南山区第三中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.是z 的共轭复数,若z+=2,(z﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣i C .﹣1+iD .1﹣i2. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y轴上,则的值为( ) A.B.C.D.3. 函数y=2|x|的定义域为[a ,b],值域为[1,16],当a 变动时,函数b=g (a )的图象可以是( )A. B. C.D.4. 已知实数x ,y满足,则z=2x+y 的最大值为( )A .﹣2B .﹣1C .0D .45. 若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数12z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力. 6. 命题“存在实数x ,使x >1”的否定是( ) A .对任意实数x ,都有x >1 B .不存在实数x ,使x ≤1 C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤17. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α8. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =+的零点个数为( ) A .1 B .2 C .3 D .4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知A 、B 、C都在半径为2的球面上,且AC BC ⊥,30ABC ∠=,球心O 到平面ABC 的距离为1,点M 是线段BC 的中点,过点M 作球O 的截面,则截面面积的最小值为( ) A .3πB .34πC .3πD .3π10.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种11.设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c12.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的( ) A .①④B .①⑤C .②⑤D .③⑤二、填空题13.设向量a =(1,-1),b =(0,t ),若(2a +b )·a =2,则t =________.14.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 . 15.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .16.已知函数f (x )=有3个零点,则实数a 的取值范围是 .17.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .18.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .三、解答题19.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.A DOCB20.设定义在(0,+∞)上的函数f(x)=ax++b(a>0)(Ⅰ)求f(x)的最小值;(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=,求a,b的值.21.已知a,b,c分别为△ABC三个内角A,B,C的对边,且满足2bcosC=2a﹣c.(Ⅰ)求B;(Ⅱ)若△ABC的面积为,b=2求a,c的值.22.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.23.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.24.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2,D是AA1的中点,BD与AB1交于点O,且CO⊥ABB1A1平面.(1)证明:BC⊥AB1;(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.城区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.2.【答案】C【解析】解:F,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.1点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.3.【答案】B【解析】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.4.【答案】D【解析】解:画出满足条件的平面区域,如图示:,将z=2x+y转化为:y=﹣2x+z,由图象得:y=﹣2x+z过(1,2)时,z最大,Z最大值=4,故选:D.【点评】本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.5.【答案】B【解析】6.【答案】C【解析】解:∵命题“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”故选C7.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.8.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.9. 【答案】B【解析】∵AC BC ⊥,∴90ACB ∠=, ∴圆心O 在平面的射影为AB D 的中点,∴112AB ==,∴2AB =. ∴cos303BC AC ==当线段BC 为截面圆的直径时,面积最小,∴截面面积的最小值为23()24ππ⨯=. 10.【答案】A【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为223335353322150C C C A A A ⋅⋅+⋅=种,故选A . 11.【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a <c <b . 故选:A .12.【答案】D【解析】解:当m⊂α,α∥β时,根据线面平行的定义,m与β没有公共点,有m∥β,其他条件无法推出m ∥β,故选D【点评】本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.二、填空题13.【答案】【解析】(2a+b)·a=(2,-2+t)·(1,-1)=2×1+(-2+t)·(-1)=4-t=2,∴t=2.答案:214.【答案】A<G.【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.15.【答案】.【解析】解:∵f(x)=cos2x+sinx=1﹣sin2x+sinx=﹣+,故当sinx=时,函数f(x)取得最大值为,故答案为:.【点评】本题主要考查三角函数的最值,二次函数的性质,属于基础题.16.【答案】(,1).【解析】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).17.【答案】.【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.18.【答案】64.【解析】解:由图可知甲的得分共有9个,中位数为28∴甲的中位数为28乙的得分共有9个,中位数为36∴乙的中位数为36则甲乙两人比赛得分的中位数之和是64故答案为:64.【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.三、解答题19.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.20.【答案】【解析】解:(Ⅰ)f(x)=ax++b≥2+b=b+2当且仅当ax=1(x=)时,f(x)的最小值为b+2(Ⅱ)由题意,曲线y=f(x)在点(1,f(1))处的切线方程为y=,可得:f(1)=,∴a++b=①f'(x)=a﹣,∴f′(1)=a﹣=②由①②得:a=2,b=﹣121.【答案】【解析】解:(Ⅰ)已知等式2bcosC=2a﹣c,利用正弦定理化简得:2sinBcosC=2sinA﹣sinC=2sin(B+C)﹣sinC=2sinBcosC+2cosBsinC﹣sinC,整理得:2cosBsinC﹣sinC=0,∵sinC≠0,∴cosB=,则B=60°;(Ⅱ)∵△ABC的面积为=acsinB=ac,解得:ac=4,①又∵b=2,由余弦定理可得:22=a2+c2﹣ac=(a+c)2﹣3ac=(a+c)2﹣12,∴解得:a+c=4,②∴联立①②解得:a=c=2.22.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.n≥2时,由b1+2b2+3b3+…+nb n=a n ①b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.23.【答案】【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;故全为女生的概率为=.…(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…P(X=0)==;P(X=1)==;P(X=2)==;P(X=3)==;P(X=4)==.…XEX=0×+1×+2×+3×+4×=.…【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.24.【答案】【解析】(I)证明:由题意,因为ABB1A1是矩形,D为AA1中点,AB=2,AA1=2,AD=,所以在直角三角形ABB1中,tan∠AB1B==,在直角三角形ABD中,tan∠ABD==,所以∠AB1B=∠ABD,又∠BAB1+∠AB1B=90°,∠BAB1+∠ABD=90°,所以在直角三角形ABO中,故∠BOA=90°,即BD⊥AB1,又因为CO⊥侧面ABB1A1,AB1⊂侧面ABB1A1,所以CO⊥AB1所以,AB1⊥面BCD,因为BC⊂面BCD,所以BC⊥AB1.(Ⅱ)解:如图,分别以OD,OB1,OC所在的直线为x,y,z轴,以O为原点,建立空间直角坐标系,则A(0,﹣,0),B(﹣,0,0),C(0,0,),B1(0,,0),D(,0,0),又因为=2,所以所以=(﹣,,0),=(0,,),=(,,),=(,0,﹣),设平面ABC的法向量为=(x,y,z),则根据可得=(1,,﹣)是平面ABC的一个法向量,设直线CD与平面ABC所成角为α,则sinα=,所以直线CD与平面ABC所成角的正弦值为.…【点评】本题考查了直线与平面垂直的性质,考查线面角,考查向量方法的运用,属于中档题.。

