线性代数齐次线性方程组解的结构
线性代数线性方程组基本概念

证明
由 r ( A) r ( A b) 知 A X = b 有解,
组
即存在 x~1, x~2 ,, x~n ,使得
x~1 A1 x~2 A2 x~n An b .
(1) 若 r n , 则 A1, A2 , , An 线性无关, 故 b 只能由 A1, A2 , , An 的惟一地线性表示, 即 A X = b 的解是惟一的。
即得 念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
2. 线性方程组解的惟一性 P112 定理4.2 (2) 线
性 定理 设 r ( A) r ( A b) r , 则 r n A X = b 有惟一解。
方 程
P123
4
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
四 章
1. 线性方程组的一般形式
2. 线性方程组的矩阵形式 P111 线
性
方
程
组
简记为 A X b ,
其中 A 称为系数矩阵, A~ ( A b) 称为增广矩阵。
5
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
若 A X = b 有解,
组
则 b 可由 A1 , A2 , , An 线性表示,
故向量组 A1 , A2 , , An 与 A1 , A2 , , An , b 等价,
即得 r ( A) r ( A b).
7
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
线 定理 线性方程组 A X = b 有解的充要条件是 r ( A) r ( A b).
同济大学线性代数教案第三章向量空间与线性方程组解的结构

线性代数教学教案第三章 向量组及其线性组合授课序号01,n a 组成的有序数组称为2n a ⎪⎪⎪⎭维向量写成),,n a个分量,其中T,…来表示,n a 是复数时,维复向量,当12,,,n a a a 是实数时,本书所讨论的向量都是实向量0⎪⎪⎪⎭或()0,0,,00=.2n a ⎪⎪⎪⎭称为向量2n a ⎪⎪⎪⎭的负向量,记为α. 向量的运算:由于向量可看成行矩阵或列矩阵,因此我们可用矩阵的运算来定义向量的运算,也就是:122,n n a a b ⎛⎫⎛⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭β,k ∈,则有1122n n a b a b a b +⎛⎫ ⎪+ ⎪= ⎪ ⎪+⎝⎭β; (2)2n k ka ⎪⎪⎪⎭α;我们称这两种运算为向量的线性运算)1221122,,n n n n b ba a ab a b a b b ⎛⎫⎪ ⎪=+++ ⎪ ⎪⎝⎭;()111212212221212,,,n n n n n n n n a b a b a b a b a ba b b b b a a b a b a b ⎛⎫⎪⎪ ⎪=⎪ ⎪⎪⎪⎭⎝⎭. 二、向量组及其线性组合::由若干个维数相同的向量构成的集合,称为向量组. :给定n 维向量组,,,n ααα,对于任意一组数,,,n k k k ,表达式+n n k k α,n α和一个,n k ,使得++n n k =βα,,,n α线性表示,或者说向量β是向量组,n α的一个线性组合量组12,,,n ααα(唯一)线性表分必要条件是+n n x =α有(唯一)解.三、向量组的等价:由向量组B 线性表示:,,m αα是m ,,s β是s 维向量组成的向量组. 中每一个向量,)s β均可由向量组,m α线性表,s β可由向量组:A 12,,,m ααα线性表示.A 与向量组可以相互线性表示,则称向量组A 与向量组2,,,m αα与向量组:B 2,,,s βββ. 令矩阵),m A α,),s β,则向量组B 可由向量组线性表示的充分必要条件是矩阵方程=B向量组A 与向量组等价的充分必要条件是矩阵方程=BY A四、主要例题:1211222221122n n n n m m mn n ma x a x a x a x a xb +++++=中第()121,2,,i i i mi a ai n a ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭α,维列向量2m b ⎪⎪⎪⎭, n n x β+=α12122212n n m m mn a a a a a ⎫⎪⎪⎪⎪⎭,将矩阵A 与列向量组和行向量组对应2100010,,,001n ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭e e ,将任一向量2n a ⎪⎪⎪⎭由12,,n e e e 线性表示536⎫⎪⎪⎪-⎭及向量组123101,2,11⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭βββ,试问α能否由12,ββ123-⎫⎛⎫⎛⎫授课序号02,m α,如果存在一组不全为零的数,m k ,使得m m k +α,则称向量组,m α线性相关.