扭杆弹簧独立悬架设计手册

合集下载

HJL1020汽车扭杆弹簧的设计与实验21

HJL1020汽车扭杆弹簧的设计与实验21
图中d为圆形断 面扭杆弹簧的直径,L 为扭杆弹簧的有效长 度.r为扭臂的长度。 这些都是悬架的主要
(2)和螺旋弹簧相比,它结构紧凑,便于布置,也可以较
方便地实现车身高嚏的调(4)扭杆弹簧与固定臂和调节臂的连接结拘简单,在保
养中一般无维护要求。

扭杆弹簧的结构特点
参数.是在扭杆悬架
设计对必须确定的,
1.1扭杆弹簧 扭杆弹 簧作为扭杆 悬架的弹性
其次是弹性特性的选 择。在选择这些参数 ▲圈2扭杆弹簧悬架简图
元件.按其断
面形状可分 为圆形断面、 环形断面和
‘国一国、图 L卫一划b
▲固l扭杆弹簧断面形状
时,一方面要保证所要求的悬架刚度值,另一方面又不能超 出根据寿命和强度所确定的扭杆应力值。
第18卷第4期 2002年8月
机械设计与研究
Mac}1lne D%lgn and R皓earch
V01 18
No

Aug,2002
史章编号:1006—2343(2002)04一0057、02
HJLl020汽车扭杆弹簧的设计与实验
李骏“2邹慧君。郭厚琨2
(1上海交通大学 机械工程学院+上海200030;2华东交通大学 机械二程学院,南昌 330013)
(1)单位质量扭杆弹簧所能储存的能量比其他种类的 弹性元件(如钢板弹簧,螺旋弹簧)都太,如它比同质量钢板 弹簧储存的能量大三倍多。故在相同载荷下采用扭杆弹簧
可节省材料减少质量;
扭杆弹簧悬架具有扭杆弹簧横向布置和扭杆弹簧纵向 布置两种形式,前者的扭杆弹簧长度受到汽车车架或车身宽 度的限制.而后一种形式的扭臂长度则受到车槊宽度段轮距 的限制。在设计计算时,扭杆弹簧悬架简图如图2所示:
扭杆悬架早在二三十年代初期就出现在汽车上。随着对

扭簧设计文档

扭簧设计文档

扭簧设计1. 简介扭簧是一种常见的机械弹性元件,广泛应用于各种机械装置中。

它具有弹性变形能力,能够承受旋转或回转运动时的扭矩,常用于提供力矩或恢复力的作用。

本文将介绍扭簧的设计原理、计算方法和注意事项。

2. 设计原理扭簧的设计需要考虑以下几个关键因素:2.1 材料选择扭簧通常使用优质的弹簧钢材料,如65MN、60SI2MN等。

这些材料具有良好的弹性和硬度,能够确保扭簧的稳定性和耐久性。

2.2 弹性系数扭簧的弹性系数是一项重要的设计参数,用于描述扭簧的刚度。

弹性系数决定了扭簧所能承受的最大扭力和变形程度。

在设计过程中,需要合理选择弹性系数,使得扭簧在工作条件下能够满足所需的扭矩和回弹力。

2.3 螺旋方向扭簧的螺旋方向分为左旋和右旋,具体选择取决于应用需求。

在实际应用中,需要根据装置的运动方式和力矩要求来确定扭簧的螺旋方向,以确保扭簧可以提供所需的扭矩和回弹力。

3. 计算方法扭簧的设计计算需要考虑以下几个方面:3.1 扭矩计算根据应用需求和工作条件,可以通过扭矩计算公式来确定扭簧的设计参数。

一般情况下,扭矩计算公式为:T = K * φ * G式中,T表示扭矩,K表示弹簧的弹性系数,φ表示扭簧的角度变形,G表示扭簧的几何形状参数。

3.2 变形计算扭簧的变形计算需要考虑弹簧材料的弹性模量和几何参数。

一般情况下,变形计算公式为:φ = (T * L) / (G * d^4)式中,φ表示扭簧的角度变形,T表示扭矩,L表示扭簧的长度,G表示扭簧的剪切模量,d表示扭簧的直径。

