排列组合特殊元素和特殊位置讲解.ppt

合集下载

排列(第3课时)PPT幻灯片课件

排列(第3课时)PPT幻灯片课件
5
例3 某信号共用红、黄、蓝3面旗从上到下挂在 竖直的旗杆上表示,每次可以任挂1面、2面或3 面,并且不同的顺序表示不同的信号,一共可以 表示多少种不同的信号?
变式:将题中的“3面旗”改为“3色旗”, 结论如何?
6
三、课堂练习:
1、20位同学互通一封信,那么通信次数是多
少?
A220 380(次)
例4 用0,1,2,3,4这五个数,组成没有重复
数字的三位数,其中1不在个位的数共有_______种。
分析:五个数组成三位数的全排列有 A53 个,0排在首位的
有 A42 个 ,1排在末尾的有 A42 ,减掉这两种不合条件的排
方法一:(排除法) A51 A54 325 275
方法二:(直接法) 2 A54 A43 A32 2 A21 1 275
26
例2、由数字1、2、3、4、5可以组成没有 重复数字的五位数120个,把这些数从小 到大排成一列数,构成一个数列:12345, 12354,……, 54321,
一 个个数,字有中任A91选种2选个法,,有再A9排2 种十选位法和,个根位据上分的步数计字数,原可理以,从所余求下三的位9
数的个数是: A91 A92 648
(特殊位置预置法)
分析2:所求的三位数可分为:不含数字0的,有 A93个;含有数字
0的,有 2 A92 个,根据分类计数原理,所求三位数的个数是:
B 同的陈列方式有( )
A.A44 A55
B.A33 A44 A55
C.A31 A44 A55
D.A22 A44 A55
3、由1、2、3、4、5这5个数字组成无重复数字的五位数,其中
奇数有 A31 A44 72 个.
8
有限制条件的排列问题

人教A版《排列与组合》PPT课件完美1

人教A版《排列与组合》PPT课件完美1

A.5
B.10
C.20
D.60
解析:共有 A25=5×4=20 种给法.
答案:C人教A版《排列与组合》P NhomakorabeaT课件完美1
人教A版《排列与组合》PPT课件完美1
探究一 排列数公式的应用 [典例 1] (1)计算 2A34+A44; (2)计算4AA8488-+2AA59 85; (3)求 3Ax8=4Ax9-1中的 x.
[双基自测]
1.下列问题属于排列问题的是( )
①从 10 个人中选 2 人分别去种树和扫地;
②从 10 个人中选 2 人去扫地;
③从班上 30 名男生中选出 5 人组成一个篮球队;
④从数字 5,6,7,8 中任取两个不同的数作幂运算.
A.①④
B.①②
C.④
D.①③④
解析:由排列的定义可知,①④为排列问题.
-(15-m)+1 个数相乘,因此若用一个排列数来表示,则其下标是 20-m,上标为 6,
即原式应为 A620-m.
答案:C
人教A版《排列与组合》PPT课件完美1
人教A版《排列与组合》PPT课件完美1
探究二 无限制条件的排列问题 [典例 2] 沪宁铁路线上有六个大站:上海、苏州、无锡、常州、镇江、南京,铁路 部门应为沪宁线上的这六个大站准备(这六个大站间)________种不同的火车票? [解析] 对于两个大站 A 和 B,从 A 到 B 的火车票与从 B 到 A 的火车票不同,因为 每张车票对应于一个起点站和一个终点站. 因此,每张火车票对应于从 6 个不同元素(大站)中取出 2 个元素(起点站和终点站)的 一种排列. 所以问题归结为求从 6 个不同元素中每次取出 2 个不同元素的排列数 A26=6×5= 30(种). [答案] 30

高中数学排列组合经典题型全面总结版

高中数学排列组合经典题型全面总结版
取法有多少种? 解:这问题中如果直接求不小于 10 的偶数很困难,可用总体淘汰法。这十个数字中有 5 个偶数 5 个奇数,所取的三个数含
有 3 个偶数的取法有 C53 ,只含有 1 个偶数的取法有 C51C52 ,和为偶数的取法共有 C51C52 C53 。再淘汰和小于 10 的偶数共 9 种,符合条件的取法共有 C51C52 C53 9
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几
个元素之间的全排列数,则共有不同排法种数是:
A
7 7
/
A
3 3
(空位法)设想有
7
把椅子让除甲乙丙以外的四人就坐共有
A
4 7
种方法,其余的三个位置甲乙丙共有
1 种坐法,则共有
A
4 7
种方法。
思考:可以先让甲乙丙就坐吗?
1
4
3
2
5
十六. 分解与合成策略 例 16. 30030 能被多少个不同的偶数整除
解:因为 10 个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把
名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有 C96 种分法。
2














将 n 个相同的元素分成 m 份(n,m 为正整数),每份至少一个元素,可以用 m-1 块隔板,插入 n 个元素排成一排的 n-1 个
解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有 7 种分依此类推,由分步计数