南山区一中2018-2019学年高三上学期11月月考数学试卷含答案

南山区一中2018-2019学年高三上学期11月月考数学试卷含答案

南山区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=()A .﹣6B .﹣2C .2D .62. 已知x >1,则函数的最小值为()A .4B .3C .2D .13. 函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)4. 若命题“p ∧q ”为假,且“¬q ”为假,则( )A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假5.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A . B .C .D .6.=( )A .2B .4C .πD .2π7. 设集合,,则( ){}|||2A x R x =∈≤{}|10B x Z x =∈-≥A B =I A.B.C. D. {}|12x x <≤{}|21x x -≤≤{}2,1,1,2--{}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.8. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( )A .0B .1C .2D .以上都不对9. 设集合,,则( ){}|22A x R x =∈-≤≤{}|10B x x =-≥()R A B =I ðA.B.C.D. {}|12x x <≤{}|21x x -≤<{}|21x x -≤≤{}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.10.已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( )A .B .2C .D .11.已知直线a ,b 都与平面α相交,则a ,b 的位置关系是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .平行B .相交C .异面D .以上都有可能12.函数在定义域上的导函数是,若,且当时,,()f x R '()f x ()(2)f x f x =-(,1)x ∈-∞'(1)()0x f x -<设,,,则( )(0)a f=b f =2(log 8)c f =A .B .C .D .a b c <<a b c >>c a b <<a c b<<二、填空题13.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .14.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 . 15.设某双曲线与椭圆有共同的焦点,且与椭圆相交,其中一个交点的坐标为1362722=+y x ,则此双曲线的标准方程是.)4,15(16.若关于x ,y 的不等式组(k 是常数)所表示的平面区域的边界是一个直角三角形,则k= .17.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .18.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .三、解答题19.本小题满分12分如图,在边长为4的菱形中,,点、分别在边、上.点ABCD 60BAD ∠=oE F CD CB 与点、不重合,,,沿将翻折到的位置,使平面E C D EF AC ⊥EF AC O =I EF CEF ∆PEF ∆PEF ⊥平面.ABFED Ⅰ求证:平面;BD ⊥POA Ⅱ记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长.P ABD -1V P BDEF -2V 1243V V =PO PACDO EF FEO DCA20.已知函数f (x )=e x ﹣ax ﹣1(a >0,e 为自然对数的底数).(1)求函数f (x )的最小值;(2)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的值.21.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分)(3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.22.(本小题满分10分)已知函数.()2f x x a x =++-(1)若求不等式的解集;4a =-()6f x ≥(2)若的解集包含,求实数的取值范围.()3f x x ≤-[]0,123.已知椭圆C 1: +=1(a >b >0)的离心率为e=,直线l :y=x+2与以原点为圆心,以椭圆C 1的短半轴长为半径的圆O 相切.(1)求椭圆C 1的方程;(2)抛物线C 2:y 2=2px (p >0)与椭圆C 1有公共焦点,设C 2与x 轴交于点Q ,不同的两点R ,S 在C 2上(R ,S 与Q 不重合),且满足•=0,求||的取值范围.24.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n南山区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案D B ABBADBBD题号1112答案DC二、填空题13. .14. (﹣1,﹣) .15.15422=-x y 16. ﹣1或0 . 17. .18. [1,)∪(9,25] .三、解答题19.20.21.解:(1)当a=1,f (x )=x 2﹣3x+lnx ,定义域(0,+∞),∴…(2分),解得x=1或x=,x ∈,(1,+∞),f ′(x )>0,f (x )是增函数,x ∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a <e 时,∴f (x )min =f (a )=a (lna ﹣a ﹣1)当a ≥e 时,f (x )在[1,a )减函数,(a ,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f (x )≥g (x )在区间上有解即x 2﹣2x+a (lnx ﹣x )≥0在上有解,∵当时,lnx ≤0<x ,当x ∈(1,e]时,lnx ≤1<x ,∴lnx ﹣x <0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx ∴时,h ′(x )<0,h (x )是减函数,x ∈(1,e],h (x )是增函数,∴,∴时,,∴∴a 的取值范围为…(14分)22.(1);(2).(][),06,-∞+∞U []1,0-23. 24.。

城区第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 某三棱锥的三视图如图所示,该三棱锥的体积是( )A . 2B .4C .D .3438【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.2. 以下四个命题中,真命题的是( )A .,(0,)x π∃∈sin tan x x=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件ABC ∆sin sin cos cos A B A B +=+2C π=【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.3. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是()A .5B .4C .4D .24. 不等式的解集是()A .{x|≤x ≤2}B .{x|≤x <2}C .{x|x>2或x ≤}D .{x|x ≥}班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________5. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)6. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q⌝∧7. 已知集合A={y|y=x 2+2x ﹣3},,则有()A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ8. 设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( )A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假9. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是()A .B .1C .D .10.下列判断正确的是()A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台11.已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x +sinx ,则()A .B .C .D .12.在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ;①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值;③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交;④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2. 14.已知含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a.15.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率为 . 16.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 . 17.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= . 18.设满足约束条件,则的最大值是____________. ,y x 2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩3z x y =+三、解答题19.已知函数xx x f ---=713)(的定义域为集合A ,,{x |210}B x =<<{x |21}C a x a =<<+(1)求,B A C R ⋂)(;A B U (2)若,求实数a 的取值范围.B C B =U 20.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.21.已知集合P={x|2x 2﹣3x+1≤0},Q={x|(x ﹣a )(x ﹣a ﹣1)≤0}.(1)若a=1,求P ∩Q ;(2)若x ∈P 是x ∈Q 的充分条件,求实数a 的取值范围.22.(本小题满分12分)已知等差数列{}满足:(),,该数列的n a n n a a >+1*∈N n 11=a 前三项分别加上1,1,3后成等比数列,且.1log 22-=+n n b a (1)求数列{},{}的通项公式;n a n b (2)求数列{}的前项和.n n b a ⋅n T 23.如图在长方形ABCD 中,是CD 的中点,M 是线段AB 上的点,.(1)若M 是AB 的中点,求证:与共线;(2)在线段AB 上是否存在点M ,使得与垂直?若不存在请说明理由,若存在请求出M 点的位置;(3)若动点P 在长方形ABCD 上运动,试求的最大值及取得最大值时P 点的位置.24.城区第三高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B2.【答案】D3.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.4.【答案】B【解析】解:不等式,移项得:,即≤0,可化为:或解得:≤x<2,则原不等式的解集为:≤x<2故选B.【点评】此题考查了其他不等式的解法,考查了转化及分类讨论的数学思想,是高考中常考的题型.学生进行不等式变形,在不等式两边同时除以﹣1时,注意不等号方向要改变.5.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.6.【答案】D【解析】考点:命题的真假.7.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.8.【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q为假命题;则¬q为真命题;p∨q为假命题;p∧q为假命题,故只有C判断错误,故选:C9.【答案】D【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.10.【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C.11.【答案】D【解析】解:由f (x )=f (π﹣x )知,∴f ()=f (π﹣)=f (),∵当x ∈(﹣,)时,f (x )=e x +sinx 为增函数∵<<<,∴f ()<f ()<f (),∴f ()<f ()<f (),故选:D 12.【答案】B【解析】解:∵(﹣4+5i )i=﹣5﹣4i ,∴复数(﹣4+5i )i 的共轭复数为:﹣5+4i ,∴在复平面内,复数(﹣4+5i )i 的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B . 二、填空题13.【答案】 ②③④ 【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),可以认为是圆(x ﹣1)2+(y ﹣2)2=1的切线系,故②正确;对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,如圆C :(x ﹣1)2+(y ﹣2)2=100,故③正确;对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确;对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用. 14.【答案】-1【解析】试题分析:由于,所以只能,,所以。