3.3 弹性系数计算扭簧的弹性系数计算需要考虑弹簧材料的切变模量和几何参数。

一般情况下,弹性系数计算公式为:K = (G * d^4) / (8 * D^3 * n)式中,K表示弹性系数,G表示扭簧的剪切模量,d表示扭簧的直径,D表示扭簧的平均直径,n表示扭簧的总匝数。

4. 注意事项在扭簧设计过程中,需要注意以下几点:•根据应用需求选择合适的弹簧钢材料,确保扭簧的强度和耐久性;•合理选择扭簧的弹性系数,以满足所需的扭矩和回弹力;•在设计过程中考虑扭簧的螺旋方向,以适应装置的运动方式和力矩要求;•使用合适的计算方法,准确计算扭簧的扭矩、变形和弹性系数;•定期检查和维护扭簧,确保其正常工作。

螺旋弹簧横向稳定杆减振器设计指南

螺旋弹簧横向稳定杆减振器设计指南
求出缸径后,参照 JB1459 标准,选择合适的标准工作缸径。
减振器储油缸直径 Dc = (1.35 ~ 1.57)D ,工作缸与储油缸壁厚一般取 1.5~2.0 mm 。
选择减振器尺寸时主要考虑一下两点:在工作速度范围内油液压力适当,能够得到稳定的阻力值,
8
容易保证油封的可靠性;减振器具有足够的散热面积,防止因温度过高引起阻力衰减或减振器早期失效。 作缸径的确定:
可根据减振器最大拉伸阻力和最大允许压力近似求出工作缸径。
( ) D = 4Fmax (mm) πp 1 − λ2 式中: D -作缸径, mm ; p -工作缸允许最大压力,一般为 3~4 N / mm2 ; F max -减振器最大拉伸阻力, N ; λ -减振器杆直径与工作缸之比,双筒减振器为 0.4~0.5,单筒减振器为 0.3~0.35。
Cϕb
=
1 2

P f
L2
=
3 EIL2
(6)
l l 2⎢⎣⎡
3 − a3 + L (a + b)2 + 4
1
2
2 2
(b
+
c
)⎥⎦⎤
当角钢度给定时,可求得所需要的稳定杆直径 d 为
l l d
=
4
128 3π

Cϕb L2 E
⎡ ⎢⎣
3 − a3 + 1 (a + b)2 + 4
1
2
2 2
(b
+
c
)⎥⎦⎤
(7) 按弹簧指数 C = Dm / d 及 K ' 的表达式(见式 24 下的说明求得 K ' ,运用式(24)求出载荷 P1 ,

Eibach 汽车弹簧说明书

Eibach 汽车弹簧说明书

N O T E S 说明A - Com-mon Notes常见的注意事项If not separately named, for vehicles with OE-lowered suspension, the dimension of lowering is reduced by the dimension of lowering carried out by manufacturer.If not separately named, vehicles with OE-lifted suspension (e.g. Offroad-Package, Crossover) are excluded from use of our products.除非单独说明,否则原装降低悬架的车辆,降低的高度根据制造商要求执行的而定。

除非单独说明,否则原装升高悬架 (比如越野套装, 跨界车)的车辆不可以使用我们的产品。

The specifications indicated in the approval are for the classification of the item / vehicle. Please check the type approval number of your car and compare withthe approval. (Letter "K" in your vehicle registration certificate or to find at the type plate of your car!)认证的规格分类是用来区分不同项目/车辆的。

请检查你的车的型号核准号码与我们认证的型号。

(字母“K”在您的车辆登记证书或寻找在你的车的铭牌!)Please verify before fitting by means of the approval whether the delivered items (please see marking) are approved for your vehicle (please see area ofuse).You can find the current approval on www.eibach.deIn case of non-conformance the items must not be fitted – please refer to your dealer.在安装之前,请使用认证核实,交付的物品(请参见标记/料号/编号)是否适用于您的汽车(请查看使用位置),你可以在www.eibach.de找到关于当前TÜV的认证。

