TCS-200微库仑分析仪

TCS-200微库仑分析仪
TCS-200微库仑分析仪

TCS-200微库仑分析仪

使用说明书

泰州市天创仪器有限公司

目录

一﹑仪器简介及使用范围 (1)

二﹑工作原理 (1)

三﹑主要技术指标 (1)

四﹑仪器的组成及附件说明 (2)

五﹑仪器的安装与调试 (5)

六﹑仪器操作方法 (7)

七﹑化学试剂及溶液的配制 (9)

八﹑常见故障的排除 (10)

九﹑运输和贮存 (11)

十﹑仪器装箱清单 (12)

十一﹑产品使用信息反馈单 (13)

一、仪器简介及使用范围

TCS-200型微库仑分析是应用微库仑分析技术,采用计算机控制微库仑滴定的最新产品,具有性能可靠、操作简易、稳定性好、便于安装等特点,可用于石油化工产品中微量硫、氯的分析,广泛应用于石油、化工、科研等部门。

TCS-200型微库仑分析以Windows操作系统为工作平台,其友好的用户界面使分析人员操作更为方便、快捷。在系统分析过程中,操作条件﹑分析参数和分析结果均在显示器上直接显示,并根据需要可将参数、结果进行存盘和打印,以便日后调用、存档。

二、工作原理

TCS-200型微库仑分析是应用微库仑滴定原理,由零平衡工作方式设计的库仑放大器与滴定池和适宜的电解液组成了一种闭环负反馈系统。仪器的工作原理如图1所示。

E A 参考电极

阴极

C1 C2 裂解炉

流量 O2(H2 )

控制 N2(H2) 放大器外偏压

测量电极阳极

裂解管

单片机计算机

图1 工作原理图

滴定池中的参考电极供给一个恒定的参考电位,并与测量电极组成指示电极对产生一电压信号。这一信号与外加给定偏压反向串联后加在库仑放大器的输入端。当两电压值相等时,放大器输入为零,输出也为零,在电解电极对之间没有电流通过,仪器显示器上是一条平滑的基线。当样品由注射器注入裂解管, 样品中的被测物质反应转化为可滴定离子,并由载气带入滴定池,消耗电解液中的滴定剂。滴定剂浓度的变化使滴定池中的指示电极对的电位发生变化,其值的变化送入微机控制的微库仑放大器,经放大后加到电解电极对(阴、阳极)上,在阳极上电生出滴定离子,以补充消耗的滴定剂。上述过程随着滴定离子的消耗连续进行,直至无消耗滴定离子的物质进入,并已电生出足够的滴定离子,使指示电极对的值又重新等于给定偏压值,仪器恢复平衡。在消耗—补充滴定离子的过程中,测

量电生滴定剂时的电量,依据法拉第定律进行数据处理,则可计算出样品含量。

三、主要技术指标

1﹑发生电流:最大:±2mA

2﹑放大器输出电压:最大:±30V

3﹑给定偏压范围:0~400mv,连续可调

4﹑分析范围:

硫: 0.1mg/L ~ 5000mg/L

氯: 0.3mg/L ~ 5000mg/L

5﹑控温范围及精度:

室温~ 1000℃ , ±1%±5℃

6﹑重复性误差:

试样浓度<1.0mg/L时,绝对误差≤±0.1

1.0mg/L≤试样浓度≤10mg/L时,相对误差≤10%

试样浓度>10mg/L时,相对误差≤5%

四、仪器的组成及附件说明

仪器由计算机、微库仑分析仪主机、温度流量控制器、搅拌器、进样器等组成。

1、主机

仪器主机是信号放大和数据处理的关键部件。其前面板左上方有电源指示灯,后面板有串行口﹑温控口﹑电极插口﹑电源插口和电源开关,如图8 所示。

2、度流量控制器

温度流量控制器由一个二段分别升温的高温管状炉及相应的控制电路和气体流量装置组成。其前面板上有两个控温表头,及两个气体流量计、控制相应的气体流量大小的调节旋钮,反应气和载气由后面板接入,如图8 所示,通过针形阀调节其流量大小,并由气体流量计直接读出。一般接入气体的操作压力控制在100~200 kPa左右,反应气和载气分别为普氧、普氮。气体流量调节旋钮,即针形阀只供调节流量大小,不可作为气体流量的开关,以防止损坏。实验完毕后,必须将气体总阀关闭。

(注:以下所提到的工作参数和操作条件,均以分析硫含量为例)