南开区第三中学2018-2019学年高三上学期11月月考数学试卷含答案

南开区第三中学2018-2019学年高三上学期11月月考数学试卷含答案

南开区第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12-B .-2C .2D .122. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .33.双曲线﹣=1(a >0,b >0)的一条渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,则双曲线的离心率为( ) A .2B.C .4D.4. 若某算法框图如图所示,则输出的结果为( )A .7B .15C .31D .635. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -= 6. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .27. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24C .30D .368. 在复平面内,复数Z=+i 2015对应的点位于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .第四象限B .第三象限C .第二象限D .第一象限9. 若cos (﹣α)=,则cos (+α)的值是( )A .B .﹣C .D .﹣10.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( )A .B .C .D .211.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1B .2C .3D .412.一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .二、填空题13.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .14.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.15.如图,在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为.16.二面角α﹣l﹣β内一点P到平面α,β和棱l的距离之比为1::2,则这个二面角的平面角是度.17.若不等式组表示的平面区域是一个锐角三角形,则k的取值范围是.18.设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为.三、解答题19.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.20.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.21.已知等差数列{a n }的首项为a ,公差为b ,且不等式log 2(ax 2﹣3x+6)>2的解集为{x|x <1或x >b}.(Ⅰ)求数列{a n }的通项公式及前n 项和S n 公式;(Ⅱ)求数列{}的前n 项和T n .22.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.23.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x 年后游艇的盈利为y 万元. (1)写出y 与x 之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?24.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2. (Ⅰ)求数列{a n }通项公式;(Ⅱ)设数列{b n }满足b n =(n ∈N *),求证:b 1+b 2+…+b n <.南开区第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a . 考点:等比数列的性质.2. 【答案】C【解析】解:对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,正确;对于②,设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 应平均减少5个单位,②错误;对于③,线性回归方程y=bx+a 必过样本中心点,正确;对于④,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病,错误; 综上,其中错误的个数是2. 故选:C .3. 【答案】D【解析】解:双曲线﹣=1(a >0,b >0)的一条渐近线方程为bx+ay=0,∵渐近线被圆M :(x ﹣8)2+y 2=25截得的弦长为6,∴=4,∴a 2=3b 2, ∴c 2=4b 2,∴e==.故选:D .【点评】本题考查双曲线的性质和应用,解题时要注意公式的合理运用.4. 【答案】 D【解析】解:模拟执行算法框图,可得 A=1,B=1满足条件A ≤5,B=3,A=2 满足条件A ≤5,B=7,A=3 满足条件A ≤5,B=15,A=4满足条件A≤5,B=31,A=5满足条件A≤5,B=63,A=6不满足条件A≤5,退出循环,输出B的值为63.故选:D.【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.5.【答案】D【解析】考点:直线的方程.6.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.7.【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.8.【答案】A【解析】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.9.【答案】B【解析】解:∵cos(﹣α)=,∴cos(+α)=﹣cos=﹣cos(﹣α)=﹣.故选:B.10.【答案】B【解析】解:抛物线y2=4x的准线l:x=﹣1.∵|AF|=3,∴点A到准线l:x=﹣1的距离为3∴1+x A=3∴x A=2,∴y A=±2,∴△AOF的面积为=.故选:B.【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定A的坐标是解题的关键.11.【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.故选:B.【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.12.【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1⊥PF2.又因为F1F2=2c,所以∠PF1F2=30°,所以.根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2a﹣c.所以2a﹣c=,所以e=.故选D.【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.二、填空题13.【答案】1.【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(﹣1,t),则B(﹣1,﹣t),C(1,﹣t),D(1,t),由直线和圆相切的条件可得,t=1.将A(﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.14.【答案】21 7【解析】15.【答案】114.【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.16.【答案】75度.【解析】解:点P可能在二面角α﹣l﹣β内部,也可能在外部,应区别处理.当点P在二面角α﹣l﹣β的内部时,如图,A、C、B、P四点共面,∠ACB为二面角的平面角,由题设条件,点P到α,β和棱l的距离之比为1::2可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°.故答案为:75.【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键.17.【答案】(﹣1,0).【解析】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(0,5),B(2,7),C(2,2k+5)△ABC的形状随着直线AC:y=kx+5斜率的变化而变化,将直线AC绕A点旋转,可得当C点与C1(2,5)重合或与C2(2,3)重合时,△ABC是直角三角形,当点C位于B、C1之间,或在C1C2的延长线上时,△ABC是钝角三角形,当点C位于C1、C2之间时,△ABC是锐角三角形,而点C在其它的位置不能构成三角形综上所述,可得3<2k+5<5,解之得﹣1<k<0即k的取值范围是(﹣1,0)故答案为:(﹣1,0)【点评】本题给出二元一次不等式组,在表示的图形为锐角三角形的情况下,求参数k的取值范围,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.18.【答案】﹣10.【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.三、解答题19.【答案】【解析】解:(1)由a n+1=,可得a2==,a3===,a4===.(2)猜测a n=(n∈N*).下面用数学归纳法证明:①当n=1时,左边=a1=a,右边==a,猜测成立.②假设当n=k(k∈N*)时猜测成立,即a k=.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有a n=成立.20.【答案】【解析】解:(1)=…==5…(2)(lg5)2+2lg2﹣(lg2)2=(lg5+lg2)(lg5﹣lg2)+2lg2…=.…21.【答案】【解析】解:(Ⅰ)∵不等式log2(ax2﹣3x+6)>2可转化为ax2﹣3x+2>0,所给条件表明:ax2﹣3x+2>0的解集为{x|x<1orx>b},根据不等式解集的意义可知:方程ax2﹣3x+2=0的两根为x1=1、x2=b.利用韦达定理不难得出a=1,b=2.由此知a n=1+2(n﹣1)=2n﹣1,s n=n2…(6分)(Ⅱ)令则=…(12分)【点评】本小题主要考查数列的求和、数列与函数的综合等基础知识,考查运算求解能力,化归与转化思想.属于基础题.22.【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.请23.【答案】【解析】解:(1)(x∈N*) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.24.【答案】【解析】(Ⅰ)解:由4S n=(a n+1)2,令n=1,得,即a1=1,又4S n+1=(a n+1+1)2,∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,∴a n=1+2(n﹣1)=2n﹣1;(Ⅱ)证明:由(Ⅰ)可知,b n==,则b1+b2+…+b n===.。

四川省绵阳南山中学2018-2019学年高三上学期第三次月考试卷数学含答案

四川省绵阳南山中学2018-2019学年高三上学期第三次月考试卷数学含答案

四川省绵阳南山中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4B.1[8 C .31[,)162 D .3[,3)82. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图所示,则其侧视图的面积的最大值为( )A .4 B. C .8 D.3. 12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-24. 已知i z 311-=,i z +=32,其中i 是虚数单位,则21z z 的虚部为( ) A .1- B .54 C .i - D .i 54 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.5. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,20176. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25 7. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A8. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .3 9. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .204810.已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}11.若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( ) A .﹣2 B .±2 C .0 D .212.圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知一个算法,其流程图如图,则输出结果是 .14.1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆的内切圆半径与外接圆半径之比为12,则该双曲线的离心率为______________.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.15.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .三、解答题(本大共6小题,共70分。

南山区一中2018-2019学年高三上学期11月月考数学试卷含答案【精选】

南山区一中2018-2019学年高三上学期11月月考数学试卷含答案【精选】

南山区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 数列中,若,,则这个数列的第10项( ) A .19B .21C .D .2. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4 B. C .8 D.3. 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π4. 在△ABC 中,AB 边上的中线CO=2,若动点P满足=(sin 2θ)+(cos 2θ)(θ∈R),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .05. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( ) A .等腰三角形B .正三角形C .直角三角形D .钝角三角形6. 下面的结构图,总经理的直接下属是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部7. 正方体的内切球与外接球的半径之比为( )A .B .C .D .8. 设a=lge ,b=(lge )2,c=lg,则( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a9. 已知正三棱柱111ABC A B C 的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm10.从1,2,3,4中任取两个数,则其中一个数是另一个数两倍的概率为( )A .B .C .D .11.已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,) C .(2.+∞) D .(1,2)12.已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为( )A.B.C.D.二、填空题13.定义:[x](x∈R)表示不超过x的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是.(填上所有正确命题的编号)14.已知tan()3αβ+=,tan()24πα+=,那么tanβ=.15.若函数f(x)=x2﹣(2a﹣1)x+a+1是区间(1,2)上的单调函数,则实数a的取值范围是.16.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数①f(x)=3x+1 ②f(x)=()x+1③f(x)=x2+1 ④f(x)=其中是“H函数”的有(填序号)17.如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是.18.在下列给出的命题中,所有正确命题的序号为.①函数y=2x3+3x﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.三、解答题19.已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.20.已知函数f(x)=4sinxcosx﹣5sin2x﹣cos2x+3.(Ⅰ)当x∈[0,]时,求函数f(x)的值域;(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cos(A+C),求f(B)的值.21.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如下:(Ⅰ)估计该校男生的人数;(Ⅱ)估计该校学生身高在170~185cm之间的概率;(Ⅲ)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.22.某单位组织职工开展构建绿色家园活动,在今年3月份参加义务植树活动的职工中,随机抽取M名职工为样本,得到这些职工植树的株数,根据此数据作出了频数与频率统计表和频率分布直方图如图:(1)求出表中M,p及图中a的值;(2)单位决定对参加植树的职工进行表彰,对植树株数在[25,30)区间的职工发放价值800元的奖品,对植树株数在[20,25)区间的职工发放价值600元的奖品,对植树株数在[15,20)区间的职工发放价值400元的奖品,对植树株数在[10,15)区间的职工发放价值200元的奖品,在所取样本中,任意取出2人,并设X为合计23.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M;(Ⅱ)求M5.24.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.南山区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.②③④14.4 315.{a|或}.16.①④17.异面.18.:①②③三、解答题19.20.21.22.23.24.。