汽车钢板弹簧悬架设计

汽车钢板弹簧悬架设计

汽车钢板弹簧悬架设计1.弹簧选用汽车钢板弹簧主要由弹簧片组成,弹簧片之间通过铆钉连接。

在选用弹簧片时,需要根据车辆的重量和使用环境来确定合适的弹簧片数量和材料。

弹簧片的数量越多,弹簧刚度就越高,对于重负荷的车辆,需要选择刚度较高的弹簧片。

弹簧片的材料可以选择高强度钢板,以提高弹簧的寿命和可靠性。

2.弹簧布局汽车钢板弹簧的布局主要包括前后轴的弹簧组织和布置。

为了保证车辆的稳定性和悬挂的平衡性,前后轴的弹簧刚度需要相对均衡,可以根据车辆设计的重心位置和工况来确定各个轴的刚度比例。

同时,在弹簧的布置上,需要考虑到弹簧的有效作用长度,以及与减震器和车架的配合情况,确保弹簧在工作时能够正常运动。

3.减震器选用汽车钢板弹簧悬架中的减震器起到控制弹簧振动和提高行驶平稳性的作用。

减震器的选用需要根据车辆的重量和行驶条件来确定。

一般而言,重负荷的车辆需要选择刚度较高的减震器,而轻负荷的车辆可以选择较为柔软的减震器。

常见的减震器有液压减震器、气压减震器和双作用减震器等。

在实际应用中,需要根据车辆的需求和预算来选择合适的减震器。

4.悬挂系统调校在汽车钢板弹簧悬架的设计中,调校是一个关键的环节。

通过调整弹簧刚度、减震器阻尼、弹簧预紧力等参数,可以实现悬挂系统的理想性能。

悬挂系统的调校需要根据车辆的用途和乘客的需求来进行,例如,运载车辆和越野车辆需要更硬的悬挂系统来增加稳定性和通过性,而乘用车和豪华车则需要更柔软的悬挂系统来提高乘坐舒适性。

在进行悬挂系统的调校时,需要进行一系列的试验和数据分析,以确定最佳的参数组合。

物理试验和计算机仿真是常用的手段。

通过调整参数和验证,最终确定悬挂系统的设计。

总之,汽车钢板弹簧悬架设计需要考虑弹簧选用、弹簧布局、减震器选用和悬挂系统调校等方面。

通过合理的设计和调校,可以实现符合车辆需求和乘客舒适性要求的悬挂系统。

毕业设计(论文)-汽车悬架钢板弹簧的设计

毕业设计(论文)-汽车悬架钢板弹簧的设计

目录第1章绪论 (2)第2章悬架系统的结构与分析 (4)2.1悬架的功能和组成 (4)2.2汽车悬架的分类 (4)2.3悬架的设计要求 (4)2.4悬架主要参数 (5)2.4.1悬架的静挠度cf及刚度c (5)2.4.2悬架的动挠度df (6)2.4.3悬架侧倾角刚度及其在前、后轴的分配 (6)2.4.4钢板弹簧结构............................................................................. . (7)第3章前后悬架系统的设计 (8)3.1前悬架系统设计 (8)3.1.1钢板弹簧的设计 (8)3.1.2.钢板弹簧的验算 (10)3.2后悬架系统设计 (13)3.2.1钢板弹簧的设计 (13)3.2.2钢板弹簧的验算 (15)第4章减振器设计 (19)4.1减振器分类 (19)4.2前后悬架减振器计算 (19)4.2.1相对阻尼系数和阻尼系数 (19)4.2.2最大卸荷力 (20)4.2.3工作缸直径 (21)第5章结论 (23)5.1钢板弹簧参数 (23)5.1.1前悬架参数 (23)5.1.2后悬架参数 (23)5.2双筒式减振器参数 (24)5.2.1前减震器参数 (24)5.2.2后减震器参数 (24)参考文献 (25)第1章绪论悬架是汽车的车架与车桥之间的一切传力连接装置的总称。

它的作用是弹性地连接车桥和车架,缓和行驶中车辆受到的冲击力。

保证货物完好和人员舒适,使汽车在行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力和侧向反力以及这些力所造成的力矩,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。