3、搅拌器:

滴定池搅拌棒

电解液磁钢

+12V直流电机

接+12V电源

滴定池支架

图2搅拌器示意图

样品的裂解产物被气流带入滴定池后,要保证其与电解液中滴定剂之间进行快速和充分接触,这种工作是通过磁力搅拌器来完成的。磁力搅拌器工作原理见图2所示。它通过直流电机带动磁钢转动,而滴定池内的磁力搅拌棒将随磁钢的转动而均匀转动,从而达到搅拌电解液的目的。搅拌时,速度不宜过快或过慢,以电解液产生微小旋涡为宜。同时,应把滴定池放在磁钢的正上方,以免搅拌棒碰撞电解池壁。

4﹑进样器:

液体进样器由单片机控制步进电机来带动丝杆进行样品的注入。当进样(按前进键)完毕后,丝杆自动后退。通过调节两组拨盘开关来设定丝杆的进程和速度。一般情况下,进程和速度分别设为6档和8档。

对气体样品通常用1-5mL的注射器进行样品注入。用注射器取样时,取样速度要快,以防气体从针头跑出。在进样时速度不宜太快,以保证较高的氧分压,让样品完全燃烧,防止裂解管壁形成积炭。或用气体进样器来实现样品的进样。

对于固体和高沸点的粘稠液体试样不适宜用注射器进样时,可使用带样品进样舟的固体进样器进样,其原理见图3 所示。进样时先利用推动棒将样品送到裂解管预热部位,待5~10秒后,再将进样舟推至加热部位让样品进行裂解,裂解产物由载气带入滴定池进行滴定。然后将进样舟拖至裂解管入口附近待完全冷却后,再进行第二次样品测定。

样品引入

延伸管入口管连接螺母

进样舟推进器

热吸收器橡胶隔板滑动器

图3 固体进样器示意图

仪器主要附件说明:

1﹑裂解管

裂解管由石英制成,它的作用是将样品中的有机硫、氯和碳氢各元素分别转变

为能与电解液中滴定离子发生作用的SO

2、HCl 和不发生反应的CO

2

、H

2

O、CH

4

等化

合物。

图4 为测定轻油中硫、氯的裂解管

样品通过硅橡胶堵头用注射器注入裂解管入口汽化,氮气通过靠近堵头的螺旋管(A)经过预热后,进入汽化室与样品气相混合,再通过喷嘴(P)进入燃烧室,并在另一侧管(B)供给的氧气在(P)处发生燃烧。由于设计有较大的汽化室既保证了样品可完全汽化,又可使样品得到足够的稀释,以较快的流速通过喷

嘴与氧气充分混合燃烧得到较高的SO

2、HCl的转化率。当然,SO

2

、HCl的转化率

除受裂解管结构影响外,裂解区温度氧、氮分压比、池子工作状态以及仪器操作选择的偏压、增益等因素也会影响测定结果。

接滴定池 A 氮气接入口

P

燃烧室汽化室 B

氧气接入口

图4 测定轻油中硫、氯的裂解管

图5 为测定重油中硫、氯的裂解管

该管与测定轻油中硫、氯裂解管相比扩大了燃烧室容量,增加了一个支管导入氧气,增大了喷嘴使燃烧更加完全,这就为增加样品处理量,提高反应速度,创造了条件。

接滴定池

接固体进样管

P

燃烧室

氧气接入口

图5测定重油中硫、氯的裂解管

2、滴定池

由池盖、池体、电极等组成。滴定池是微库仑滴定反应的心脏,它起着将试样裂解产生的被测物质和电解液中的滴定剂发生反应的作用,图7 是氧化法测硫的滴定池。为了减少滴定池反应室体积,一般将参考电极和辅助电极装在侧臂,通过微孔毛细管与反应室相联。测量电极和发生电极装在池盖上。这样滴定池反应室内一般装入10 mL到12 mL电解液,即可满足实验需要并能达到较高的灵敏度和较快的响应速度。由燃烧管进来的气体通过滴定池的毛细管入口进入滴定池。因为滴定池入口顶端特殊的构造,可将进入的气体在搅拌作用下打碎成小气泡,搅拌棒可使反应物质与滴定剂之间进行快速和充分接触,并形成一均匀的扩散层。

为了防止周围电场对滴定池形成的电干扰,搅拌器必须有良好的接地。特别是使用氯滴定池测定氯化物时,由于增益较高,更需注意防止静电干扰。此外,氯电解池对光反应灵敏,还应采取避光措施。