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(1)

城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x2. 集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个3. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A ) 13 ( B ) 49 (C ) 23 (D ) 894. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④5. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80D .S 21=846. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?7. 如图,长方形ABCD 的长AD=2x ,宽AB=x (x ≥1),线段MN 的长度为1,端点M 、N 在长方形ABCD 的四边上滑动,当M 、N 沿长方形的四边滑动一周时,线段MN 的中点P 所形成的轨迹为G ,记G 的周长与G 围成的面积数值的差为y ,则函数y=f (x )的图象大致为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .8. 函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.9. 已知实数a ,b ,c 满足不等式0<a <b <c <1,且M=2a ,N=5﹣b ,P=()c ,则M 、N 、P 的大小关系为( )A .M >N >PB .P <M <NC .N >P >M10.已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .﹣2 B .2 C .﹣98 D .9811.下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台12.若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .2二、填空题13.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 .14.已知两个单位向量,a b 满足:12a b ∙=-,向量2a b -与的夹角为,则cos θ= .15.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角∠MAN=60°,C 点的仰角∠CAB=45°以及∠MAC=75°;从C 点测得∠MCA=60°.已知山高BC=100m ,则山高MN= m .16.设R m ∈,实数x ,y 满足23603260y mx y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.17.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .18.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.三、解答题19.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,(1,2P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.20.已知椭圆+=1(a >b >0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.21.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.22.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.23.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.24.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:(Ⅰ)集合M,N;(Ⅱ)集合M∩N,∁R(M∪N).城区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】解:∵2f (x )+xf ′(x )>x 2, 令x=0,则f (x )>0,故可排除B ,D .如果 f (x )=x 2+0.1,时 已知条件 2f (x )+xf ′(x )>x 2成立,但f (x )>x 未必成立,所以C 也是错的,故选 A 故选A .2. 【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3}, ∴集合S=A ∩B={1,3},则集合S 的子集有22=4个,故选:C .【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.3. 【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.4. 【答案】 D【解析】解:要使这些曲线上存在点P 满足|MP|=|NP|,需曲线与MN 的垂直平分线相交. MN的中点坐标为(﹣,0),MN斜率为=∴MN 的垂直平分线为y=﹣2(x+),∵①4x+2y ﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x 2+y 2=3与y=﹣2(x+),联立,消去y 得5x 2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN 的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y 得9x 2﹣24x ﹣16=0,△>0可知③中的曲线与MN 的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y 得7x 2﹣24x+20=0,△>0可知④中的曲线与MN 的垂直平分线有交点, 故选D5. 【答案】【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.S 19=19a 1+19×18d2=19(a 1+9d )=76,同理S 20,S 21均不恒为常数,故选B. 6. 【答案】C【解析】解:模拟执行程序框图,可得 S=2,i=0不满足条件,S=5,i=1 不满足条件,S=8,i=3 不满足条件,S=11,i=7 不满足条件,S=14,i=15由题意,此时退出循环,输出S 的值即为14, 结合选项可知判断框内应填的条件是:i ≥15? 故选:C .【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查.7. 【答案】 C【解析】解:∵线段MN 的长度为1,线段MN 的中点P ,∴AP=,即P 的轨迹是分别以A ,B ,C ,D 为圆心,半径为的4个圆,以及线段GH ,FE ,RT ,LK ,部分. ∴G 的周长等于四个圆弧长加上线段GH ,FE ,RT ,LK 的长,即周长==π+4x ﹣2+2x ﹣2=6x+π﹣4,面积为矩形的面积减去4个圆的面积,即等于矩形的面积减去一个整圆的面积为,∴f (x )=6x+π﹣4﹣=,是一个开口向下的抛物线,∴对应的图象为C ,故选:C.【点评】本题主要考查函数图象的识别和判断,根据条件确定点P的轨迹是解决本题的关键,综合性较强,难度较大.8.【答案】C9.【答案】A【解析】解:∵0<a<b<c<1,∴1<2a<2,<5﹣b<1,<()c<1,5﹣b=()b>()c>()c,即M>N>P,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.10.【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(﹣1),又f(x)在R上是奇函数,所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,故选A.【点评】本题考查函数的奇偶性与周期性.11.【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C.12.【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离d min=,∴(x﹣3)2+y2的最小值是:.故选:A.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.二、填空题13.【答案】.【解析】解:到坐标原点的距离大于2的点,位于以原点O为圆心、半径为2的圆外区域D:表示正方形OABC,(如图)其中O为坐标原点,A(2,0),B(2,2),C(0,2).因此在区域D内随机取一个点P,则P点到坐标原点的距离大于2时,点P位于图中正方形OABC内,且在扇形OAC的外部,如图中的阴影部分∵S正方形OABC=22=4,S阴影=S正方形OABC﹣S扇形OAC=4﹣π•22=4﹣π∴所求概率为P==故答案为:【点评】本题给出不等式组表示的平面区域,求在区域内投点使该到原点距离大于2的概率,着重考查了二元一次不等式组表示的平面区域和几何概型等知识点,属于基础题.14.【答案】27-. 【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法 (1)求平面向量的数量积有三种方法:一是定义cos a b a b θ⋅=;二是坐标运算公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简 15.【答案】 150【解析】解:在RT △ABC 中,∠CAB=45°,BC=100m ,所以AC=100m .在△AMC 中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m .在RT △MNA 中,AM=100m ,∠MAN=60°,由得MN=100×=150m .故答案为:150.16.【答案】[3,6]-. 【解析】17.【答案】.【解析】解:过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有V=×2×h××2,当球的直径通过AB与CD的中点时,h最大为2,则四面体ABCD的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.18.【答案】【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键.三、解答题19.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,由1x ty =+及2212x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22t y y y y t t +=-=-++. 111x ty =+,221x ty =+,∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++=22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++. 综上所述,在x 轴上存在点5(,0)4Q 使得716QA QB ⋅=-恒成立.20.【答案】【解析】解:(1)依题意可得,解得a=2,b=1所以椭圆C 的方程是…(2)当k 变化时,m 2为定值,证明如下:由得,(1+4k 2)x 2+8kmx+4(m 2﹣1)=0.…设P (x 1,y 1),Q (x 2,y 2).则x 1+x 2=,x 1x 2=…(•) …∵直线OP 、OQ 的斜率依次为k 1,k 2,且4k=k 1+k 2,∴4k==,得2kx 1x 2=m (x 1+x 2),…将(•)代入得:m 2=,…经检验满足△>0.…【点评】本题考查椭圆的方程的求法,直线与椭圆方程的综合应用,考查分析问题解决问题的能力以及转化思想的应用.21.【答案】【解析】解:(1)由a n+1=,可得a2==,a3===,a4===.(2)猜测a n=(n∈N*).下面用数学归纳法证明:①当n=1时,左边=a1=a,右边==a,猜测成立.②假设当n=k(k∈N*)时猜测成立,即a k=.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有a n=成立.22.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,∴;3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分23.【答案】【解析】解:(Ⅰ)f'(x)=3ax2+2,若a≥0,则f'(x)>0,函数f(x)在R上单调递增;若a<0,令f'(x)>0,∴或,函数f(x)的单调递增区间为和;(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,又f n(1)=n+2﹣n=2>0,f n()====﹣当n≥2时,g(n)=n2﹣n﹣1>0,,n≥2时存在唯一x n且(i i)当n≥2时,,∴(零点的区间判定)∴,(数列裂项求和)∴,又f1(x)=x3+2x﹣1,,(函数法定界),又,∴,∴,(不等式放缩技巧)命题得证.【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.24.【答案】【解析】解:(1)由2x﹣3>0 得x>,∴M={x|x>}.由(x﹣3)(x﹣1)>0 得x<1 或x>3,∴N={x|x<1,或x>3}.(2)M∩N=(3,+∞),M∪N={x|x<1,或x>3},∴C R(M∪N)=.【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.。

