第二章 姿态运动学与动力学

姿态动力学大作业

反作用飞轮控制 一、(1)建立航天器姿态动力学方程和飞轮控制规律 如图1-1中, 图1-1 反作用飞轮系统 设三飞轮的质心重合与星体质心O 。三飞轮的轴向转动惯量分别为z y x J J J ,,。其横向转动惯量设已包含在星体惯量章量c I 内。星体角速度ω,飞轮相对于星体的角 速度记为: [ ] T z y x ΩΩΩ=Ω 星体与飞轮的总动量矩h 为: () ωωωωωωh h I I I I h b c +=Ω+?=Ω+?+?= (1-1) 式中, Ω ?=?=+=???? ? ?????=????? ?????=ωωωωωI h I h I I I J J J I I I I I b c z y x z y x 00 000 0000 易知,I 即星体与飞轮对点O 的总惯量章量,b h 即飞轮无转动时总动量矩,ωh 即飞轮转动时的相对动量矩。由动量矩定理得 e b b L h h h h h =?++?+=? ? ? ωωωω

? ? ??? ? Ω?Ω?Ω?-=-=+=?+?+? ? ? ? ? z z y y x x c e c b b J J J h L L L h h h ωωωω (1-2) 式中,e L 为外力矩,c L 为飞轮转轴上电机的控制力矩。式(1-2)就是装有反作用飞轮的刚性航天器动力学方程的矢量形式。 如定义星体轨道坐标系如图1-2所示, 图1-2 轨道坐标系 r r r z y ox 的角速度 r ω为 j n r -=ω 即轨道角速度。当为圆轨道时,则有 3 2R n μ = 式中μ为地球引力常数,R 为地球半径。如记ψθ?,,分别为星体滚转角、俯仰角与偏航角、且设ψθ?,,和? ? ? ψθ?,,均为小量。 当航天器相对于轨道坐标系按321旋转时角度旋转矩阵为: ???? ? ????? -++--=?θ? ψ?θψ? ψ?θψ?θ?ψ?θψ? ψ?θψθθ ψθψcos cos sin cos cos sin sin sin sin cos sin cos sin cos cos cos sin sin sin cos sin sin sin cos sin cos sin cos cos B 按321旋转时产生的角速度为:

刚体的运动学与动力学问题

刚体的运动学与动力学问题 编者按中国物理学会全国中学生物理竞赛委员会2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从 2002 年起在复赛题与决赛题中使用提要中增补的内容. 一、竞赛涉及有关刚体的知识概要 1. 刚体 在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征. 2 . 刚体的平动和转动 刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就

是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理. 3. 质心质心运动定律 质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成. 质心运动定律物体受外力 F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动. 4 . 刚体的转动惯量J

高考物理二轮复习计算题题型1运动学、动力学类问题练习

计算题题型1 运动学、动力学类问题 角度1:直线运动规律及牛顿运动定律的综合应用 1.(2017·江西吉安一诊)如图所示,在赛车训练场相邻两车道上有黑白两辆车,黑色车辆停在A线位置,某时刻白色车速度以v1=40 m/s通过A线后立即以大小a1=4 m/s2的加速度开始制动减速,黑车4 s后开始以a2=4 m/s2的加速度开始向同一方向匀加速运动,经过一定时间,两车同时在B线位置.两车看成质点.从白色车通过A线位置开始计时,求经过多长时间两车同时在B线位置及在B线位置时黑色车的速度大小. 2.质量M=10 kg的木板A沿水平面向右运动,与水平面之间的动摩擦因数μ1=0.1,当A的速度v0=5 m/s时,在A的左端施加一个恒力F=35 N,如图所示,同时在木板上表面无初速度地放上一个质量m=5 kg的滑块B.已知滑块B右端的木板上表面粗糙,长度为12.5 m,与滑块之间的动摩擦因数μ2=0.1,滑块左端的木板上表面包括滑块所放的位置均光滑,长度为 2.5 m,g 取10 m/s2. (1)至少经过多长时间滑块与木板的速度相等? (2)共经过多长时间滑块与木板分开? 3.(2017·辽宁鞍山一模)如图所示为在某工厂的厂房内用水平传送带将工件的半成品运送到下一工序的示意图.传送带在电动机的带动下保持v=2 m/s的速度匀速向右运动,现将质量