硫滴定池工作原理

当系统处于平衡状态时,滴定池中保持恒定I

3-浓度,当有SO

2

进入滴定池时,

就与I

3

-离子发生反应:

I3-+SO2+H2O → SO3+2H++3I-

致使池中的I

3

-浓度降低,参考与测量电极对指示出这一变化,并将这一变化的信号输入库仑放大器,然后由库仑放大器输出一相应的电流加到电解电极对上。

电解阳极电生出被SO

2所消耗的I

3

-,直至恢复原来的I

3

-离子浓度:

3I- → I3-+2e

测出电解时所消耗的电量,据法拉第电解定律就可求得样品中总硫的含量。

池盖

辅助电极

(阴极、黑色)

参考电极(绿色)发生电极

(阳极、红色) 测量电极(黄色)搅拌子

池体

图7 氧化法定硫/氯滴定池

氯滴定池工作原理

当系统处于平衡状态时,滴定池中保持恒定Ag+浓度.样品经裂解后,有机氯转化为氯离子,再由载气带入滴定池同银离子反应:

Ag++Cl- → AgCl

滴定池中银离子浓度降低,指示电极对即指示出这一信号的变化,并将这一变化的信号输入库仑放大器,然后由库仑放大器输出一相应的电流加到电解电极对上。电解阳极电生出被Cl-所消耗的Ag+,直至恢复原来的Ag+离子浓度,测出电生Ag+时所消耗的电量,据法拉第电解定律就可求得样品中总氯的含量。

此外,滴定池对温度比较敏感。实践表明,滴定池环境温度变化1℃时偏压就要改变0.8mv左右。在实际工作中由于微库仑分析仪是采用的零平衡放大器,当温度缓缓变化时,仪器会自动平衡,在显示器上得到的仍是一条平滑的基线。但是当滴定池受到突然变化的温度影响,这种温度效应仍然是可以觉察到。因而,在操作时要保持滴定池环境温度的相对稳定,避免炉温及周围环境温度的骤然变化。

警告: 裂解管和滴定池系易损件,使用时请注意轻拿﹑轻放!

五、仪器的安装与调试

1﹑仪器安装的环境条件

工作电源:交流220V±20V,频率50Hz±0.5Hz。

环境温度:0 ~ 40℃,相对湿度:≤85%

仪器主机不要同大功率高频设备接在同一相电源上。

仪器安装要避免强腐蚀性气体的地方。

仪器安装要避免强电场或强磁场干扰的地方。

仪器安装要避免温度急剧变化或阳光直射的地方。

2﹑仪器安装的正面示意图

计算机显示器搅拌器温度流量

控制器

打印机主机进样器

图8 仪器正面示意图

按图8所示,将打印机、计算机等仪器各组成部分依次整齐排放在干净的工作台上。

仪器使用交流220V±20V,频率50Hz±0.5Hz的电源。其裂解炉升温时工作电流15A以上,额定功率3 kW以上。而且必须与仪器其它部分的工作电源分相使用。

3﹑仪器后面板示意图

按图9所示,将电源线、电极线、计算机串行口连接线及控温连接线对应接好,接通电源。

仪器机壳要接大地,接地电阻小于5Ω。

图8整机后面板示意图

(2 )把准备好的滴定池置于搅拌器内平台上,把滴定池毛细管入口对

图9 仪器后面板示意图

4﹑硫滴定池的安装

滴定池的洗涤

用新鲜的洗液浸泡整个滴定池5~10 min ,然后分别用自来水,去离子水洗涤吹干,将侧臂活塞涂以少许真空硅脂,并用橡皮筋固定。

安装参考电极

A. 把少量碘放在一个小玛瑙体内,并倒入少量电解液覆盖以防止碘的挥发,然后小心研磨到大约20~40筛目。

B.关闭两侧活塞,让池内﹑参考电极室﹑阴极室充满电解液,保证侧臂无气

泡。

C. 用小勺将碘粒放入参考电极室,不要太紧或太满,否则参考电极很难插进。

D. 在参考电极的磨口上涂以少量真空硅脂,将参考电极小心插入碘粒中,使电解液溢出参考室并除去气泡。注意电极的铂丝必需全部埋在碘粒中,无裸露,最后用橡皮筋固定好。

E. 打开参考侧臂活塞,用新鲜电解液冲洗池中心室和侧臂,然后关闭侧臂活塞。按此方法冲洗阴极臂。

F. 倾斜池体,小心地顺着池壁放入搅拌子。

G. 仔细放上池盖电极,调整其位置,使测量电极和电解阳极与气体毛细管入口方向平行。并保证电解液液面在铂电极以上5 mm。

滴定池的维护

A. 滴定池应在避光﹑阴凉处保存。

B. 池中应始终保持有电解液,并使池盖电极浸没在电解液面之下。

C. 参考电极室应无气泡。

D. 在分析结束后,应用电解液冲洗池体及电极。

5﹑氯滴定池的安装

滴定池的洗涤(同上)