南关区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

南关区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( )A .S 18=72B .S 19=76C .S 20=80D .S 21=842. 复数的值是( )i i -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.3. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A .k >7B .k >6C .k >5D .k >44. 如图,为正方体,下面结论:① 平面;② ;③ 平1111D C BA ABCD -//BD 11D CB BD AC ⊥1⊥1AC 面.其中正确结论的个数是()11D CB A . B . C . D .5. 在等比数列中,,,且数列的前项和,则此数列的项数}{n a 821=+n a a 8123=⋅-n a a }{n a n 121=n S n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}7. 已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为( )21A .B .C .或D .或21-1-21-108. 设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .139. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .10.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A .0B .1C .2D .311.某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到所示联表:做不到“光盘”能做到“光盘”男4510女3015P (K 2≥k )0.100.050.01k 2.7063.8416.635附:K 2=,则下列结论正确的是()A .在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”B .有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”C .在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”D .有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”12.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .0二、填空题13.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .14.如图,在矩形中,,ABCD AB = , 在上,若,3BC =E AC BE AC ⊥ 则的长=____________ED 15.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ;①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值;③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交;④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.16.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= . 17.定义在R 上的可导函数()f x ,已知()f x y e=′的图象如图所示,则()y f x =的增区间是 ▲ .10,则P 点的横坐标为 .)+bx (x >﹣1),曲线y=f (x )过点(e ﹣1,e 2﹣e+1),且在点(0,0)()求,的值;(Ⅱ)证明:当x ≥0时,f (x )≥x 2;(Ⅲ)若当x ≥0时,f (x )≥mx 2恒成立,求实数m 的取值范围.20.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这三个环节(可参加多个,也可都不参加)的情况及其概率如表所示:参加纪念活动的环节数0123概率(Ⅰ)若从抗战老兵中随机抽取2人进行座谈,求这2人参加纪念活动的环节数不同的概率;(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.21.已知函数f(x)的导函数f′(x)=x2+2ax+b(ab≠0),且f(0)=0.设曲线y=f(x)在原点处的切线l1的斜率为k1,过原点的另一条切线l2的斜率为k2.(1)若k1:k2=4:5,求函数f(x)的单调区间;(2)若k2=tk1时,函数f(x)无极值,且存在实数t使f(b)<f(1﹣2t)成立,求实数a的取值范围.22.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.23.已知曲线C 的极坐标方程为4ρ2cos 2θ+9ρ2sin 2θ=36,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系;(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若P (x ,y )是曲线C 上的一个动点,求3x+4y 的最大值. 24.设函数,.()xf x e =()lng x x =(Ⅰ)证明:;()2e g x x≥-(Ⅱ)若对所有的,都有,求实数的取值范围.0x ≥()()f x f x ax --≥a南关区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】【解析】选B.∵3a 8-2a 7=4,∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+=18(a 1+d )不恒为常数.18×17d 2172S 19=19a 1+=19(a 1+9d )=76,19×18d 2同理S 20,S 21均不恒为常数,故选B.2. 【答案】C【解析】.i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+3. 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表:K S是否继续循环循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否故退出循环的条件应为k >5?故答案选C .【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.4. 【答案】D 【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.5. 【答案】B6. 【答案】C 【解析】解:∵≤1=,∴x ≥0,∴A={x|x ≥0};又x 2﹣6x+8≤0⇔(x ﹣2)(x ﹣4)≤0,∴2≤x ≤4.∴B={x|2≤x ≤4},∴∁R B={x|x <2或x >4},∴A ∩∁R B={x|0≤x <2或x >4},故选C . 7. 【答案】D 【解析】试题分析:程序是分段函数 ,当时,,解得,当时,,⎩⎨⎧=x y x lg 200>≤x x 0≤x 212=x1-=x 0>x 21lg =x 解得,所以输入的是或,故选D.10=x 1-10考点:1.分段函数;2.程序框图.11111]8. 【答案】A【解析】解:∵P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,|PF 1|等于4,∴|PF 2|=2×13﹣|PF 1|=26﹣4=22.故选:A .【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用. 9. 【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.10.【答案】C【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故选:C.【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.11.【答案】C【解析】解:由2×2列联表得到a=45,b=10,c=30,d=15.则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.代入K2=,得k2的观测值k=.因为2.706<3.030<3.841.所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.即在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”故选C.【点评】本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关,此题是基础题.12.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P ,底面四边形的个顶点为A 、B 、C 、D .分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA 、DC ;PB 、AD ;PC 、AB ;PD 、BC )或(PA 、BC ;PD 、AB ;PC 、AD ;PB 、DC )那么安全存放的不同方法种数为2A 44=48.故选B .【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.二、填空题13.【答案】 ﹣12 .【解析】解:∵向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,∴==,解得x=﹣6,y=6,x ﹣y=﹣6﹣6=﹣12.故答案为:﹣12.【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目. 14.【答案】212【解析】在Rt △ABC 中,BC =3,AB =,所以∠BAC =60°.3因为BE ⊥AC ,AB =,所以AE =,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-3322AE ·AD ·cos ∠EAD =+9-2××3×=,故ED =.34323221421215.【答案】 ②③④ 【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x ﹣1)sin α﹣(y ﹣2)cos α=1,(α∈[0,2π)),可以认为是圆(x ﹣1)2+(y ﹣2)2=1的切线系,故②正确;对于③:存在定圆C ,使得任意l ∈L ,都有直线l 与圆C 相交,如圆C :(x ﹣1)2+(y ﹣2)2=100,故③正确;对于④:任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2,作图知④正确;对于⑤:任意意l 1∈L ,必存在两条l 2∈L ,使得l 1⊥l 2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用. 16.【答案】 2016 .【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e ,∴数列{a n }是以e 为公差的等差数列,则a 1=a 3﹣2e=4e ﹣2e=2e ,∴a 2015=a 1+2014e=2e+2014e=2016e .故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题. 17.【答案】(﹣∞,2)【解析】试题分析:由()21()0f x xef x '≤≥⇒≥′时,()21()0f x x ef x '><⇒<′时,所以()y f x =的增区间是(﹣∞,2)考点:函数单调区间18.【答案】 8 .【解析】解:∵抛物线y 2=8x=2px ,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10,∴x=8,故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解. 三、解答题19.【答案】【解析】解:(Ⅰ)f ′(x )=2a (x+1)ln (x+1)+a (x+1)+b ,∵f ′(0)=a+b=0,f (e ﹣1)=ae 2+b (e ﹣1)=a (e 2﹣e+1)=e 2﹣e+1∴a=1,b=﹣1. …(Ⅱ)f (x )=(x+1)2ln (x+1)﹣x ,设g(x)=(x+1)2ln(x+1)﹣x﹣x2,(x≥0),g′(x)=2(x+1)ln(x+1)﹣x,(g′(x))′=2ln(x+1)+1>0,∴g′(x)在[0,+∞)上单调递增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴f(x)≥x2.…(Ⅲ)设h(x)=(x+1)2ln(x+1)﹣x﹣mx2,h′(x)=2(x+1)ln(x+1)+x﹣2mx,(Ⅱ)中知(x+1)2ln(x+1)≥x2+x=x(x+1),∴(x+1)ln(x+1)≥x,∴h′(x)≥3x﹣2mx,①当3﹣2m≥0即时,h′(x)≥0,∴h(x)在[0,+∞)单调递增,∴h(x)≥h(0)=0,成立.②当3﹣2m<0即时,h′(x)=2(x+1)ln(x+1)+(1﹣2m)x,h′′(x)=2ln(x+1)+3﹣2m,令h′′(x)=0,得,当x∈[0,x0)时,h′(x)<h′(0)=0,∴h(x)在[0,x0)上单调递减,∴h(x)<h(0)=0,不成立.综上,.…20.【答案】【解析】解:(Ⅰ)设“这2名抗战老兵参加纪念活动的环节数不同”为事件M,则“这2名抗战老兵参加纪念活动的环节数相同”为事件,根据题意可知P()==,由对立事件的概率计算公式可得,故这2名抗战老兵参加纪念活动的环节数不同的概率为.(Ⅱ)根据题意可知随机变量ξ的可能取值为0,1,2,3,,P(ξ=1)==,P(ξ=2)==,P(ξ=4)=()3=,则随机变量ξ的分布列为:ξ0123P则数学期望.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.21.【答案】【解析】解:(1)由已知,k1=f'(0)=b,设l2与曲线y=f(x)的切点为(x0,y0)(x0≠0)则所以,即,则.又4k2=5k1,所以﹣3a2+4b=5b,即b=﹣3a2因此f'(x)=x2+2ax﹣3a2=(x+3a)(x﹣a)①当a>0时,f(x)的增区间为(﹣∞,﹣3a)和(a,+∞),减区间为(﹣3a,a).②当a<0时,f(x)的增区间为(﹣∞,a)和(﹣3a,+∞),减区间为(a,﹣3a).…(2)由(1)若k2=tk1,则,∵ab≠0,∴t≠1,于是,所以,由f(x)无极值可知,,即,所以由f(b)<f(1﹣2t)知,b<1﹣2t,即,就是3a2<4(1﹣t)(1﹣2t),而,故,所以,又a≠0,因此.…【点评】本题考查函数的导数的应用,函数的极值以及函数的单调性考查分类讨论以及转化思想的应用,考查计算能力.22.【答案】【解析】解:(1)∵,将其代入C1得:,∴圆C1的直角坐标方程为:.由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).∴直线l1的极坐标方程为:(ρ∈R).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题. 23.【答案】【解析】解:(Ⅰ)由4ρ2cos 2θ+9ρ2sin 2θ=36得4x 2+9y 2=36,化为;(Ⅱ)设P (3cos θ,2sin θ),则3x+4y=,∵θ∈R ,∴当sin (θ+φ)=1时,3x+4y 的最大值为.【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题. 24.【答案】 【解析】(Ⅰ)令,e e ()()2ln 2F x g x x x x =-+=-+221e e()x F x x x x-'∴=-=由 ∴在递减,在递增,()0e F x x '>⇒>()F x (0,e][e,)+∞∴ ∴ 即成立. …… 5分min e ()(e)ln e 20e F x F ==-+=()0F x ≥e()2g x x≥-(Ⅱ) 记, ∴ 在恒成立,()()()x xh x f x f x ax e e ax -=---=--()0h x ≥[0,)+∞ , ∵ ,()e x xh x e a -'=+-()()e 00x x h x e x -''=-≥≥Q ∴ 在递增, 又, …… 7分()h x '[0,)+∞(0)2h a '=-∴ ① 当 时,成立, 即在递增,2a ≤()0h x '≥()h x [0,)+∞则,即 成立;…… 9分()(0)0h x h ≥=()()f x f x ax --≥ ② 当时,∵在递增,且,2a >()h x '[0,)+∞min ()20h x a '=-< ∴ 必存在使得.则时,,(0,)t ∈+∞()0h t '=(0,)x t ∈()0h t '< 即 时,与在恒成立矛盾,故舍去.(0,)x t ∈()(0)0h t h <=()0h x ≥[0,)+∞2a > 综上,实数的取值范围是. …… 12分a 2a ≤。