悬架是汽车中的一个重要组成部分,它把车架与车轮弹性地连接起来,关系到汽车的多种使用性能。

悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。

纵置钢板弹簧式悬架设计

2ห้องสมุดไป่ตู้分类
悬架的弹性特性有线性弹性特性和非线性弹性特性两种
1)线性弹性特性
定义:当悬架变形f与所受垂直外力F之间呈固定比例变化时,弹 性特性为一直线,此时悬架刚度为常数 。
特点:随载荷的变化,平顺性变化
纵置钢板弹簧式悬架设计
2)非线性弹性特性
定义:当悬架变形f与所受垂直外力F之间不呈固定比例变化时
1—缓冲块复原点 2—复原行程缓冲块脱离支架 3—主弹簧弹性特性曲线 4—复原行程 5—压缩行程 6—缓冲块压缩期悬架弹性特性曲线 7—缓冲块压缩时开始接触弹性支架 8—额定载荷
纵置钢板弹簧式悬架设计
2)钢板弹簧长度L的确定
➢钢板弹簧长度L是指弹簧伸直后两卷耳中心之间的距离 ➢在总布置可能的条件下,应尽可能将钢板弹簧取长些。
推荐在下列范围内选用钢板弹簧的长度: 轿车:L=(0.40~0.55)轴距; 货车:前悬架:L=(0.26~0.35)轴距; 后悬架:L=(0.35~0.45)轴距。
纵置钢板弹簧式悬架设计
3、 fd要合适,根据不同的车在不同路面条件造
➢以运送人为主的轿车对平顺性的要求最高,大客车次之,载货车更 次之。
➢对普通级以下轿车满载的情况,前悬架偏频要求1.00~1.45Hz, 后悬架则要求在1.17~1.58Hz。
➢原则上轿车的级别越高,悬架的偏频越小。 ➢对高级轿车满载的情况,前悬架偏频要求在0.80~1.15Hz,后悬
式中, s为U形螺栓中心距(mm); k为考虑U形螺栓夹紧弹簧后的无效长度系数(如刚性夹紧, 取k=0.5,挠性夹紧,取k=0); c为钢板弹簧垂直刚度(N/mm),c=FW/fc;
纵置钢板弹簧式悬架设计
δ为挠度增大系数(先确定与主片等长的重叠片数n1,再估 计一个总片数n0,求得η=n1/m0,然后用δ=1.5/[1.04 (1+0.5η)]初定δ) E为材料的弹性模量。