线性无关:若当且仅当0m k ==时,才有112m m k k k ++=0ααα,m α线性无关.m 个n 维向量构成的向量组12,,,m ααα线性相关的充分必要条件是齐次线性方程组1122m m k k k +++=0ααα有非零解;线性无关的充分必要条件是上述齐次线性方程组只有零解0m k k k ===(,m m α线性相关的充分必要条件是存在某一个向量(1j ≤α2线性相关的充分必要条件是它们的分量对应成比例是向量组A 的部分组线性无关,则其部分组,m α是m 个,m α线性无关,而向量组,,m αβ线性相关,则向量,m α线性表示,且表示式是唯一的如果向量组1,,s ααα可由向量组,t β线性表示,并且s >,s α线性如果向量组12,,,s ααα可由向量组2,,t β线性表示,并且向量组,s α线性无关,则2,,s α与向量组,t β均线性无关,并且这两个向量组等价,则s t =.2322,2⎛⎫ ⎪= ⎪ ⎪α,存在一组不全为零的数20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e ,对任意一组数12120001001n n n n k k k k k k k ⎛⎫⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+=+++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭e ,0n k ==时,才有1122n n k k k +++=0e e e ,所以向量组1,,n e e e 线性无关证明:任一含有零向量的向量组必定线性相关.221,11⎫⎛⎫⎛⎫⎪ =⎪ ⎪ -⎭⎝α,判断向量组12,,αα授课序号03,r α满足条件:)向量组1,,r ααα线性无关;)对于A 中任意的向量β,向量组,,r αβ线性相关,则称向量组12,,r ααα为向量组的一个极大线性无关组,简称极大无关组向量组A 的任意一个极大无关组所含向量的个数,称为这个向量组的秩,记为等价的向量组有相同的秩二、矩阵秩的概念及求法:rB ,则RA B ,n α为列构作矩阵),,n α,对矩阵的阶梯数给出矩阵的秩,从而给出向量组1,,n ααα的秩),n β,,n α与向量组,n β有相同的线性相关性,从而可以根据向量组,n β的极大无关组给出向量组12,,,n ααα的极大无关组,并给出不属于极大无关组的向量由极大无关组线性表示的表示20,,,001n ⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎭⎝⎭⎝⎭e e 线性无关,所以该向量组的极大无关组就是它3145,1227⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭α,向量1α与2α的分量不对应成比例,。
第四章 线性方程组

结论:加减消元得到一系列同解方程组的过程,就相当于对增广矩阵施以一系列 的初等行变换, 化成上阶梯形矩阵. 得到的新矩阵作为增广矩阵所对应的方程组与 原方程组等价(即为同解方程组). 注:只施以初等行变换.
⎛ x1 ⎞ ⎛ −1 ⎞ ⎧ x1 = −1 ⎪ ⎜ ⎟ ⎜ ⎟ 求解: ⎨ x2 = −2 → 向量形式: ⎜ x2 ⎟ = ⎜ −2 ⎟ . ⎪x = 2 ⎜x ⎟ ⎜ 2 ⎟ ⎝ 3⎠ ⎝ ⎠ ⎩ 3 ⎧ x1 + 3 x2 − 5 x3 = −1 ⎪ 引例 2: ⎨ 2 x1 + 6 x2 − 3 x3 = 5 . ⎪3 x + 9 x − 10 x = 2 2 3 ⎩ 1
− c1n x n − c2n xn − c rn x n
此时, 每赋予未知量 xr +1 , xr + 2 ,
, xn 一组值, 则可惟一的解出左端 x1 , x2 ,
, xr 的
一组值.(因为左端系数矩阵的行列式不等于零,可由克拉默法则求解.)因此,方 程组有无穷多组解. 且右端未知量 xr +1 , xr + 2 ,
解 记系数矩阵为 A ,增广矩阵为 B .