带岭区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案

带岭区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣32. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1123. 某几何体三视图如下图所示,则该几何体的体积是( )A .1+ B .1+ C .1+ D .1+π4. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 5. 抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)6. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7D .5 7. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a8. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________若12PF F ∆,则该双曲线的离心率为( )C.1D. 1 【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.9. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是( ) A .y=﹣x+4 B .y=x C .y=x+4D .y=﹣x10.已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)11.两圆C 1:x 2+y 2﹣4x+3=0和C 2:的位置关系是( )A .相离B .相交C .内切D .外切12.已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}二、填空题13.在等差数列{a n }中,a 1,a 2,a 4这三项构成等比数列,则公比q= .14.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .15.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.16.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .17.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.18.当时,4x<log a x ,则a 的取值范围 .三、解答题19.已知函数f (x )=|x ﹣a|.(1)若f (x )≤m 的解集为{x|﹣1≤x ≤5},求实数a ,m 的值. (2)当a=2且0≤t <2时,解关于x 的不等式f (x )+t ≥f (x+2).20.设函数f (x )=lnx ﹣ax+﹣1.(Ⅰ)当a=1时,求曲线f (x )在x=1处的切线方程;(Ⅱ)当a=时,求函数f (x )的单调区间;(Ⅲ)在(Ⅱ)的条件下,设函数g (x )=x 2﹣2bx ﹣,若对于∀x 1∈[1,2],∃x 2∈[0,1],使f (x 1)≥g (x 2)成立,求实数b 的取值范围.21.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)22.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.23.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.24.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R(1)当a=1,求f(x)的单调区间;(4分)(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.带岭区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】B【解析】解:若f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数, 则f (0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f (x )=|x ﹣1|﹣|x ﹣1|=0,此时为偶函数,不满足条件, 当m=﹣1时,f (x )=|x+1|﹣|x ﹣1|,此时为奇函数,满足条件, 作出函数f (x )的图象如图: 则函数在上为增函数,最小值为﹣2, 故正确的是B , 故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m 的值是解决本题的关键.注意使用数形结合进行求解.2. 【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型. 3. 【答案】A【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1; 正方体的边长为1,∴几何体的体积V=V 正方体+=13+××π×12×1=1+.故选:A .【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.4. 【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111] 5. 【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y , ∴焦点坐标为(0,2). 故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.6. 【答案】C 【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 7. 【答案】B【解析】解:1<log23<2,0<8﹣0.4=2﹣1.2,sin π=sin π,∴a >c >b , 故选:B .【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.8. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.c =,整理,得2()4ca=+,∴双曲线的离心率1e =,故选D. 9. 【答案】A【解析】解:∵点A (1,1),B (3,3), ∴AB 的中点C (2,2),k AB ==1,∴线段AB 的垂直平分线的斜率k=﹣1, ∴线段AB 的垂直平分线的方程为: y ﹣2=﹣(x ﹣2),整理,得:y=﹣x+4.故选:A .10.【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.11.【答案】D【解析】解:由题意可得,圆C 2:x 2+y 2﹣4x+3=0可化为(x ﹣2)2+y 2=1,C 2:的x 2+(y+2)2=9两圆的圆心距C 1C 2==4=1+3,∴两圆相外切. 故选:D .【点评】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题.12.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A 中,但不在集合B 中.由韦恩图可知阴影部分表示的集合为(C U B )∩A ,又A={1,2,3,4,5},B={x ∈R|x ≥3},∵C U B={x|x <3},∴(C U B )∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B . 【点评】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用等基础知识,考查数形结合思想.属于基础题.二、填空题13.【答案】 2或1 .【解析】解:设等差数列{a n }的公差为d ,则可得(a 1+d )2=a 1(a 1+3d )解得a 1=d 或d=0∴公比q==2或1.故答案为:2或1.【点评】本题考查等比数列和等差数列的性质,属基础题.14.【答案】8或﹣18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.【解答】解:整理圆的方程为(x ﹣1)2++y 2=1 故圆的圆心为(1,0),半径为1 直线与圆相切∴圆心到直线的距离为半径 即=1,求得m=8或﹣18故答案为:8或﹣18 15.【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为k ,其方程为y -2pt 2=k (x -2pt ).① 将①与拋物线x 2=2py 联立得, x 2-2pkx +4p 2t (k -t )=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k -t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2), ∴k PQ =2p (-k -t )2-2p (k -t )22p (-k -t )-2p (k -t )=-2t ,即直线PQ 的斜率为-2t .(2)由y =x 22p 得y ′=xp,∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k =2ptp =2t .其切线方程为y -2pt 2=2t (x -2pt ),又C 的准线与y 轴的交点T 的坐标为(0, -p2). ∴-p2-2pt 2=2t (-2pt ).解得t =±12,即t 的值为±12.16.【答案】 ①②④ .【解析】解:①连结BD ,B ′D ′,则由正方体的性质可知,EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′,所以①正确.②连结MN ,因为EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x=时,此时MN 长度最小,对应四边形MENF 的面积最小.所以②正确.③因为EF ⊥MN ,所以四边形MENF 是菱形.当x ∈[0,]时,EM 的长度由大变小.当x ∈[,1]时,EM 的长度由小变大.所以函数L=f (x )不单调.所以③错误.④连结C ′E ,C ′M ,C ′N ,则四棱锥则分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.因为三角形C ′EF 的面积是个常数.M ,N 到平面C'EF 的距离是个常数,所以四棱锥C'﹣MENF 的体积V=h (x )为常函数,所以④正确. 故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.17.【答案】[2e,)-+∞【解析】由题意,知当0,1x ∈()时,不等式2e 1xx ax -≥-,即21e x x a x +-≥恒成立.令()21e xx h x x+-=,()()()211e 'x x x h x x-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,xk x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()211e '0x x x h x x -+-=>,∴()h x 在()0,1x ∈为递增,∴()()12e h x h <=-,则2e a ≥-.18.【答案】.【解析】解:当时,函数y=4x的图象如下图所示若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(,2)点时,a=故虚线所示的y=log a x的图象对应的底数a应满足<a<1故答案为:(,1)三、解答题19.【答案】【解析】解:(1)∵f(x)≤m,∴|x﹣a|≤m,即a﹣m≤x≤a+m,∵f(x)≤m的解集为{x|﹣1≤x≤5},∴,解得a=2,m=3.(2)当a=2时,函数f(x)=|x﹣2|,则不等式f(x)+t≥f(x+2)等价为|x﹣2|+t≥|x|.当x≥2时,x﹣2+t≥x,即t≥2与条件0≤t<2矛盾.当0≤x<2时,2﹣x+t≥x,即0,成立.当x<0时,2﹣x+t≥﹣x,即t≥﹣2恒成立.综上不等式的解集为(﹣∞,].【点评】本题主要考查绝对值不等式的解法,要求熟练掌握绝对值的化简技巧.20.【答案】【解析】解:函数f(x)的定义域为(0,+∞),(2分)(Ⅰ)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,,∴f′(1)=0,∴f(x)在x=1处的切线方程为y=﹣2(5分)(Ⅱ)=(6分)令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,∴函数f(x)在[1,2]上的最小值为f(1)=(9分)若对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值(*)(10分)又,x∈[0,1]①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾②当0≤b≤1时,,由及0≤b≤1得,③当b>1时,g(x)在[0,1]上为减函数,,此时b>1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.21.【答案】【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,,令f′(x)=0,解得.x f′x f x所以函数f(x)在区间上为单调递增,区间上为单调递减.所以函数f(x)在区间(0,+∞)上的最大值为f()==.g′(x)=,令g′(x)=0,解得x=n.↗(Ⅱ)由(Ⅰ)知g(x)的最小值为g(n)=,∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,∴≥,即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,当n=1时,成立,当n≥2时,≥lnn,即≥0,设h(n)=,n≥2,则h(n)是减函数,∴继续验证,当n=2时,3﹣ln2>0,当n=3时,2﹣ln3>0,当n=4时,,当n=5时,﹣ln5<﹣1.6<0,则n的最大值是4.【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.22.【答案】【解析】解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞),因为,所以,,所以,a=1.所以,,.由f'(x)>0解得x>2;由f'(x)<0,解得0<x<2.所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2).(Ⅱ),由f'(x)>0解得;由f'(x)<0解得.所以,f(x)在区间上单调递增,在区间上单调递减.所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,所以,即可.则.由解得.所以,a的取值范围是.(Ⅲ)依题得,则.由g'(x)>0解得x>1;由g'(x)<0解得0<x<1.所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数g(x)在区间[e﹣1,e]上有两个零点,所以,解得.所以,b的取值范围是.【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值.23.【答案】【解析】解:(1)由题意可知第3组的频率为0.06×5=0.3,第4组的频率为0.04×5=0.2,第5组的频率为0.02×5=0.1;(2)第3组的人数为0.3×100=30,第4组的人数为0.2×100=20,第5组的人数为0.1×100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者.(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为.【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力.24.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),∴…(2分),解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),函数是减函数.…(4分)(2)∴,∴,当1<a<e时,∴f(x)min=f(a)=a(lna﹣a﹣1)当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,∴综上…(9分)(3)由题意不等式f(x)≥g(x)在区间上有解即x2﹣2x+a(lnx﹣x)≥0在上有解,∵当时,lnx≤0<x,当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,∴在区间上有解.令…(10分)∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,∴,∴时,,∴∴a的取值范围为…(14分)。