参考臂装醋酸银

A. 将电解池内充满70%醋酸的电解液,排除两侧臂气泡。

B. 用小勺慢慢地在侧臂放入醋酸银,所用的醋酸银应为白色或浅灰色,深灰色的醋酸银则不能使用。

C.其它步骤同上。

滴定池的维护(同上)

六、仪器操作方法

依次打开微库仑综合分析仪主机、计算机、温度流量控制器、搅拌器、进样器的电源。

把准备好的滴定池置于搅拌器内平台上,调节搅拌器的高度,使滴定池毛细管入口对准石英管出口,并用铜夹子夹紧,调整电解池位置,使搅拌子转动平稳。

将库仑放大器的电极连接线按标记分别接到滴定池的参考、测量、阳极、阴极的接线柱上,并拧紧以保证接触良好。

将洁净的石英裂解管用硅橡胶堵紧其进样口,并放入裂解炉,用聚四氟乙烯管(Φ4)将石英裂解管的各路进气支管与温度流量控制器的对应输出口相连接。

联机操作:

在“W indows”桌面上打开“微库仑分析系统”应用软件,显示其主窗体。主窗体中有菜单栏、工具栏等,如图10所示。单击“联机”图标,联机正常后,主窗体左下方显示“联机状态”﹔否则,按屏幕提示重新检查端口和连线。

温度设置:

分别设定二段所需的温度值(以分析硫含量为例:燃烧段设为800℃,汽化段设为600℃)。要改变某段温度值,只要输入所要设定的值。

图10 主窗体

测试偏压:

待炉温到达所设温度值,打开气源,用新鲜的电解液冲洗电解池2~3遍,将电解池与石英管连接好,即可采集电解池偏压。单击界面工作状态中“平衡”,仪器自动采集电解池偏压,如图10所示,单击“开始测量”按钮,仪器自动采集电解池偏压。一般新鲜电解液冲洗过的硫电解池,偏压应在160mV以上。

单击“工作”, 使仪器处于工作档。此时,若要修改电解池偏压,点击“偏压”,输入所需偏压值,按“回车”键(或按“偏压”上下键),完成电解池偏压的修改。此时,基线的位置会有所改变,待仪器平衡一段时间以后,基线重新回到原来的位置上。

选择工作参数:

(以分析10 mg/L 液体硫标样为例)如图10所示,单击“样品状态”框中的“液体”;“含量单位自动选中“mg/L ”;“检测元素”框中的“硫”;“样品来源”框中的“标样”。

选择放大倍数和积分电阻:

在主窗体中单击“标样浓度”、“进样量”数据输入框中的“?”,用删除键删除“?”,并输入标准浓度值“10”,进样体积数“8.4”。单击工具栏中“增益”图标(放大倍数选择),选择相应的放大倍数(150)后按“确定”按钮,完成放大倍数的设定。

与此相类似,单击工具栏中“积分电阻”图标(积分电阻选择), 完成积分电阻的设定。一般分析硫含量小于1 mg/L 时,积分电阻选>6k档,硫含量大于10 mg/L 时,积分电阻选2kΩ档以下。

转化系统调试:

完成了以上操作步骤,就可以标样进行转化系统的分析:待基线平稳后,即可进样。点击“启动”,然后进样,出峰结束后,自动显示转化率及其序号(如“f1”、

“f2”等),待基线平稳后,可以进行下次标样的连续分析,转化系统正常时,其

转化率应在75%~120%之间。

求平均转化率:

选择你认为合适的转化率,点击“确定”,可求出平均转化率。

标样分析完成后,进行样品分析。选择“样品选择”框中的“样品”,其余分析步骤与以上分析标样的步骤相同,在连续分析3至6次后,求出样品的平均含量。

保存、打开、打印数据:

标样分析结束后,单击“断开联接”后,单击“保存”图标,弹出“保存采样数据文件”对话框,输入文件名保存结果,单击“打开”图标,弹出“打开采样数据文件”对话框,选择需要打开的数据文件,弹出“显示页面选择”对话框,即可显示或打印结果。