为m=20 kg的半成品轻放在传送带的左端A处,半成品工件与传送带间的动摩擦因数为μ=0.5,设传送带足够长,重力加速度g=10 m/s2.试求: (1)半成品工件与传送带相对滑动所经历的时间; (2)半成品工件与传送带间发生的相对位移大小; (3)若每分钟运送的半成品工件为30个,则电动机对传送带做功的功率因运送工件而增加多少? 角度2:带电粒子(带电体)在电场与磁场中的平衡与运动 1.(2017·黑龙江双鸭山一模)如图所示,一带电荷量为+q、质量为m的小物块处于一倾角为37°的光滑斜面上,当整个装置被置于一水平向右的匀强电场中,小物块恰好静止.重力加速度取g,sin 37°= 0.6,cos 37°=0.8.求: (1)水平向右电场的电场强度; (2)若将电场强度减小为原来的,物块的加速度是多大? (3)电场强度变化后物块下滑距离L时的动能.

张力减径机的动力学和运动学的分析详细版

文件编号:GD/FS-1093 (解决方案范本系列) 张力减径机的动力学和运动学的分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

张力减径机的动力学和运动学的分 析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 文章主要对三辊式张力减径机进行分析,主要分析张力减径机的动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速度控制来分析张力减径机运动学特征,通过对张力减径机受力分析、轧制压力和轧制力矩进行分析张力减径机的动力学特征分析。 张力减径机是现代化的生产机组,其作用和优越性使其在大规模无缝钢管生产中不可缺少。随着我国钢管工业的发展张力减径机组正被广泛运用。对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的优点。以下分析张力减径机的运动学

和动力学原理。 1.张力减径机的运动学特征 1.1.运动学特征 在张力减径的过程中,要求各个机架的延伸系数和轧辊圆周协调一致,同时决定连轧机工作的基本条件要求通过每个机架的金属的秒流量相等。 在所有的机架都充满金属而C不等于0的情况下,对于每对轧辊在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和金属之间的滑移达到。因此当C不等于0时,减径机任何一个机架中的变形条件发生变化,都会影响其余机架中的变形条件,但由于连轧过程本身存在着相适应,自相调整的过程,因此即使在这种相互作用的复杂关系中减径过程仍然能够在任一瞬间保持秒流量相等。但是当差别较大时,必然会造成严重的拉钢和推钢,轻者不能获得

姿态动力学作业

基于脉宽调制器的喷气姿态控制系统

一.题目 1) 建立三轴稳定对地定向航天器的姿态动力学和姿态运动学模型 2) 设计基于PD+脉宽调制器形式的喷气姿态控制系统 3) 完成数学仿真 具体要求: (1)建立对地定向刚体航天器的三轴稳定姿态动力学和姿态运动学模型。 2222 2 2 512kg m ,308kg m ,620kg m 16kg m ,12kg m ,14kg m x y z xy xz yz I I I I I I =?=?=?=?=?=? 设航天器在圆轨道上运行,轨道角速度00.0011rad/s ω= 要求姿态动力学动力学采用欧拉方程,姿态运动学模型采用zyx 顺序欧拉角的姿态运动学方程; (2)假设姿态推力器的数学模型为理想的继电器特性; 姿态推力器的标称推力为4N(设计情况B),在各轴上的力臂分别为1m 、1.25m 和1.5m 。 (3)设计PD+脉宽调制器形式的数字式喷气控制器,要求姿态角控制精度优于 0.5deg 。 设计情况B :控制周期为250ms ,控制系统的调整时间低于10s ,阻尼比为07。 (4)在设计控制器参数时,要考虑采样-保持环节对控制性能的影响。(建议 将采样-保持环节等效为s 域的传递函数,按连续控制系统的方法进行设计)。 (5)对上述设计结果进行数学仿真。比较在有/无最小脉宽限制两种情况下控 制精度和燃料消耗的情况。设推力器的最小脉冲宽度为30ms 。 (6)设卫星在三轴方向受到常值的气动干扰力矩,分别为 0.01Nm,0.005Nm,0.02Nm dx dy dz T T T === 重新设计控制器,以满足控制精度的要求。并给出数学仿真结果