悬架螺旋弹簧的设计共28页文档


悬架螺旋弹簧的设计
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

汽车钢板弹簧悬架设计

汽车钢板弹簧悬架设计(1)、钢板弹簧种类汽车钢板弹簧除了起弹性元件作用之外,还兼起导向作用,而多片弹簧片间磨擦还起系统阻尼作用。

由于钢板弹簧结构简单,使用维修、保养方便,长期以来钢板弹簧在汽车上得到广泛应用。

目前汽车使用的钢板弹簧常见的有以下几种。

①通多片钢板弹簧,如图1-a所示,这种弹簧主要用在载货汽车和大型客车上,弹簧弹性特性如图2-a所不,呈线性特性。

图1图2②少片变截面钢板弹簧,如图1-b所不,为减少弹簧质量,弹簧厚度沿长度方向制成等厚,其弹性特性如一般多片钢板弹簧一样呈线性特性图2-a。

这种弹簧主要用于轻型货车及大、中型载货汽车前悬架。

③两级变刚度复式钢板弹簧,如图1-c所示,这种弹簧主要用于大、中型载货汽车后悬架。

弹性特性如图2-b所示,为两级变刚度特性,开始时仅主簧起作用,当载荷增加到某值时副簧与主簧共同起作用,弹性特性由两条直线组成。

④渐变刚度钢板弹簧,如图1-d所示,这种弹簧多用于轻型载货汽车与厢式客车后悬架。

副簧放在主簧之下,副簧随汽车载荷变化逐渐起作用,弹簧特性呈非线性特性,如图2-c所示。

多片钢板弹簧钢板弹簧计算实质上是在已知弹簧负荷情况下,根据汽车对悬架性能(频率)要求,确定弹簧刚度,求出弹簧长度、片宽、片厚、片数。

并要求弹簧尺寸规格满足弹簧的强度要求。

3.1钢板弹簧设计的已知参数1)弹簧负荷通常新车设计时,根据整车布置给定的空、满载轴载质量减去估算的非簧载质量,得到在每副弹簧上的承载质量。

一般将前、后轴,车轮,制动鼓及转向节、传动轴、转向纵拉杆等总成视为非簧载质量。

如果钢板弹簧布置在车桥上方,弹簧3/4的质量为非簧载质量,下置弹簧,1/4弹簧质量为非簧载质量。

2)弹簧伸直长度根据不同车型要求,由总布置给出弹簧伸直长度的控制尺寸。

在布置可能的情况下,尽量增加弹簧长度,这主要是考虑以下几个方面原因。

①由于弹簧刚度与弹簧长度的三次方成反比,因此从改善汽车平顺性角度看,希望弹簧长度长些好。

钢板弹簧设计手册技术手册指导书

华晨汽车工程研究院钢板弹簧设计手册编制:马增辉审核:批准:底盘部门201X-XX-XX发布版本:V0前言本设计手册规定的XXXX产品的要求,和国家有关标准规定而制定。

本设计手册由汽车工程研究院XXXX负责起草;本设计手册由汽车工程研究院XXXX进行管理和解释;本设计手册主要起草人员:变更记录目录1.概述 (1)1.1定义 (1)1.2基本功能和原理 (1)1.3钢板弹簧的布置方案 (3)2.钢板弹簧材质 (4)3.钢板弹簧生产工艺 (4)4.钢板弹簧的参数设计 (4)4.1满载弧高fa (4)4.2钢板弹簧长度L的确定 (5)4.3钢板弹簧断面尺寸及片数的确定 (6)4.4钢板弹簧片数n (8)4.5钢板弹簧各片长度的确定 (8)4.6钢板弹簧刚度的验算 (9)4.7钢板弹簧总成在自由状态下的弧高及曲率半径计算 (10)4.8钢板弹簧总成弧高的核算 (11)4.9钢板弹簧的强度验算 (12)5.钢板弹簧设计阶段潜在失效模式 (13)6钢板弹簧台架试验 (13)华晨汽车工程研究院钢板弹簧设计手册1.概述1.1定义钢板弹簧是汽车悬架中应用最广泛的一种弹性元件,它是由若干片等宽但不等长(厚度可以相等,也可以不相等)的合金弹簧片组合而成的一根近似等强度的弹性梁,作用是支撑车体,缓和由路面传来的振动和冲击载荷。