关机顺序:

把滴定池与裂解管断开,关闭微机,主机、微机、显示器、打印机、搅拌器、进样器的电源。关闭气路阀,待炉温冷却1~2小时后,关闭温度控制流量器电源,整理好仪器。

切记:必须先滴定池与裂解管断开

七、化学试剂及溶液的配制

所用试剂无特殊说明均为分析纯以上。所用水均为去离子水或二次蒸馏水,阻抗大于1MΩ。测定硫、氯样品所需化学试剂见表 1。

表1

分析元素所需试剂

硫碘化钾(KI)迭氮化钠(NaN3)化学纯

冰醋酸(HAC)优级纯碘(I2)

氯醋酸银(CH3COOAg)化学纯氯化钠(NaCl) 优级纯

氰化银(AgCN)氰化钾(KCN)

碳酸钾(K2CO3)化学纯硫酸亚铁(FeSO4·7H2O)

电解液的配制

1)硫电解液的配制

将0.5g的碘化钾、0.6g的迭氮化钠,5mL的冰醋酸溶于1000mL的棕色瓶中,避光阴凉处保存。(电解液中加迭氮化钠是为了除去样品中CL﹑N对测S的干扰)2)氯电解液的配制

将700mL的冰醋酸与300mL的二次蒸馏水混合,贮于密闭玻璃瓶中。

八、常见故障及排除方法

本产品采用微机实时控制,专业性强,因此,在发生故障的情况下,非专业人员请勿随意修理。以下列出常见故障及排除方法供用户参考见表2,以下检修均需切断电源。

表2

现象原因分析排除方法

搅拌子不转动1. 电源未接通或保险丝坏检查电源及更换保险丝2.磁钢与电机轴之间松动锁紧螺钉

3.三极管A940损坏及电机坏更换三极管及电机

裂解炉不升温1.电源未接通或保险丝坏检查电源及更换保险丝2.电炉丝烧断更换

3.固态继电器开路更换

4.热电偶开路更换

裂解炉升温不止1.热电偶短路更换或两极分开2.固态继电器短路更换

基线不稳1.仪器机壳接地不良重新接好

2.裂解炉与放大器没有分相分相

3.滴定池参考臂有气泡排除气泡

4.滴定池污染清洗滴定池

5.气路不干净或载气不纯清洗气路或更换载气

电解池达不到预定的偏压1.水质不好用去离子水

2.电解液被污染重配新鲜电解液3.化学试剂达不到要求用符合要求的试剂

拖尾峰1.偏压太低升偏压或重冲滴定池2.增益太低提高增益

3.N2、O2比例不合适重新调节

4.滴定池、石英管被污染清洗滴定池或反烧石英管5.进样速度太慢提高速度

超调峰(大于正常

峰的1/3)1.N2流量太大减小流量2.偏压或增益太高降低3.进样速度太快减慢

双峰(CL)1.未接加热带连接2.稳定端温度低提高

3.搅拌速度不均匀调整速度

负峰

1.样品含量太低小于0.2ppm

2.有干扰物质去除

转化率偏低1.偏压太低重新调整2.N2、O2比例不合适重新调整3.石英管或滴定池被污染清洗4.炉温偏低提高

转化率偏高1.偏压不合适重新调整

2.增益太高降低

3.N2、O2比例不合适或N2不纯重新调整或更换4.标样被污染重换标样

重复性不好1.样品本身不均匀换样试

2.气路漏气检查气路

3.进样量不准进样

4.滴定池或石英管被污染清洗滴定池或反烧石英管

九、运输和贮存

仪器运输时,要小心轻放,不可倒置。

仪器运输时,防止受到强烈冲击、雨淋、受潮。

仪器存贮时,环境温度为-20~40℃,相对湿度不大于85%。

仪器应避免与能引起仪器腐蚀及电气绝缘性能降低的有害物质一同存放。

微流控芯片的发展及制造工艺介绍

微流控芯片的发展及制造工艺介绍 微流控芯片的发展微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy 公司的Manz与Widmer提出的,当时主要强调了分析系统的“微”与“全”,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。微流控分析系统从以毛细管电泳分离为核心分析技术发展到液液萃取、过滤、无膜扩散等多种分离手段。其中多相层流分离微流控系统结构简单,有多种分离功能,具有广泛的应用前景。已有多篇文献报道采用多相层流技术实现芯片上对试样的无膜过滤、无膜参析和萃取分离。同时也有采用微加工有膜微渗析器完成质谱分析前试样前处理操作的报道。流控分析系统从以电渗流为主要液流驱动手段发展到流体动力气压、重动、离心力、剪切力等多种手段。 直至今日,各国科学家在这一领域做出更加显着地成绩。微流控技术作为当前分析科学的重要发展前沿,在研究与应用方面都取得了飞速的发展。 微流控芯片的原理 微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等。其中电压驱动的毛细管电泳(Capillary Electrophoresis ,CE)比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百

