵间的关系性质 (11) 2应用举例 (12) 例1 (12) 例2 (12) 结束语 (13) 参考文献 (13) 致谢 (14)

陇东学院本科生毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 二〇一二年十二月二十日

伴随矩阵的性质 魏瑞继 (陇东学院 数学与统计学院 甘肃 庆阳 745000) 摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵 0引言 伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广. 定义1[1] 设矩阵()ij n n A a ?=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即 ij A = (1)i j ij M +-(i ,j=1,2,……,n). 定义2[2] 方阵()ij n n A a ?=的各元素的代数余子式ij A 所构成的如下矩阵 A *= 112111222212n n n n nn A A A A A A A A A ????? ???????L L M M O M M 称为矩阵A 的伴随矩阵.

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

正定矩阵和半正定矩阵的性质及应用

摘要 本文主要针对正定矩阵和半正定矩阵进行讨论,归纳和总结了正定矩阵和半正定矩阵的性质,通过实例介绍了正定矩阵(半正定矩阵)的判别方法诸如:定义法、主子式法、特征值法等,并且给出了它们在不等式的证明问题中以及多元函数极值问题中的一些应用. 关键词:正定矩阵;半正定矩阵;二次型;主子式;特征值

ABSTRACT This paper mainly discusses positive definite matrices and positive semi-definite matrix,the properties of positive definite matrix and semi-positive definite matrix are summarized.Through examples, the judgment methods of positive definite matrix and semi-positive definite matrix are introduced, such minor method, master type method, eigenvalue method, etc. Some applications of positive definite matrices and semi-positive definite matrix in the proof of inequality extreme value problems of multivariate functions are given. Keywords:positive definite matrix; positive semi-definite matrix; quadratic form; principal minor determinant;characteristic value

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

正定矩阵的判定方法及正定矩阵在三个不等式证明中的应用汇编

正定矩阵的判定方法及正定矩阵 在三个不等式证明中的应用 作者:袁亮(西安财经大学) 摘要: 本文从正定矩阵的的定义出发,给出了正定矩阵的若干判定定理及推论,并给出了正定矩阵在柯西、Holder、Minkowski三个不等式证明中的应用. 关键词: 正定矩阵,判定,不等式,应用 Abstract: In this paper, we mainly introduce some decision theorem and inference based on the definition of positive definite matrices and give the application of positive definite matrices in the proving on Cauchy、Holder、and Minkowski inequality. Keywords: positive definite matrix,determine,inequality,application

目录 1 引言 (4) 2 正定矩阵的判定方法 (4) 2.1 定义判定 (5) 2.2 定理判定 (6) 2.3 正定矩阵的一些重要推论 (11) 3 正定矩阵在三个不等式证明中的应用 (15) 3.1 证明柯西不等式 (15) 3.2 证明Holder不等式 (16) 3.3 证明Minkowski不等式 (18) 结束语 (21) 参考文献 (22)

1 引言 代数学是数学中的一个重要的分支,而正定矩阵又是高等代数中的重要部分.特别是正定矩阵部分的应用很广泛, n阶实对称正定矩阵在矩阵理论中,占有十分重要的地位.它在物理学、概率论以及优化控制理论[]2中都得到了重要的应用,而本文只提供解决正定矩阵判定问题的方法,并阐明它在数学分析中三个重要不等式证明中的应用. 正定矩阵的一般形式是,设A是n阶实对称矩阵,若对任意n x∈,且0 R x, ≠ 都有0 Mx x T成立[]2.本文从正定矩阵的定义,给出正定矩阵的判定定理,并给> 出正定矩阵的重要推论,这些重要推论对计算数学中的优化问题有着重要的作用,并在矩阵对策,经济均衡,障碍问题[]3的研究中具有很实用的价值.同时还介绍正定矩阵在三个不等式证明中的应用,其一是用正定矩阵证明著名的柯西不等式,其二是用正定矩阵的性质给出Holder不等式的一个新的证明,其三是运用正定矩阵的两个引理证明Minkowski不等式,这三个应用说明正定矩阵运用的广泛性和有效性.以上这些正定矩阵的研究只局限在正定矩阵的理论分析方面,它的一些实际方面的应用还有待笔者和一些学者去探索挖掘. 2 正定矩阵的判定方法 2.1 定义判定 设A=()ij a,(其中ij a∈C,i,j=1,2,…,n),A的共轭转置记为*A=()ji a 定义1[]1对于实对称矩阵A=()ij a,(其中ij a∈R,i,j=1,2,…,n)若对于任意非零列向量X,都有T X A X>0,则称A是正定矩阵. 定义2[]1对于复对称矩阵A=()ij a,(其中ij a∈C,i,j=1,2,…,n)若对于任意非零列向量X,都有* X A X>0,则称A是正定矩阵. 例1设A为m阶实对称矩阵且正定,B为m×n实矩阵,T B为B的转置矩阵,试证AB B T为正定矩阵的充要条件是B的秩r(B)=n. 证 [必要性] 设AB B T为正定矩阵,则对任意的实n维列向量0 x, ≠