⎛1 −1 1 −1 1 ⎞ ⎛ 1 −1 1 −1 1 ⎞ ⎛ 1 −1 1 −1 1 ⎞ ⎜ ⎟ 行变换 ⎜ ⎟ ⎜ ⎟ B = ⎜1 −1 −1 1 0 ⎟ ⎯⎯⎯ → ⎜ 0 0 −2 2 −1 ⎟ → ⎜ 0 0 1 −1 1 2⎟ ⎜1 −1 −2 2 − 1 ⎟ ⎜ 0 0 −3 3 − 3 ⎟ ⎜ 0 0 0 0 0 ⎟ ⎝ ⎠ ⎝ ⎝ 2⎠ 2⎠
⎧ x1 + 3 x2 − 5 x3 = −1 ⎪ 同解方程组为: ⎨ x3 = 1 . 显然,此方程组无解. ⎪ 0 =1 ⎩
线性代数的教学思路(十二)——线性方程组解结构理论的教学思路

(4)
… … … … … … … … … … … … … … … …
y,
+
Or. r ̄
y,+1+
1
… + c, y = 0
这里 y-,Y2,…, 是未知量 XI,X2,…,】【_l的重 新编号 。 方程组 (4)有 n—r个 自由未 知量 Y …,y目.依次 让 它们 取 值 (1,O'0,…,o),(0’l'O,…,o),…,(0,0"-,0,1),我们得到(4)的 n—r个解向
关■词 :线性代数 线性方程组 教学思路
一 C llr+1 :
●
一 C r…
— ‘ C Ir+2 , ● :
一 Cf . f+2
一 C1 n . : ●
一 C
线性方程组解结构理论是线性代数 的重 要理论之一 ,并 且也
n r+1=
1
n
O
…
Tlfl=
,
,
0
图 2
定义 2设 AX=B是数域 F上任意一个线性方程 组 ,把 AX=B 的常数项都换成零,就得到一个齐次线性方程组 AX=0,齐次方程 组 AX-0叫做方程组 AX=B的导 出齐次方程组 。
定理 6.7.5如果线性方程组 AX=B有解 ,那么 AX=B的一个 解与导 出齐次方 程组 AX=0的一个 解 的和是 AX=B的一个 解 。 AX=B的任 意解都可以写成 AX=B的—个固定的解 与 AX=0的一 个解 的和 。
(kl,k’’… ,kl-) =k件l 件1+k什2 ,+… +k
次线性方程组 的解空间。一个齐次线性方程组 的解空间 的一个基
因此,(4)的每 一个 解 向量 都可 以 由这 n_r个 解 向量 竹b
【知识】线性代数第3章知识梳理

【关键字】知识本章结构常用方法:1、矩阵化等价标准形,求出矩阵的秩,则标准形2、求矩阵的逆3、消元法求线性方程组的解增广矩阵行最简阶梯4、求矩阵的秩5、判断向量能否由向量组线性表示以为列向量的矩阵行最简阶梯6、求向量组的秩和一个极大无关组,并将其它向量用该极大无关组线性表示以为列向量的矩阵行最简阶梯7、用根底解系表示(非)齐次线性方程组的全部解增广矩阵行最简阶梯一、用消元法求解非齐次线性方程组1、,进而求出和2、观察和的关系:(1) ,方程组无解;(2) ,方程组有解:①、,方程组有唯一解;②、,方程组有无穷多个解.3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零;4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。
定理3.1线性方程组有解,且当时方程组有唯一解;当,方程组有无穷多个解.二、用消元法求解齐次线性方程组:1、,进而求出;2、观察:(1) ,方程组有唯一解,即只有零解;(2) ,方程组有无穷多个解,即有非零解;3、在有解的情况下,将阶梯形矩阵继续进行初等行变换,从最后一个非零首元开始将非零首元上面的元素消成零;4、写出相应的同解方程组,令自由未知量取任意常数,可得方程组的全部解。
定理3.2齐次方程组有非零解推论当,即当方程个数小于未知元个数时,齐次线性方程组有非零解三、维向量的概念及线性运算(看作特殊的矩阵)书P121-123四、向量与向量组的线性组合(向量由向量组线性表示)对非齐次线性方程组,设,,则线性方程组可表示,从而.定义3.5 (P124)对于给定向量,如果存在一组数,使成立,则称向量是向量组的线性组合,或称向量可由向量组线性表示。
线性组合的判别定理设向量,向量,则五、向量组的线性相关性对齐次线性方程组,设,,则齐次线性方程组可表示为.它一定有零解,考虑其是否有非零解:定义3.7(P128)对于向量组,如果存在一组不全为零的数使成立,则称向量组线性相关;否则称向量组线性无关.注:(1)线性无关.(2)一个零向量线性相关;一个非零向量线性无关.(3)包含零向量的任何向量组都是线性相关的.(4)仅含两个向量的向量组线性相关的充分必要条件是这两个向量的分量对应成比例。
线性代数第三章

例4 向量组 α1 , α 2 ,⋯ , α s 中的 任意一个向量 α j ( j = 1, 2,⋯ , s ) 都可 由该向量线性表示, 由该向量线性表示,因为 α j = 0α1 + ⋯+ 1α j + ⋯+ 0αs
例题4 例题 详见教材85页 详见教材 页
(例5 + 例6) )
定义3.3.2给定向量组 给定向量组 定义
例6
设有线性方程组
x1 + x2 − 2 x3 + 3x4 = 0 2 x + x − 6 x + 4 x = −1 1 2 3 4 3x1 + 2 x2 + ax3 + 7 x4 = −1 x1 − x2 − 6 x3 − x4 = b
讨论当 a , b 为何值时, 为何值时, 方程组有解?( ?(2 无解? (1) 方程组有解?(2)无解? (3)当有解时,试求出其解。 当有解时,试求出其解。
0 = (0, 0,⋯ , 0)
n维向量 α = (a1 , a2 ,⋯ , an ) 的各分量都取相反数组成的向 维向量 量称为的负向量, 量称为的负向量,记作
−α = (−a1 , −a2 ,⋯ , −an )
α 定义3.2.3 如果 维向量 = (a1 , a2 ,⋯ , an ) 如果n维向量 定义
3、仅含有两个向量的向量组线性相关的充分必要条件是这两个向量的 、 对应分量成比
定理3.3.1 向量组 A : α 1 , α 2 , ⋯ , α m 线性相关当且仅当以 A = (α1 , α 2 ,⋯ , α m ) 定理 为系数矩阵的齐次线性方程组 AX
=0
有非零解。 有非零解。
推论3.3.1向量组 A : α 1 , α 2 , ⋯ , α n 线性相关当且仅当矩阵 A = (α1 , α 2 ,⋯ , α n ) 向量组 推论 的行列式值为零。 的行列式值为零。 定理3.3.2向量组 A : α1 , α2 ,⋯, αm (m ≥ 2) 线性相关的充要条件是向量组A: α1,α2 ,⋯,αm 向量组 定理 中至少有一个向量可由其余向量线性表示。 中至少有一个向量可由其余向量线性表示。
线性代数下的行列式和矩阵
线性代数下的行列式和矩阵线性方程组一般有 m 个常数项,n 个未知数,m * n 个系数。
若常数项全为 0 ,则为齐次线性方程组;若未知数全为0 ,则称为零解。
于是我们考虑的问题是:齐次方程组:1.是否存在非零解,以及存在的条件2.通解的结构与性质3.解法非齐次方程组:1.是否有解,以及有解的条件是什么2.有多少解以及对应解数量的条件是什么3.多解的结构与性质4.解法行列式二,三阶行列式行列式的初始作用是解线性方程组!例如:最简单的二元线性方程组\left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{aligned} \right.\Rightarrow 消元 \Rightarrow \left\{ \begin{aligned}x_1 = \frac{b_1a_{22} - b_2a_{12}}{a_{11}a_{22} -a_{12}a_{21}} \\ x_1 = \frac{b_2a_{21} -b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}} \end{aligned} \right.可以得出结论,答案是由方程的四个系数和常数决定的。