南山区高级中学2018-2019学年高三上学期11月月考数学试卷含答案

南山区高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤2. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点3.已知=(2,﹣3,1),=(4,2,x),且⊥,则实数x 的值是( )A .﹣2B .2C.﹣D.4. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.B.1 C.D.5.设集合3|01xA xx-⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a=+++>,若A B⊆,则的取值范围()A.1a≥B.12a≤≤ C.a2≥D.12a≤< 6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2015)=()A.2 B.﹣2 C.8 D.﹣87.执行下面的程序框图,若输入2016x=-,则输出的结果为()A.2015 B.2016 C.2116 D.20488.下面的结构图,总经理的直接下属是()A.总工程师和专家办公室B.开发部C.总工程师、专家办公室和开发部D.总工程师、专家办公室和所有七个部9. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =10.已知命题p :2≤2,命题q :∃x 0∈R ,使得x 02+2x 0+2=0,则下列命题是真命题的是( ) A .¬p B .¬p ∨qC .p ∧qD .p ∨q11.设集合A={x|x 2+x ﹣6≤0},集合B 为函数的定义域,则A ∩B=( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]12.函数f (x )=有且只有一个零点时,a 的取值范围是( )A .a ≤0B .0<a <C .<a <1D .a ≤0或a >1二、填空题13.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .14.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数 的取值范围为______.15.已知i 是虚数单位,复数的模为 .16x 和所支出的维修费用y (万元)的统计资料如表:根据上表数据可得y 与x 之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为 万元.17.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .18.对于映射f :A →B ,若A 中的不同元素有不同的象,且B 中的每一个元素都有原象,则称f :A →B 为一一映射,若存在对应关系Φ,使A 到B 成为一一映射,则称A 到B 具有相同的势,给出下列命题:①A是奇数集,B是偶数集,则A和B具有相同的势;②A是平面直角坐标系内所有点形成的集合,B是复数集,则A和B不具有相同的势;③若区间A=(﹣1,1),B=R,则A和B具有相同的势.其中正确命题的序号是.三、解答题19.在平面直角坐标系xOy中,圆C:x2+y2=4,A(,0),A1(﹣,0),点P为平面内一动点,以PA为直径的圆与圆C相切.(Ⅰ)求证:|PA1|+|PA|为定值,并求出点P的轨迹方程C1;(Ⅱ)若直线PA与曲线C1的另一交点为Q,求△POQ面积的最大值.20.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+…+f(2015)的值.21.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE 沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BD与平面A1BC所成角的正弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.22.为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中①、②、③、④、⑤的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S23.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.24.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.南山区高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.214.15..16.7.517.﹣3.18.①③.三、解答题19.20.21.22.23.24.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为(

A. 2 2 12.等比数列{an}中,a3,a9 是方程 A.3 B. C.±
B. 3x2﹣11x+9=0 D.以上皆非
C. 的两个根,则 a6=( )
D. 4 2+2
二、填空题
13.已知 θ 是第四象限角,且 sin(θ+ )>0 成立的 x 的取值范围是 . 15. ( )+ )= ,则 tan(θ﹣ )= .