图1 钢板弹簧1.2基本功能和原理当钢板弹簧安装在汽车悬架中,所承受的垂直载荷为正向时,各弹簧片都受力变形,有向上拱弯的趋势。

这时,车桥和车架便相互靠近。

当车桥与车架互相远离时,钢板弹簧所受的正向垂直载荷和变形便逐渐减小,有时甚至会反向。

图2 钢板弹簧与车桥简图钢板弹簧第一片称为主片,其两端弯成卷耳,内装青铜或塑料、橡胶、粉末冶金制成的衬套,以便使用弹簧销与固定在车架上的支架或吊耳作销链连接。

钢板弹簧中部一般用U形螺栓固定在车桥上。

中心螺栓用以连接各弹簧片,并保证装配时各片的相对位置。

中心螺栓距两端卷耳的距离可以相等,(称为对称式钢板弹簧);也可以不相等(称为非对称式钢板弹簧)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计手册悬架篇—扭杆弹簧独立悬架部份一、概述1、什么是独立悬架2、独立悬架的优缺点二、扭杆悬架1、扭杆悬架的典型结构2、扭杆悬架的特点3、扭杆悬架的刚度特性4、扭杆悬架的运动特性5、悬架与整车的关系三、扭杆悬架设计1、主要性能参数的确定2、悬架刚度(悬架刚度不同于扭杆刚度的概念)3、系统阻尼(系统阻尼不同于减振阻尼的概念)4、悬架设计计算5、扭杆的设计四、装调中的控制要素1、整车姿态的调整与控制2、前轮定位的调整与控制3、轮胎气压的调整与控制五、故障处理案例1、回正性差2、轮胎偏磨第一章概述独立悬架是相对于非独立悬架而言的,其特点是左、右两车轮之间各自“独立”地与车架或车身相联,构成断开式车桥,当单边车轮驶过凸起时,不会影响到另一侧车轮。

独立悬架由于其导向机构措综复杂,结构型式很多,但主流结构主要有:双横臂式,纵臂式,麦弗逊式、多连杆式等。

双横臂式独立悬架又细分为等长双横臂式和不等长双横臂式。

一般用于轿车的前、后悬架,轻型载货汽车的前悬架或要求高通过性的越野车的前、后悬架。

纵臂式独立悬架以平行于汽车行驶方向的纵臂承担导向和传力作用,常用于非驱动桥的后悬架。

麦弗逊式,其突出特点在于将导向机构与减振装置合到一起,将多个元零件集成在一个单元内。

不公简化了结构,减轻了质量,还节省了空间,较多应用于紧凑型轿车的前悬架。

与非独立悬架相比,独立悬架的诸多优点:1、非悬挂质量小,悬架所受到并传给车身的冲击载荷小,有利于提高汽车的行驶平顺性及轮胎接地性能;2、左右车轮的跳动没有直接的相互影响,可减少车身的倾斜和振动;3、占用横向空间小,便于发动机布置可以降低发动机的安装位置,从而降低汽车质心位置,有利于提高汽车行驶稳定性;4、易于实现驱动轮转向。

我公司目前所采用的前独立悬架均为不等长双横臂式扭杆悬架,如BJ1027A皮卡车型、BJ1032小卡车型和BJ6486轻客车型等。

第二章扭杆悬架扭杆式双横臂独立悬架,用扭杆作为弹性元件,简称为扭杆悬架。

2.1 扭杆悬架的典型结构2.1.1悬架的导向机构悬架的导向机构是一种四连杆机构,四连杆机构由上摆臂、下摆臂及主销构成。

图2-1为悬架系统结构简图,三角型DEF为悬架上摆臂,DE为上摆臂轴;三角型ABC为悬架下摆臂,AB为下摆臂轴;F为上球头销、C为下球头销FC构成转向桥的主销车轮跳动过程中,上摆臂、下摆臂各自绕它们的摆臂轴进行摆动。

M、N分别为转向梯型上的两点,M为转向梯型断开点,N为转向节臂与转向拉杆的连接点。

图2-1摆臂结构有两种:A形臂和一字臂,呈A字形或三角形的摆臂为A形臂;呈一字形的摆臂为一字臂。

上摆臂一般都是A形臂。

上下摆臂均为A形臂的称为双A形臂结构,四驱的车辆或四驱平台上的两驱车辆一般采用双A形臂,如:长丰猎豹、BJ2027皮卡;一般SUV车因考虑越野性能,其前悬架大多采用双A形臂,如:长城赛弗、五十铃竞技者、海拉克斯、华泰特拉卡等。