函数的连续性极其性质

了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 无穷大量和无穷小量 无穷大量 我们先来看一个例子: 已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为此我 们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当 时,成立,则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函 数当x→∞时是无穷大量,记为:。 无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.。 关于无穷小量的两个定理 定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理 a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量. 无穷小量的比较 通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

特征函数的概念及意义

特征函数的概念及意义 目录: 一.特征函数的定义。 二.常用分布的特征函数。 三.特征函数的应用。 四.绪论。 一.特征函数的定义 设X 是一个随机变量,称 ()() itX e t E =?, +∞<<∞-t , 为X 的特征函数. 因为=1Xit e ,所以() itX e E 总是存在的,即任一随机变量的特征函数总是存在的. 当离散随机变量X 的分布列为() ,3,2,1,P p k ===k x X k ,则X 的特征函数为 ()∑+∞ ==1k k itx p e t k ?, +∞<<∞-t . 当连续随机变量X 的密度函数为()x p ,则X 的特征函数为 ()()?+∞ ∞-=dx x p e t k itx ?, +∞<<∞-t . 与随机变量的数学期望,方差及各阶矩阵一样,特征函数只依赖于随机变量的分布,分布相同则特征函数也相同,所以我们也常称为某分布的特征函数. 二.常用分布的特征函数 1、单点分布:().1P ==a X 其特征函数为 ().e t it a =?

2、10-分布:()(),10x p 1p x X P x 1x =-==-,,其特征函数为 ()q pe t it +=?,其中p 1q -=. 3、泊松分布()λP :()λλ-= =e k k X P k ! ,k=0,1, ,其特征函数为 ()()∑+∞ =---===0k 1e e k ikt it it e e e e k e t λλλλλ?! . 4、均匀分布()b a U ,:因为密度函数为 ()?????<<-=.;, 0, 1其他b x a a b x p 所以特征函数为 ()() ? --= -=b a iat ibt itx a b it e e dx a b e x ?. 5、标准正态分布()1,0N :因为密度函数为 ()2 221x e x p -= π , +∞<<∞-x . 所以特征函数为 ()() ? ?∞+∞-∞+∞ ---- - ∞== dx it x t x itx e e dx e x 22 22 222121 π ? =? -∞+-∞--- - =it it t t t e dz e e 2 2 2 22221π . 其中 ? -∞+-∞-- =it it x dz e π22 2 . 三.特征函数的应用 1、在求数字特征上的应用 求() 2N σμ,分布的数学期望和方差. 由于()2N σμ,的分布的特征函数为()2 t i 2 2e t σμ ?=,

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

正定矩阵的性质及其应用_____

如对您有帮助,请购买打赏,谢谢您! 正定矩阵的性质及其应用 姓名: 学号: 指导教师: 摘 要;矩阵是数学中的一个重要基本概念,是代数学中的一个主要研究对象,而正定矩阵作为一类特殊的矩阵,固然有它与其它矩阵不同的性质和应用。本文主要是给出了正定矩阵的若干等价条件,对正定矩阵的一些重要性质进行了归纳整合并给出部分性质的证明过程,最后给出了正定矩阵在不等式证明问题、多元函数极值问题、最优化的凸规划问题以及解线性方程组问题中的应用。 关键词:矩阵;正定矩阵;性质;应用 The Properties of Positive Definite Matrix and Its Applications Abstract: Matrix is one of the important basic concepts and it is one of the main research object in math . Positive definite matrix is a kind of special matrix, no doubt it has its properties and applications different from other matrix. This paper states some equivalent conditions on how to determine a positive definite matrix, integrates some important properties, then puts forward several applications of the positive definite matrices on inequation problems, multiple function extreme problems, the optimization of convex programming problem and solving linear equations. Key Words: matrix; positive definite matrix; property; application 1. 引言 矩阵理论是数学的一个重要分支,它不仅是一门基础学科,也是最具实用价值、应用广泛的数学理论。矩阵是矩阵理论中一个重要基本概念,是代数学的一个主要研究对象,而正定矩阵作为一类常用矩阵,其在计算数学、数学物理、运筹学、控制论、数值分析等领域中都具有着广泛的应用。本文主要介绍正定矩阵的等价定理及其一些重要的性质,最后给出正定矩阵在数学及其它学科中的若干应用。 2. 正定矩阵的等价定理 首先我们给出正定矩阵的定义。 定义1[1] 设()T f x X AX =为一个实二次型,若对任意一组不全为零的实数12,,,n c c c ,都有 12(,,,)0n f c c c >,