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

姿态动力学

反作用飞轮整星零动量轮控系统(七B)

目录 1 基本内容 (3) 2 模型的建立 (3) 2.1系统控制框图 (3) 2.2姿态动力学模型 (4) 2.3 控制器设计 (5) 2.4 执行机构 (6) 2.5 建模结果 (7) 3 仿真实现 (8) 3.1 无干扰力矩 (8) 3.2 干扰力矩作用 (11) 3.3 飞轮故障的问题解决 (14)

1 基本内容 (1)建立带有飞轮的三轴稳定对地定向航天器的姿态动力学和姿态运动学模型。(2)设计PD或PID控制器的轮控系统。 (3)完成数学仿真和分析。 2 模型的建立 典型航天器的姿态控制系统模型主要包括姿态动力学,姿态运动学,控制器,轨道动力学和空间环境五大基本模块。根据题目要求,对于本列,主要从被控对象字体动力学模型,执行机构和控制器三方面入手进行模型的建立。 以欧拉角为姿态参数,姿态动力学采用基于陀螺体的多刚体姿态动力学方程,姿态运动学模型采用zyx顺序欧拉角的姿态运动学方程。控制器采用PD控制率。执行机构采用4斜装的反作用飞轮构型方案。 2.1系统控制框图 如图1所示,其中姿态动力学模块和姿态运动学模块是描述系统模型的最基本模块,姿态动力学模块提供系统的动力学计算,姿态运动学模块提供不同姿态描述之间的转换关系,控制器模块是待设计的控制律模块,执行机构获得期望力矩信号,输出控制力矩。 图1 整星零动量轮控系统框图

2.2姿态动力学模型 考虑刚体固连坐标系下,转动角速度分量为[ ]T z y x ωωωω=,转动惯量为 I ,c T 为控制力矩,d T 为干扰力矩,U 为安装矩阵。则建立的欧拉动力学方程为 d w w T Uh h U I I =+++??ωωωω 对上式进行变形得到表达式: ()w w d Uh h U I T I ??----=ωωωω 1 (1) 然后对ω 积分得到转动角速度ω。然后利用simulink 模块搭建动力学模块,如图2所示 图2 同理可完成运动学模块的设计,航天器采用zyx 顺序旋转的欧拉角参数来描述星体坐标系相对轨道坐标系的姿态,则星体姿态角速度矢量ω在星体坐标系下的分量列阵可写为 0sin sin cos sin sin sin sin sin cos cos sin cos cos cos sin 0sin cos cos 0sin 01 ωψθ?ψ?ψθ?ψ?ψθψθ??θ? ?θ?θωωωω???? ? ?????+-+-????????????????????--=??????????= z y x 将上式变形的: ????? ????????????+????????? ?+-+???? ??????--=??????????-z y x ωωωωψθ?ψ?ψθ?ψ?ψθ?θ??θ?θψθ? 01 sin sin cos sin sin sin sin sin cos cos sin cos cos cos sin 0sin cos cos 0sin 01

第二章挖掘装置动力学及运动学分析.

第二章挖掘装置运动学及动力学分析 2.1 挖掘装置的结构及工作特点 挖掘装载机反铲工作装置的结构,其基本型式见图 2-1 所示。 图2-1反铲结构简图 工作特点:反铲工作装置主要用于挖掘停机面以下的土壤,其挖掘轨迹决定于各液压缸的运动及其相互配合的情况。当采用动臂液压缸工作进行挖掘时(斗杆、铲斗液压缸不工作可以得到最大的挖掘半径和最大的挖掘行程,此时铲斗的挖掘轨迹系以动臂下铰点 C 为中心,斗齿尖 V 至 C 的距离|CV|为半径而作的圆弧线,其极限挖掘高度和挖掘深度(不是最大挖掘深度,分别决定于动臂的最大上倾角和下倾角(动臂对水平线的夹角,也即决定于动臂液压缸的行程由于这种挖掘方式时间