采用双A形臂的车辆不带推力杆。

另一种布置结构为:上摆臂是A形臂,下摆臂为一字臂。

两驱车辆一般采用该种结构。

如BJ1027皮卡、长城皮卡、田野皮卡等。

该种结构因下摆臂为一字臂必须设置推力杆。

2.1.2 上置扭杆与下置扭杆扭杆的安装型式主要有两种,一种为上置扭杆,一种为下置扭杆,见图2-2。

扭杆的上置与下置主要与整车及发动机布置有关,主要看它的布置空间。

采用上置扭杆的有:BJ6486轻客、长城赛弗、金杯海狮等;采用下置扭杆的有:BJ1027皮卡、长城皮卡、江铃皮卡、庆铃皮卡等。

图2-22.。

1。

3 双横臂轴的布置为了获得优良的性能,双横臂轴线在纵平面内和水平面内都有可能布置夹角,双横臂轴线在纵平面内形成的夹角为刹车点头角,在水平面内形成的夹角为斜置角。

图2-3列出了BJ1032、BJ0127、BJ6486的双横臂轴线的布置及其特点:图2-3图中M-M为上摆臂轴线,N-N为下摆臂轴线。

BJ1032采用的布置方式较为简单,双横臂轴线在纵平面内和水平面内均是平行的,该种布置方式在皮卡和SUV车上应用较多,如庆铃皮卡、猎豹SUV、BJ2027皮卡等。

该种布置方式较为简单,在车轮上下运动过程中后倾角变化不大,但抗点头效应较差。

BJ1027采用的布置方式是在纵平面内上摆臂轴线有个5°角,该角度与水平方向的下摆臂轴线上在纵平面内形成了一个刹车点头角,使车辆形成了一定的抗点头效应,使车辆在制动或加减速时显得比较柔和。

BJ1086采用的布置方式比较复杂,上下摆臂轴线不论在纵平面内还是在水平面内都有夹角。

该种布置不仅有一定的抗点头效应,还有一定的抗冲击性。

但在车轮上下运动过程中各种定位角度的变化较大。

具体采用哪种布置结构,要看车辆的性能要求,结合整车的布置以及悬架与车轮的运动特性而定。

2.2扭杆悬架的特点扭杆悬架的特点是车身高度可调。

车辆在设计时,要求有一个整车姿态。

对于扭杆悬架的车辆,为了保证正确的整车姿态,必须进行车身高度调整,即空车高度。

其方法是调整扭杆,使前悬架高度达到一个规定值。

空车高度调整必须在前轮定位调整之前进行,由于车辆在装配以后,前桥、悬架及球销中的各种间隙还没有完全消除,整车姿态仍然处于不稳定状态,这时调出来的前轮定位参数则是不准确的。

所以装车以后一般是先进行一段路程的颠波,然后再将车身用力的晃动几下,调准空车高度后方可进行前轮定位调整。

2.3 扭杆悬架的刚度特性扭杆悬架的刚度特性是悬架刚度为非线性的。

扭杆刚度不等于悬架刚度。

扭杆刚度为线性的,悬架刚度为非线性的。

扭杆刚度取决于扭杆的结构尺寸,而悬架刚度由于其导向机构的缘固而变得较为复杂,悬架刚度指的是车轮的垂向位移与车轮所受的反力之间的关系曲线,由于车轮的垂向位移与扭杆的扭角不呈线性关系,故悬架刚度为非线性的。

如果扭杆刚度为Ct,则悬架刚度为:C = dZds t= Md2θds2t+ Ct (dθds t)2式中: Z——作用在车轮上的垂直反力ds t——车轮在Z作用下的微量垂直位移dθ——扭杆在M作用下的微量转角Ct——扭杆刚度M——作用在扭杆上的扭矩对于双横臂独立悬架其悬架刚度计算比较复杂,现已有计算软件,这里不再熬述。