WK-2E型微库仑综合分析仪说明书解析

厂况简介 江苏江分电分析仪器有限公司(江苏电分析仪器厂)创建于1966年,座落于风光秀丽的长江三角洲,是中国从事研制、生产分析仪器的主要骨干企业,国家电化学分析仪器科技产业化基地。在国内同行业中拥有较强的经济实力、雄厚的技术优势、先进的检测设备,通过了ISO9001-2000质量体系认证。公司占地2万平方米,拥有从事高新技术产品开发的研究所和6个各具特色的专业分析仪器制造基地。技术人员占员工总数的59%。 江苏江分的产品共分四大类:国家重点新产品、国家十五攻关项目引领石油分析仪器新潮流;环保水质分析仪器覆盖全国市场;高新技术为煤质分析仪器提供了广阔的市场空间;酸度计、离子计及100多种电极以其品种最全,批量最大,居国内首位。十二项产品填补国内空白,十五项产品获国家专利,部分产品远销欧、亚、美等十多个国家和地区。 展望未来,江苏江分仍将以对品牌价值、产品质量的自信,坚持不断创新、追求完美,为广大用户提供更多具有国际水平的高科技产品。在立足国内市场的基础上,产品的国际化战略将会把江苏江分带向更为广阔的世界舞台。 江苏江分与您携手共创美好明天!

目录 一﹑仪器简介及使用范围 (2) 二﹑工作原理 (2) 三﹑主要技术指标 (3) 四﹑仪器的组成及附件说明 (3) 五﹑仪器的安装与调试 (7) 六﹑仪器操作方法 (10) 七﹑化学试剂及溶液的配制 (21) 八﹑常见故障 (22) 九﹑运输和贮存 (24) 十﹑装箱清单 (25) 十一﹑产品使用信息反馈单

一、仪器简介及使用范围 WK-2E型微库仑综合分析仪是应用微库仑分析技术,采用计算机控制微库仑滴定的最新产品,具有性能可靠、操作简易、稳定性好、便于安装等特点,可用于石油化工产品中微量硫、氯、氮的分析,广泛应用于石油、化工、科研等部门。 WK-2E型微库仑综合分析仪以WindowsXP操作系统为工作平台,其友好的用户界面使分析人员操作更为方便、快捷。在系统分析过程中,操作条件﹑分析参数和分析结果均在显示器上直接显示,并根据需要可将参数、结果进行存盘和打印,以便日后调用、存档。 二、工作原理 WK-2E型微库仑综合分析仪是应用微库仑滴定原理,由零平衡工作方式设计的库仑放大器与滴定池和适宜的电解液组成了一种闭环负反馈系统。仪器的工作原理如图1所示。 E A 参考电极 阴极 C1 C2 裂解炉 流量 O2(H2 ) 控制 N2(H2) 放大器外偏压 测量电极阳极进样器 裂解管 单片机计算机 图1 工作原理图 滴定池中的参考电极供给一个恒定的参考电位,并与测量电极组成指示电极对产生一电压信号。这一信号与外加给定偏压反向串联后加在库仑放大器的输入端。当两电压值相等时,放大器输入为零,输出也为零,在电解电极对之间没有电流通过,仪器显示器上是一条平滑的基线。当样品由注射器注入裂解管, 样品中的被测物质反应转化为可滴定离子,并由载气带入滴定池,消耗电解液中的滴定剂。滴定剂浓度的变化使滴定池中的指示电极对的电位发生变化,其值的变化送入微机控制的微库仑放大器,经放大后加到电解电极对(阴、阳极)上,在阳极上电生出滴定离子,以补充消耗的滴定剂。上述过程随着滴定离子的消耗连续进行,直至无消耗滴定离子的物质进入,电生出足够的滴定离子,使指示电极对的值又重新等于给定偏压值,仪器恢复平衡。在消耗—补充滴定离子的过程中,测量电生滴定剂时的电量,依据法拉第定律进行数据处理,则可计算出样品含量。