长,并且稳定条件限制了挖掘力的发挥,实际工作中基本上不采用。 当仅以斗杆液压缸工作进行挖掘时,铲斗的挖掘轨迹系以动臂与斗杆的铰点 F 为中心,斗齿尖 V 至 F 的距离|FV|为半径所作的圆弧线,同样,弧线的长度与包角决定于斗杆液压缸的行程 。当动臂位于最大下倾角时,可以得到最大挖掘深度,并且有较大的挖掘行程,在较硬的土质条件下工作时,能够保证装满铲斗,故中小型挖掘机构在实际工作中常以斗杆挖掘进行工作。 反铲装置如果仅以铲斗液压缸工作进行挖掘时,挖掘轨迹则为以铲斗与斗杆的铰点 Q 为中心,该铰点 Q 至斗齿尖 V 的距离 |QV|为半径所作的圆弧线。同理,圆弧线的包角( 铲斗的转角及弧长决定于铲斗液压缸的行程(|GH|–|GH|)。显然,以铲斗液压缸进行挖掘时的挖掘行程较短,如使铲斗在挖掘行程结束时能够装满土壤,需要有较大的挖掘力以保证能够挖掘较大厚度的土壤。所以,一般挖掘机构的斗齿最大挖掘力都在采用铲斗液压缸工作时实现。用铲斗液压缸进行挖掘常用于清除障碍,挖掘较松软的土壤以提高生产率,因此在一般土方工程机械中(土壤多为Ⅲ级土以下,转斗挖掘最常采用。在实际挖掘中,往往需要采

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

质点运动学和动力学习题答案

质点运动学和动力学习题参考答案 一、选择题 1、D 解析:题目只说明质点作直线运动,没有确定是匀加速还是变加速直线运动,故任意时刻的速度都不确定。 2、D 3、C 解析:2t 时间内,质点恰好运动2圈回到初始位置,其位移为0,路程为4πr ,所以其平均速度大小为0,平均速率为2πr/t 。 4、C 解析:有题目可知人与风运动速度可用下图表示,由速度合成得到可知人感受到的风高手刀锋来自西北方向。 5、B 解析:a B =2a A ,对于B 物体有:mg-T=ma B 对于A 物体有2T=ma A 上3式联解得:a B =4g/5 6、A 解析:物体收尾时作匀速运动,则其加速度为零,即mg =kv 2,即得收尾速度为v =(mg /k )1/2。 7、D 解析: 22 tan sin mg mR m l θωωθ== 1 2 2c o s 2l T g π θπω??== ??? 8、A 解析:设绳中张力为T ,则弹簧秤的读数为2T ,因为A 、B 两物体的加速度大小相等,方向相反,可设加速度大小为a ,对A 、B 两物体应用牛顿运动定律m 1g -T =m 1a ,T -m 2g =m 2a ,可得。 二、填空题 1、j 50cos50t i 50sin5t - v +=,a τ=0,a n =250m/s 2,圆; 解析:有运动方程可知:x =10cos5t y =10sin5t ;则其运动轨迹方程为:x 2+y 2=102,所以其轨迹为圆; j 50cos50t i 50sin5t - /dt r d v +==,50v =m/s,所以圆周运动的a τ=0; a n =v 2/r 。 mg T T