排列组合经典例题总结ppt课件

排列组合经典例题总结ppt课件
解一:分两步完成; 第一步选两葵花之外的花占据两端和中间的位置
有A53种排法第二步排其余的位置:有A44种排法
共有A53 A44种不同的排法
解二:第一步由葵花去占位: 有A42种排法 第二步由其余元素占位:有A55种排法
共有A42 A55种不同的排法
二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相
为主然,后需排先首安位排共特有殊_C元_41_素,再处理其它元素.
若以最位后置排分其析它为位主置,共需有先_A满_43_足C41特殊位A43置的要C31
求,由再分处步理计其数它原位理置得。C31
C
1 4
A43
=288
练习1 7种不同的花种在排成一列的花盆里,若 两种葵花不种在中间,也不种在两端的 花盆里,问有多少不同的种法?
解决排列组合混合问题,先选后排是最基本 的指导思想.
练习题6
某种产品有4只次品和6只正品,每只均不 同且可区分,今每次取出一只测试,直到 4只次品全部测出为止,则最后一只次品恰 好在第五次测试中被发现的不同情况有多少 种?
知识结构网络图:
排列 基 本 原 理
组合
排列数公式 应 用 问
组合数公式 题
组合数性质
两个原理的区别与联系:
名称 内容
分类原理
做一件事,完成它可以有n类
办法,第i类办法中有mi种不同


的方法,那么完成这件事共有 N=m1+m2+m3+…mn 种不同的方

分步原理
做一件事,完成它可以有n个步 骤,做第i步中有mi种不同的方 法,那么完成这件事共有
一般地,元素分成多排的排列问题, 可归结前排为一排考虑后,再排分段研究.

解排列组合问题的常用技巧课件

解排列组合问题的常用技巧课件



甲、乙二人站在两端,这二人是特殊元素,先
考虑元素,甲、乙二人站在两端的站法有
A
2 2
种,再考虑其余5人在中间5个不同位置的站法有
. 两A端55的种不,同根站据法分有步计A数22 原A理55,= 甲24、0乙(种二)人。站在
(4)解法一 直接法 (特殊元素分析)

首先考虑特殊元素甲,甲在中间5个位置任选 一
独唱,舞蹈节目不能连续出场,则节目的出
场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共

A
5 5
种,第二步将4舞蹈插入第一步排
好的6个元素中间包含首尾两个空位共有

A
4 6
不同的方法
由分步计数原理,节目的
不同顺序共有A
5 5
A
4 6

元素相离问相题可先独把没有独 位置独要求相的元素进 行排队再把不相邻元素插入中间和两端
四.重排问题求幂策略 例允5许.重把复6名的实排习列生问分题配的到特7点个是车以间元实素习为,共研有究 对象,多元少素种不不受同位的置分的法约束,可以逐一安排 各解个:元完素成的此位事置共,分一六般步地:把n第不一同名的实元习素生没分有配限 制地安到排车在间m有个7种位分置法上.的把排第列二数名为实习mn生种分配
(1)一共有多少种不同的排法?
解(1)因为男女生共7人,不受任何条件限制,
故共有
A
7 7
=
7!
= 5040 种不同的排法。
(2)甲站在中间的不同排法有多少种?

(2)因甲站在中间已确定,而其余6人可站在除中间 位置之外的六个不同位置上,所以共有
A
6 6
=

《排列组合复习》课件

《排列组合复习》课件

进阶练习题
在5个不同元素中取出3个元素进行排列,其中某一个 特定元素必须被取到,这样的排列数是多少?
输入 标题
答案解析
首先从5个元素中取出一个特定元素,然后从剩下的4 个元素中取出2个元素进行排列,即$A_{5}^{1} times A_{4}^{2} = 5 times 24 = 120$。
题目1
详细描述
特殊元素优先法是指在解决排列组合问题时,优先考虑特殊元素或特定条件,将 其先固定下来,再对其他元素进行排列或组合。这种方法可以简化问题,降低计 算难度,提高解题效率。
分组法
总结词
分组法是一种将问题分解成若干个较小 的部分,分别解决后再综合的解题技巧 。
VS
详细描述
分组法在排列组合问题中,常常用于处理 有特定分组要求的问题。首先将问题分解 成若干个较小的部分,对每一部分进行排 列或组合,然后再根据问题的具体要求, 将各部分的解进行综合,得出最终答案。 这种方法可以降低问题的复杂度,使问题 更容易解决。
感谢您的观看
05
练习题与答案解析
基础练习题
题目1
从5个不同元素中取出3个元素的排列数是多少?
答案解析
从5个不同元素中取出3个元素进行排列,即$A_{5}^{3} = 5 times 4 times 3 = 60$。
题目2
从7个不同元素中取出4个元素的组合数是多少?
答案解析
从7个不同元素中取出4个元素进行组合,即$C_{7}^{4} = frac{7 times 6 times 5 times 4}{4 times 3 times 2 times 1} = 35$。
详细描述
排列组合的分组问题通常涉及到将一组元素分成若干个不同的组,并考虑这些组之间的 排列或组合关系。解决这类问题需要理解分组的基本原则,并能够根据实际情况选择合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档