2.4 扭杆悬架的运动特性由于扭杆悬架的导向机构为四连杆机构,所以,在运动过程中,前轮定位的参数值是变化的。

如何使前轮参数的变化值在合理范围内,以确保车辆性能,这就要看四连杆机构的如何设计。

分析案例1:BJ1032独立悬架设计。

按整车设计要求,选用小东风悬架,看前轮参数值的变化。

已知条件:(参照图2-1)车轮外倾α0°10′主销内倾β9°20′主销后倾γ0°25′下横臂与水平线夹角θ13°15′上横臂长度AD=220 mm下横臂长度BC=363 mm主销长度DC=250 mm主销上段长度DP=149悬架安装点坐标:下摆臂摆动轴线上B点Bx: 50.000 By: 257.000 Bz: -194.000下摆臂摆动轴线上A点Ax: -50.000 Ay: 257.000 Az: -194.000上摆臂摆动轴线上E点Ex: 109.500 Ey: 363.000 Ez: 46.000 上摆臂摆动轴线上D点Dx: -118.500 Dy: 363.000 Dz: 46.000 转向梯形断开点M(mm) Mx: 145.000 My: 260.000 Mz: -182.000悬架平衡位置转向节下球销中心C0(mm) C0x: 0.000 C0y: 611.500 C0z: -276.800悬架平衡位置转向节上球销中心F0(mm) F0x: 4.500 F0y: 571.500 F0z: -30.000 转向梯形断开点M到转向节臂球销中心N的距离MN(mm) MN: 349.000转向节下球销中心C转向节上球销中心F的距离FC(mm) FC: 250.000转向节下球销中心C到转向节臂球销中心N的距离CN(mm) CN: 173.000转向节上球销中心F到转向节臂球销中心N的距离FN(mm) FN: 217.000转向节臂球销中心N到轮胎中心G的距离NG(mm) NG: 173.000主销轴线与转向节轴线交点P到轮胎中心G的距离PG(mm) PG: 105.000P点到转向节上.下球销中心F和C的距离之比FP/CP(定值) FP_PC: 1.463转向节下球销中心C到轮胎中心G的距离CG(mm) CG: 133.000车轮半径R(mm) R: 325.000用软件计算结果(见表2-1):前束及1/2轮距变化不太理想,其他前轮参数值的变化可以满足要求。

悬架是以已确定的状态为平衡位置进行运动的。

悬架的运动还应考虑缓冲块的合理设置。

分析示例2:BJ1027A皮卡前悬架的运动图2-4为皮卡前悬架空载时的运动图,从图2-5中看出:空载时,上横臂与水平线夹角为0.56°下横臂与水平线夹角为0.21°,上横臂与上缓冲块间隙22 mm,下横臂与下缓冲块间隙16 mm,该状态为悬架在空载时的平衡位置,那么在空载状态下,悬架将以此为平衡位置上下摆动,当车轮上跳42mm时下横臂与下缓冲块接触,车轮回弹56.5mm时上横臂与上缓冲块接触。

满载时,由于轴荷增加,车身高度下降, 悬架的状态发生变化, 平衡位置也随之改变。

对于汽卡柴卡两种机型,满载轴荷不一样,相差90 kg ,车身高度下沉量不一样,因而,平衡位置也略有不同。

表2-2列出了配装两种机型,491机和BJ493Q2机的悬架状态:图2-4表2-2从表2-2中看出:两种机型在满载时,由于车身高度下沉量不一样,与缓冲块接触情况也有所不同,对于汽卡,满载时,车轮上跳 27mm 时,撞击下缓冲块;对于柴卡,满载时,车轮上跳 25mm 时,撞击下缓冲块,相差不大,在车轮上跳 40mm 时,两种机型压缩缓冲块约在10 mm 左右,不到缓冲块压缩量的1/3,符合悬架的运动要求。

相比之下,柴卡撞击缓冲块的机会较汽卡略多。

综上所述,正确的空车高度,可以得到理想的悬架状态,从而保证悬架的运动精度,使车辆有一个比较理想的行驶性能。

轴荷不同,悬架的平衡位置不同,悬架的运动将存在一些差异。

对于不同的车型,可以通过扭杆调整量,使悬架满足不同状态的性能要求。

当然,如果轴荷发生了较大变化,对性能造成较大影响时,则应考虑缓冲块的重新设置或悬架高度的控制尺寸。

2. 5 悬架与整车的动态关系悬架与整车有着密切的联系,悬架状态决定了整车姿态。

车辆是运动的,悬架也是运动的,因而整车姿态是动态的。

在悬架与整车的动态关系中,一个关键要素就是空车高度,空车高度决定了悬架状态,同时也保证了整车姿态,正确的空车高度保证了前轮定位的准确性,保证了了悬架的性能。

2. 5.1空车高度的定义对于扭杆式双横臂独立悬架的车型,在前轮定位调整之前,要进行车身高度调整,以达到整车姿态的设计要求一般是在空车状态下进行车身高度调整,也可称为空车高度。

相关文档
最新文档