A.8 3 16 C. 3
B.4 D.20 3
5. 用秦九韶 ) 则实数 a 为
算法求多项式 f(x)=x6﹣5x5+6x4+x2+0.3x+2,当 x=﹣2 时,v1 的值为( A.1 ( A. B.7 ) B. C.2 D.4 C.﹣7 D.﹣5 6. 已知函数 f(x)=ax﹣1+logax 在区间[1,2]上的最大值和最小值之和为 a,
x
2
g '( x) e x (sin x cos x) k .令 h( x) e x (sin x cos x) ,则 h '( x) 2e x cos x 0 ,所以 h( x) 在 [0, ] 上递 2
增,所以 1 h( x) e 2 .当 k 1 时, g '( x) 0 , g ( x) 在 [0,
3. 已知直线 l⊥平面 α,直线 m⊂平面 β,有下面四个命题: (1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m, (3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β, 其中正确命题是( ) A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4) 4. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为(
21.某同学用“五点法”画函数 f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< 列表并填入的部分数据如表: x x1 ωx+φ Asin(ωx+φ)+B 0 0 x2 π 0 ﹣ x3 2π 0
)在某一个周期内的图象时,
(Ⅰ)请求出表中的 x1,x2,x3 的值,并写出函数 f(x)的解析式; (Ⅱ)将 f(x)的图象向右平移 个单位得到函数 g(x)的图象,若函数 g(x)在区间[0,m](3<m<4)上 的图象的最高点和最低点分别为 M,N,求向量 与 夹角 θ 的大小.
第 5 页,共 14 页
南山区第三中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】B 【 解 析 】 由 题 意 设 g ( x) f ( x) kx e sin x kx , 且 g ( x) 0 在 x [0, ] 时 恒 成 立 , 而
B (
D.

1, 2
,则下列不等
【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题. 10.定义在(0,+∞)上的单调递减函数 f(x),若 f(x)的导函数存在且满足 式成立的是( )
A.3f(2)<2f(3) B.3f(4)<4f(3) C.2f(3)<3f(4) D.f(2)<2f(1) 11.如图所示,已知四边形 ABCD 的直观图是一个边长为的正方形,则原图形的周长
第 6 页,共 14 页
为底面的正四棱锥后剩下的几何体如图,其体积 V=23-1×2×2×1=20,故选 D. 3 3 5. 【答案】C 【解析】解:∵f(x)=x6﹣5x5+6x4+x2+0.3x+2 =(((((x﹣5)x+6)x+0)x+2)x+0.3)x+2, ∴v0=a6=1, v1=v0x+a5=1×(﹣2)﹣5=﹣7, 故选 C. 6. 【答案】A 【解析】解:分两类讨论,过程如下: ①当 a>1 时,函数 y=ax﹣1 和 y=logax 在[1,2]上都是增函数, ∴f(x)=ax﹣1+logax 在[1,2]上递增, ∴f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a, ∴loga2=﹣1,得 a= ,舍去; ②当 0<a<1 时,函数 y=ax﹣1 和 y=logax 在[1,2]上都是减函数, ∴f(x)=ax﹣1+logax 在[1,2]上递减, ∴f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a, ∴loga2=﹣1,得 a= ,符合题意; 故选 A. 7. 【答案】D 8. 【答案】B 【解析】 试题分析:因为 f x 为奇函数且 f 3 0 ,所以 f 3 0 ,又因为 f x 在区间 0, 上为增函数且
14.设 f′(x)是奇函数 f(x)(x∈R)的导函数,f(﹣2)=0,当 x>0 时,xf′(x)﹣f(x)>0,则使得 f(x
1 4
-2
1 log 3 6- log 3 2 = 2
.
16.下列命题: ①终边在 y 轴上的角的集合是{a|a= ,k∈Z};
②在同一坐标系中,函数 y=sinx 的图象和函数 y=x 的图象有三个公共点; ③把函数 y=3sin(2x+ ④函数 y=sin(x﹣ )的图象向右平移 个单位长度得到 y=3sin2x 的图象;
20.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与 x 轴的正半轴重合,直线 l 的参数方程为 (t 为参数),圆 C 的极坐标方程为 p2+2psin(θ+ (Ⅰ)求直线 l 的普通方程和圆 C 的直角坐标方程; (Ⅱ)若圆 C 上的点到直线 l 的最大距离为 3,求 r 值. )+1=r2(r>0).
第 3 页,共 14 页
22.(本小题满分 10 分)选修 4-5:不等式选讲 设函数 f ( x) x a 5 x . (1)当 a 1 时,求不等式 f ( x) 5 x 3 的解集; (2)若 x 1 时有 f ( x) 0 ,求 a 的取值范围.
23.直三棱柱 ABC﹣A1B1C1 中,AA1=AB=AC=1,E,F 分别是 CC1、BC 的中点,AE⊥ A1B1,D 为棱 A1B1 上的点. (1)证明:DF⊥AE; (2) 是否存在一点 D, 使得平面 DEF 与平面 ABC 所成锐二面角的余弦值为 若不存在,说明理由. ?若存在, 说明点 D 的位置,
2


A. ( ,1) B. ( ,1] C. ( , e ) D. ( , e 2 ] 【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能 力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用. 2. 高一新生军训时,经过两天的打靶训练,甲每射击 10 次可以击中 9 次,乙每射击 9 次可以击中 8 次.甲、 乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( A. B. C. D. )
南山区第三中学 2018-2019 学年高三上学期 11 月月考数学试卷含答案 一、选择题
1. 已知函数 f ( x) e sin x , 其中 x R , e 2.71828L 为自然对数的底数. 当 x [0,
x

2
函数 y f ( x) ] 时,
的图象不在直线 y kx 的下方,则实数 k 的取值范围( 班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
x | 3 x 0或0 x 3 C. x | x 3或x 3 D. x | x 3或0 x 3 9. 设集合 A x R || x | 2 , B x Z | x 1 0 ,则 A I A. x |1 x 2 B. x | 2 x 1 C. 2, 1,1, 2
24.已知椭圆 Γ: .
(a>b>0)过点 A(0,2) ,离心率为
,过点 A 的直线 l 与椭圆交于另一点 M
第 4 页,共 14 页
(I)求椭圆 Γ 的方程; (II)是否存在直线 l,使得以 AM 为直径的圆 C,经过椭圆 Γ 的右焦点 F 且与直线 x﹣2y﹣2=0 相切?若存在, 求出直线 l 的方程;若不存在,请说明 3 C. f 3 f 1 f 2 A. x | 3 x 0或x 3
8. 设 f ( x) 是奇函数,且在 (0, ) 内是增函数,又 f ( 3) 0 ,则 x f ( x) 0 的解集是(
7. 若 f x 是定义在 , 上的偶函数, x1 , x2 0, x1 x2 ,有
f x2 f x1 0 ,则 x2 x1
第 1 页,共 14 页

) B. f 1 f 2 f 3 D. f 3 f 2 f 1 ) B.
意不合,综上所述: k 的取值范围为 ( ,1] ,故选 B. 2. 【答案】 D 【解析】【解答】解:由题意可得,甲射中的概率为 故两人都击不中的概率为(1﹣ 故目标被击中的概率为 1﹣ 故选:D. 【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系, 属于基础题. 3. 【答案】B 【解析】解:∵直线 l⊥平面 α,α∥β,∴l⊥平面 β,又∵直线 m⊂平面 β,∴l⊥m,故(1)正确; ∵直线 l⊥平面 α,α⊥β,∴l∥平面 β,或 l⊂平面 β,又∵直线 m⊂平面 β,∴l 与 m 可能平行也可能 相交,还可以异面,故(2)错误; ∵直线 l⊥平面 α,l∥m,∴m⊥α,∵直线 m⊂平面 β,∴α⊥β,故(3)正确; ∵直线 l⊥平面 α,l⊥m,∴m∥α 或 m⊂α,又∵直线 m⊂平面 β,则 α 与 β 可能平行也可能相交,故( 4)错误; 故选 B. 【点评】 本题考查的知识点是空间中直线与平面之间的位置关系, 其中熟练掌握空间中直线与平面位置关系的 判定及性质定理,建立良好的空间想像能力是解答本题的关键. 4. 【答案】 【解析】选 D.根据三视图可知,该几何体是一个棱长为 2 的正方体挖去一个以正方体的中心为顶点,上底面 = )(1﹣ )= , , ,乙射中的概率为 ,
相关文档
最新文档