所以记住四个系数作为行列式,指定行列式的值是上式的分母:\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}于是有了这么一个行列式之后,我们就可以得到:D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \ D_1 = \begin{bmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{bmatrix} \ D_2 = \begin{bmatrix}a_{21} & b_1 \\ a_{21} & b_2 \end{bmatrix} \\Rightarrow \\ x_1 = \frac{D_1}D, x_2 = \frac{D_2}D同理可以推广到三元线性方程组,定义三阶行列式。
线性方程组解的情况及其判别准则
摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。
本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。
介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。
关键字:线性方程组;解空间;基础解系;矩阵的秩Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples.Key words: linear equations, The solution space, Basic solution, Matrix rank一、线性方程组理论的发展进程早在初等代数的学习中,我们就讨论过一元二次方程和二元一次方程组,他们是线性方程组中最简单的两种形式。
线性代数知识点总结
大学线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变;转置行列式T D D = ②行列式中某两行列互换,行列式变号;推论:若行列式中某两行列对应元素相等,则行列式等于零; ③常数k 乘以行列式的某一行列,等于k 乘以此行列式; 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零; ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零; 克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,;;化为三角形行列式 ⑤上下三角形行列式:行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵 矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TT T B A B A +=+)( TTkA kA =)( TTTA B AB =)(反序定理 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n nij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的;矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵; 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A AA A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==**4、1*-=A A A A 可逆5、1*-=n AA 6、()()A AA A1*11*==--A 可逆 7、()()**T TA A = 8、()***A B AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A II A nn只能是行变换初等矩阵与矩阵乘法的关系: 设()n m ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0 齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组;希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P 向量组的秩:极大无关组定义P188定理:如果r j j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由r j j j ααα,.....,21线性表出;秩:极大无关组中所含的向量个数;定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r;现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合 单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T T n T T T n T Tr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r T n T T<⇒)....(21ααα线性无关充要n r T n T T=⇒)....(21ααα推论①当m=n 时,相关,则0321=TTTααα;无关,则0321≠TTTααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关;定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关;极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的; 不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的; 齐次线性方程组I 解的结构:解为...,21ααI 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数; 非齐次线性方程组II 解的结构:解为...,21μμ II 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解; 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解;第四章 向量空间向量的内积 实向量定义:α,β=n n Tb a b a b a +++=....2211αβ性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ; ),(),(1111j i sj j r i i j sj jr i ii l k lk βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA TT==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵; 2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵;4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量; |A|=n λλλ...