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

量子论的运动学与动力学

量子论的运动学与动力学 200890513216号李香文计081-2班 正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森堡认为,科学研究工作宏观领域进入微观领域时,会遇到测量仪器是宏观的,而研究对象是微观的矛盾,在微观世界里,对于质量极小的粒子来说,宏观仪器对微观粒子的干扰是不可忽视的,也是无法控制点额,测量的结果也就同粒子的原来状态不完全相同。所以在微观系统中,不能使用实验手段同时准确的测出微观粒子的位置和动量,时间和能量。由数学推导,海森堡给出了一个测不准关系式:。对于微观粒子一些成对的物理量,在这里指位置和动量,时间和能量,不能同时具有确定的数值,其中一个量愈确定,则另一个就愈不确定。所谓测不准关系,主要是普朗克常量h使量子结果与经典结果有所不同。如果h为零,则对测量没有任何根本的限制,这是经典的观点;如果h很小,在宏观情况下,仍然能以很大的精确性同时测定动量与位置或能量与时间的关系,但是在微观的场合就不能同时测定。实验表明,决定微观系统的未来行为,只能是观察结果所出现的概率,测不准关系已经被认为是微观粒子的客观特性。 海森堡提出了测不准关系后,立即在哥本哈根学派中引起了强烈的反响,泡利欢呼“现在是量子力学的黎明”,玻尔试图从哲学上进行概括。1927年9月,玻尔在与意大利科摩召开的国际物理学会议上提出了著名的“互补原理”,用以解释量子现象基本特征的波粒二象性,它认为量子现象的空间和时间坐标和动量守恒定律,能量守恒定律不能同时在同一个实验中表现出来,而只能在互相排斥的实验条件下出来不能统一与统一图景中,只能用波和粒子这些互相排斥的经典概念来反映。波和粒子这两个概念虽然是互相排斥的,但两者在描写量子现象是却又是缺一不可的。因此玻尔认为他们二者是互相补充的,量子力学就是量子现象的终极理论。“互补原理”实质上是一种哲学原理,称为量子力学的“哥本哈根解释”。30年代后成为量子力学的“正统”解释,波恩称此为“现代科学哲学的顶峰。” 1927年10月在布鲁塞尔第五届索尔卡物理学会议上,量子力学的哥本哈根解释为许多物理学家所接受,同时也受到爱因斯坦等一些人的强烈反对。爱因斯坦为此精心设计了一系列理想实验,企图超越不确定关系的限制来揭露量子力学理论的逻辑矛盾。玻尔和海森堡等人则把量子理论同相对论作比较,有利地驳斥了爱因斯坦。1930年10月第六届索尔卡物理学会议上,爱因斯坦又绞尽脑汁提出了一个“光子箱”的理想实验, 既然在微观状态下,存在测不准关系,那么在宏观状态下,还存在测不准关系吗?这

运动学与动力学答案二册CH4

4-1. 在图示机构中,曲柄OA 上作用一力偶,其矩为M ,另在滑块D 上作用水平力F 。机构尺寸如图所示。求当机构平衡时,力F 与力偶矩M 的关系。 4-3. 组合梁由铰链C 铰接AC 和CE 而成,载荷分布如图所示。已知跨度l=8m ,P=4900N ,均布力q=2450N/m ,力偶矩M=4900N ?m ;求支座反力。 N 2450N 14700N 2450==?=E B A F F F ,,

4-4解: 4-6. 试求图示梁-桁架组合结构中1、2两杆的内力。已知kN 41=F ,kN 52=F 。 1.求杆1内力,给图(a )虚位移,虚功表达式为 0cos δcos δδδ1N 1N 21=′++????G F E D r F r F y F y F 因为 θδ3δ=D y ,θδ2δ=E y , θδ5δ=F r ,θδ5δ=G r 所以 05 3 δ553δ5δ2δ31N 1N 21=??′+??+????θθθθF F F F

211N 236F F F += 31132211 N =+=F F F kN (受拉) N1 N1A 2.求杆2内力,给图(b )虚位移,则 θ δ 4δ=H r ,θδ3δ=D r θδ2δ=E r ,θ δ5δ=G r F r δ, G r δ在FG 方向投影响相等,即 ??cos δcos δG F r r = G F r r δδ= 虚功式 0sin δδδδN2 22N 1=′?????F E H D r F r F r F r F 即 05 4 524δ3N222N 1=? δ??δ??δ????θF θF θF θF 2223821N2?=??=F F F kN 4 112N ? =F kN A 4-7. 在图示结构中,已知F = 4kN ,q = 3kN/m ,M = 2kN · m ,BD = CD ,AC

相关文档
最新文档