第十一章 电解及库仑分析法

第十一章 电解及库仑分析法 1、什么叫做分解电压?为什么实际分解电压的数值比按电解产物所形成的原电池的反电动势要大? 答:分解电压:在电解时,能够使被电解物质在两电极上产生迅速、连续的电极反应,所需的最低外加电压。 因为当电流通过电解池时,电极的实际电位常偏离平衡电位,即产生极化现象。极化使阳极电位变得更正,阴极电位变得更负,即产生过电位(η=ηa - ηc ),而分解电压是原电池电动势、电池过电位、电解池电压降iR 之和,即: U = (E a +ηa ) - (E c +ηc ) + iR 所以,实际分解电压比电池反电动势大。 2、控制电流电解分析和控制电位电解分析各有何优缺点? 答:控制电流电解分析,由于电解电流大,并且基本恒定,因此电解效率高,分析速度快。但由于阴极电位不断负移,其它离子也可能沉积下来,故选择性差。 而控制阴极电位能有效防止共存离子的干扰,选择性好,该法即可作定量测定,又可广泛作为分离技术,常用于多种金属离子共存情况下某一种离子的测定。 3、库仑分析与电解分析在原理、装置上有何异同点? 答:电解分析与库仑分析在原理、装置上有许多共同之处,都需要通过控制分解电压或阴极电位来实现不同金属离子的分离,库仑分析也属于电解分析的范畴。不同的是通常的电解分析是通过测量电解上析出的物质的质量来进行定量分析,而库仑分析是通过测量通过体系的电量(Q nF M m = )来进行定量测定。 在测量装置上,二者也有共同之处,均需要有阴极电位控制装置,不同之处在于库仑分析中需要在电解回路中串联一个库仑计以测量通过体系的电量。 4、用库仑法在定量分析时,要取得准确的分析结果应注意些什么? 答:要求电极反应单纯,电流效率100%,应注意消除各种影响电流效率的因素。 5、在恒电流库仑分析法和控制电位库仑分析法中,是如何测得电量的? 答:在控制电位库仑分析法中,是用精密库仑计来测量电量的。常用的有气体库仑计和电子积分库仑计等。在恒电流库仑滴定中,由于电流是恒定的,因而通过精确测定电解进行的时间及电流强度,即可计算出电量。 6、为什么在库仑分析中要保证电流效率100%?如何保证电流效率100%? 答:因为库仑分析的理论依据是法拉第定律,根据这一定律,只有当电流效率为100%时,通过溶液或者电解时所消耗的电量才能完全应用于被测物质进行电极反应。 消除各种影响电流效率的因素。 7、某溶液含有2mol/L Cu 2+ 和 0.01mol/L Ag +,以Pt 为电极电解: (1)在阴极上首先析出的是铜还是银? (2)能否使两种金属离子完全分离?若可以,阴极电位控制在多少?铜和银在Pt 电极上的过电位可忽略不计。(V E V E Ag Ag Cu Cu 779.0337.0//2==++ θ θ ,)

WK-2D型微库仑综合分析仪说明书

WK-2D型 微库仑综合分析仪 使用说明书 江苏江分电分析仪器有限公司 (江苏电分析仪器厂)

公司概况 江苏江分电分析仪器有限公司(江苏电分析仪器厂)创建于1966年,座落于风光秀丽的长江三角洲,是中国从事研制、生产分析仪器的主要骨干企业,国家电化学分析仪器科技产业化基地。在国内同行业中拥有较强的经济实力、雄厚的技术优势、先进的检测设备,通过了ISO9001-2000质量体系认证。公司占地1.5万平方米,新区占地2万平方米,拥有从事高新技术产品开发的研究所和6个各具特色的专业分析仪器制造基地。技术人员占员工总数的59%。 江苏江分的产品共分四大类: 国家重点新产品、国家十五攻关项目引领石油分析仪器、环保水质分析仪器覆盖全国市场,高新技术产品为煤质分析仪器提供了广阔的市场空间,酸度计、离子计及100多种电极以其品种最全,批量最大,居国内首位。十二项产品填补国内空白,十五项产品获国家专利,部分产品远销欧、亚、美等十多个国家和地区。 数十年来,江分人依靠科技进步振兴,始终坚持“科学管理创品牌,优质服务求信誉”的宗旨,多次得到省政府和科技部的嘉奖,完成国家重点新产品八项,高新技术产品九项,省、部科技成果二十四项,荣获江苏省高新技术企业、江苏省省级先进企业和江苏省计量先进企业称号。 展望未来,江苏江分仍将以对产品品质的自信和不断创新、追求完善的精神,为广大用户提供更多代表国际技术的高科技产品。在立足国内市场的基础上,产品国际化的战略将会把江苏江分带向更为广阔的世界舞台。