正定矩阵的性质和判定方法及应用

内蒙古财经大学本科毕业论文正定矩阵的性质及应用 作者郝芸芸 系别统计与数学学院 专业信息与计算科学 年级10级 学号102093113 指导教师高菲菲 导师职称讲师 答辩日期 成绩

内容提要 矩阵是数学中的一个重要基本概念,也是一个主要研究对象,同时矩阵论又是研究线性代数的一个有力工具.而矩阵的正定性是矩阵论中的一个重要概念.正定矩阵是一种特殊的矩阵,其等价定理在解题过程中可以灵活使用.且正定矩阵具有一般矩阵不具有的特殊性质,尤其是这些性质广泛地应用于各个领域.本文在第一部分介绍了实矩阵的正定性的相关定义以及其等价条件.在第二部分列举了正定矩阵的一系列性质,主要介绍了正定矩阵的关联矩阵的正定性.本文在第三部分介绍了正定矩阵的相关定理.本文在第四部分介绍了矩阵正定性的判定方法:定义法、主子式法、特征值法、与单位矩阵合同法.且简单地举了一些实例来阐述实矩阵正定性的判定.最后本文分别从不等式的证明和多元函数的极值两个方面介绍了正定矩阵的实际应用. 关键词:二次型正定矩阵判定方法应用 Abstract Matrix is an important basic concepts in mathematics, but also a main research object, at the same time matrix theory is a powerful tool for the study of linear algebra. At the same time, the positive definiteness of matrix is an important concept in the matrix theory. The positive definite matrix is a special matrix, the equivalence theorem in the problem solving process can be used flexibly. And the positive definite matrix with special properties of general matrix does not have these properties, especially widely used in various fields. In the first part of this thesis introduces the related definition of positive definite real matrix and its equivalent conditions. In the second part are held a series of properties of positive definite matrix, mainly introduced the positive definiteness correlation matrix is positive definite matrix. This paper introduces the related theorem of positive definite matrix in the third part. This paper introduces the method to judge the positive definiteness matrix in fourth parts: the definition, the master method, the eigenvalue method. Determination and simply cited a number of examples of real positive definite matrices. Two aspects of extreme finally this paper from the proof of inequality and multiple function describes the practical application of positive definite matrices. Key words:Quadratic form Positive definite matrix Determination method Application

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

浅谈伴随矩阵的性质及其应用【开题报告】

开题报告 数学与应用数学 浅谈伴随矩阵的性质及其应用 一、综述本课题国内外研究动态, 说明选题的根据和意义 矩阵是代数学的一个主要研究对象, 是数学中最重要的基本概念之一, 也是数学研究及应用的一个重要工具. 矩阵这一概念自19世纪英国数学家凯利首先提出以后, 就形成了矩阵代数这一系统理论, 而且还广泛应用于实际生活. 把现实世界中的实际问题抽象成数学模型, 求出模型的解, 验证模型的合理性后, 用它的解来解释现实问题, 这其中要用到许多的数学知识, 而矩阵作为一种认识复杂问题的简捷的数学工具, 在数学模型中具有重要的作用, 如在各循环赛中常用的赛况表格、国民经济的数学问题等. 矩阵可以分为很多类, 有初等矩阵、分块矩阵、幂等矩阵、伴随矩阵等, 在不同的矩阵类型中近几年来分别取得了不同的成果与进展. 而伴随矩阵作为矩阵中较特殊的一类, 其理论与应用有自身的特点, 它是矩阵理论及线性代数中的一个基本概念, 是许多数学分支研究的重要工具. 在线性代数的解题方面, 灵活地运用这些伴随矩阵的性质有效地解决了线性代数中的问题, 且它有助于拓宽解决线性代数问题的思路. 比如, 矩阵间一些关系的证明, 求矩阵的逆, 一些复合矩阵的行列式等. 运用伴随矩阵的性质还可以用来解决一些复杂的问题. 比如, 用伴随矩阵的性质: I A A A AA ==**可以解决《美国数学月刊》上的E3227号问题(注: 若A 和B 为n 阶矩阵, 存在非零向量x 和向量y , 使得0=Ax , Bx Ay =. 设i A 为A 中第i 列被B 中的第i 列替换后所得到的矩阵,证明01=∑=n i i A ). 现今不仅专业研究伴随矩阵 的数学工作者愈加众多, 而且量子力学、刚体力学、流体力学、自动控制等各个学科或尖端技术领域内的研究工作者也都以它为必需的工具. 如蔡建乐提出了用特征矩阵的伴随矩阵求惯量主轴的代数方法, 这有利于刚体力学的发展, 体现伴随矩阵的物理意义. 正因为它有如此重要的作用, 古今中外对其研究颇多, 并且得到了许多重要的成果. 如杨闻起探讨了伴随矩阵在对称、反对称、正定、半正定、正交、相似和特征值等方面的性质; 王航平也在伴随矩阵的定义与基本性质的基础上, 探讨了伴随矩阵的运算性质, 特别研究了