**21注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值 则1-A --------λ1 则m A --------mλ 则kA --------λk若2A =A 则-----------λ=0或1 若2A =I 则-----------λ=-1或1 若k A =O 则----------λ=0 迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281 相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BPP =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212- --C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P 6、若A~B,则它们有相同的特征值; 特征值相同的矩阵不一定相似 7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩 例子:B AP P =-1则1100100-=P PB A O AP P =-1A=O I AP P =-1A=I I AP P λ=-1 A=I λ矩阵对角化 定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ 注:三角形矩阵、数量矩阵I λ的特征值为主对角线;约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵;定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1;第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型; 标准型:形如 的二次型,称为标准型; 规范型:形如 的二次型,称为规范型; 线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B;合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
《线性代数》知识点 归纳整理-大学线代基础知识
《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式.............................................................................................................................................. - 2 -02、主对角线.................................................................................................................................................................. - 2 -03、转置行列式.............................................................................................................................................................. - 2 -04、行列式的性质.......................................................................................................................................................... - 3 -05、计算行列式.............................................................................................................................................................. - 3 -06、矩阵中未写出的元素.............................................................................................................................................. - 4 -07、几类特殊的方阵...................................................................................................................................................... - 4 -08、矩阵的运算规则...................................................................................................................................................... - 4 -09、矩阵多项式.............................................................................................................................................................. - 6 -10、对称矩阵.................................................................................................................................................................. - 6 -11、矩阵的分块.............................................................................................................................................................. - 6 -12、矩阵的初等变换...................................................................................................................................................... - 6 -13、矩阵等价.................................................................................................................................................................. - 6 -14、初等矩阵.................................................................................................................................................................. - 7 -15、行阶梯形矩阵与行最简形矩阵.......................................................................................................................... - 7 -16、逆矩阵 ..................................................................................................................................................................... - 7 -17、充分性与必要性的证明题...................................................................................................................................... - 8 -18、伴随矩阵.................................................................................................................................................................. - 8 -19、矩阵的标准形:...................................................................................................................................................... - 9 -20、矩阵的秩:.............................................................................................................................................................. - 9 -21、矩阵的秩的一些定理、推论................................................................................................................................ - 10 -22、线性方程组概念.................................................................................................................................................... - 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 -24、行向量、列向量、零向量、负向量的概念........................................................................................................ - 11 -25、线性方程组的向量形式........................................................................................................................................ - 12 -26、线性相关与线性无关的概念.......................................................................................................................... - 12 -27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题 ...................................... - 12 -29、线性表示与线性组合的概念.......................................................................................................................... - 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题 .......................................................... - 12 -31、线性相关(无关)与线性表示的3个定理........................................................................................................ - 12 -32、最大线性无关组与向量组的秩............................................................................................................................ - 12 -33、线性方程组解的结构............................................................................................................................................ - 13 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数齐次线性方程组解的结构
线性代数中,齐次线性方程组是由一系列未知数的线性方程组成,其中所有方程的右边都为零。
齐次线性方程组的解的结构是线性无关的向量的线性组合,它们构成了解空间。
首先,考虑一个例子:
```
2x+3y-z=0
4x-y+2z=0
3x+2y=0
```
我们可以将这个齐次线性方程组写成矩阵的形式:
```
23-1
4-12
320
xyz
```
将这个矩阵进行行变换,得到阶梯形矩阵如下:
```
0-74
00-2
xyz
```
由阶梯形矩阵可知,z是自由变量,而x和y是基础变量。
基础变量是由自由变量表示的。
因此,解的结构可以用自由变量和基础变量的关系表示。
设z=k,则有:
```
-7y+4z=0
-2z=0
```
由此可得到z=0.5k,y=-0.5k。
最后,带入原方程组得到x=0.25k。
因此,解的结构可以表示为:
```
x=0.25k
y=-0.5k
```
可以看出,解是一个形如k倍数的向量,其中k为任意实数。
这说明齐次线性方程组的解空间是一个无限维空间,其中解向量是在基础解向量上的线性组合。
总结起来,齐次线性方程组解的结构可以通过以下步骤得到:
1.将方程组写成矩阵形式;
2.将矩阵进行行变换,得到阶梯形矩阵;
3.根据阶梯形矩阵的形式,确定基础变量和自由变量;
4.根据自由变量和基础变量的关系,得到解的表达式。
需要注意的是,齐次线性方程组的解空间要么是一个零向量,要么是一个由基础解向量生成的无限维空间。
这就是齐次线性方程组解的结构。