相似矩阵的性质及应用

华北水利水电大学相似矩阵的性质及应用 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2013年11月6 日

摘要:若矩阵P可逆,则矩阵P-1AP与A称为相似。矩阵相似的概念是为深入研 究矩阵特性而提出的,其中一部分的问题可以转化为与一个对角化矩阵相似问题进而使问题研究简化,而另一些矩阵不能与一个对角矩阵相似,那么这类问题就只能用定义或者若而当标准型来解决。相似矩阵有很多应用。例如:利用相似矩阵的性质来确定矩阵中未知元素方法的完整性;两个相似矩阵属于同一个特征值的特征向量之间的关系;矩阵相似与特征多项式的等价条件及相关结果;尤其是矩阵的标准形及其对角化问题,在高等代数和其他学科中都有极其广泛的应用。本文将讨论相似矩阵的有关性质及其应用。 关键词:相似矩阵;对角化;Jordan标准型;特征向量;特征值 英文题目:The properties and application of similar matrix Abstract:There are a lot of applications about similar matrix. Matrix for further research is the concept of similarity matrix characteristics, and that part of the problem can be converted into similar problems with a diagonalization matrix to simplify the problem study, while others matrix cannot be similar to a diagonal matrix, so this kind of problem can only use a definition or if and when the standard to solve.For example, we can discuss the integrality of the method by using the properties of similar matrices to confirm unknown elements and characteristic subspaces of similar matrices belong to the same characteristic value are isomorphism. Also we may discuss the equivalent conditions for similar matrices and their characteristic polynomial and their corresponding results, especially, applications of digitalization matrices in advanced algebra theory and other subjects are probed into.In this paper I will give out some corresponding properties of similar matrices and show their appliance. Key words:similar matrices; diagonal matrix; Jordan’s normal form; characteristic value; characteristic vector

半连续函数的性质与应用

摘要 函数的种类极为复杂. 在函数论中, 连续函数的性质和应用占有相当重要的地位. 有一类函数虽然不连续, 但却具有一些与连续函数相近的性质, 即连续函数的一个推广——半连续函数. 从而得到了比连续函数更广泛的一类函数的性质. 通过对半连续函数的研究, 对半连续函数在数学分析中的应用奠定了理论基础. 首先简述连续函数的性质与应用, 之后重点讨论半连续函数的性质, 详细介绍运算性, 保号性, 以及拓扑空间上半连续函数性质定理. 推广到紧致空间中半连续函数的应用. 最后辨析连续函数与半连续函数性质、应用, 最终应用连续函数性质解决半连续函数的问题.实际上半连续函数理论在古典分析和现代分析中都有着较为广泛的应用. 比如在最优化问题、变分不等式问题、相补问题及对策论问题都有着举足轻重的作用. 关键词:半连续;连续;函数

Abstract Category of function is very complicated. Characterization and application of continuous functions are very important in the function theory. Although a kind of function is also continuous, its characterization is similar with the continuous functions, which is called extension of the continuous functions semi-continuous functions, thus a kind of function with more winder characterization is obtained. Through the study, half of the continuous function in the mathematical analysis continuous function which lay a theoretical foundation for the application. First, this paper expounds the nature of the continuous function and application, and then discusses the nature of the semi-continuous functions, detailed mathematical and application, introduced the number of topological space, and the first half of the continuous function theorem of generalized to nature. Tight space in the application of semi-continuous functions. Finally differentiate continuous function and semi-continuous functions properties, application, and finally application continuous function semi-continuous functions nature solution of the problem. Half a continuous function in the classical theory analysis and modern analysis has a wide range of applications. For example, in the most problems, variational inequalities, phase problems and countermeasures for the theory of and so on all has a pivotal role. Key words:semi-continuous;continuous;functions;

相关文档
最新文档