江苏江分与您携手共创美好明天! 目录 一﹑仪器简介及使用范围 (1) 二﹑工作原理 (1) 三﹑主要技术指标 (2) 四﹑仪器的组成及附件说明 (2) 五﹑仪器的安装与调试 (6) 六﹑仪器操作方法 (8) 七﹑化学试剂及溶液的配制 (13) 八﹑常见故障的排除 (14) 九﹑运输和贮存 (16) 十﹑仪器装箱清单 (17) 十一﹑产品使用信息反馈单 (18)

微库仑仪介绍

第二章.基本原理 法拉第定律原理:在电解池中每通过96500库仑的电量,在电极上即会析出或溶入1摩尔的物质。用公式表示如下: W ——析出物质的量,以克计算。 N ——在电极上每析出或溶入一个分子或原子所消耗的电子数目。 M ——析出物质的分子或原子量。 Q ——电解时通过电极的电量。 仪器原理:样品被载气带入裂解管中和氧气充分燃烧,其中的硫或氯定量地转化为SO2或HCL。SO2或HCL被电解液吸收并发生如下反应: SO2+H2O+I2 =SO3 +2H++2I- 或 HCL+Ag+=AgCl↓+H+ 反应消耗电解液中的I2或Ag+,引起电解池测量电极电位的变化,仪器检测出这一变化并给电解池电解电极一个相应的电解电压。在电极上电解出I2或Ag+,直至电解池中I2或Ag+恢复到原先的浓度。仪器检测出这一电解过程所消耗电量,推算出反应消耗的I2或Ag+的量,从而得到样品中S或CL的浓度。 用已知浓度的标准样品或对照样品来标定仪器,调整仪器的工作状态,直到标准样品或对照样品的回收率在80%---120%之间时,即认为仪器已达到正常的工作状态。将未知浓度的样品注入裂解炉,根据标准样品或对照样品的转化率即可算出样品的浓度。 仪器原理如图(一): 第三章.技术指标 一.测量范围: S:0.2-----5000ng/ul Cl:0.3-----5000ng/ul 二.仪器准确度: A:浓度为0.2-1.0 ng/ul的样品绝对误差:≤±0.2 B:浓度为1.0-10 ng/ul的样品相对误差:≤10%

C:浓度为10 ng/ul以上的样品相对误差:≤5% 三.仪器重复性误差: A:浓度为0.2-1.0 ng/ul的样品绝对误差:≤50% B:浓度为1.0-10 ng/ul的样品相对误差:≤10% C:浓度为10 ng/ul以上的样品相对误差:≤5% 四.温度控制单元 控制范围及精度:室温-1000℃ ±2℃功率消耗≤3000W 第四章.仪器简介 仪器由主机,温度气体流量控制单元(包括搅拌在内),进样器,电脑,打印机等组成。如图(二)(以合同内容和用户收到实物为准): 搅拌器是放置电解池的装置,外壳应保持良好的接地,避光和屏蔽。 温度气体流量控制单元为样品裂解所用裂解管提供热量并为样品燃烧提供载气和氧气。 图(二)进样器能自动把样品注入裂解管中,它可以自由调节进样速度和距离,满足不同样品的分析要求。对固态样品和气态样品还分别有重油进样器和气体进样器,用户可根据不同的分析要求订购使用不同进样器。 主机是进行数据采集和分析控制的地方,是整个仪器的核心。要求有良好的接地。 电脑和打印机是对分析数据进行处理存贮并输出的设备。 另外仪器还有裂解管和电解池。裂解管简单结构如图(三): 图(三)裂解炉是采用石英管的密闭式管状保温炉,炉子的高低位置可略加调整。仪器提供的三对K型热电偶插入裂解炉对应的孔穴,热电偶的另一端接到温控仪上。注意:热电偶必须完全插入到炉体正确位置(接触到石英转化管),以保证得到准确的温度。 置入炉内的转化管,系采用优质气炼石英管。呈内外套管式,内管末端四周均匀分布小孔形成喷嘴。分别通过入口支管的载气(氮气)携带样品从内管经喷嘴到外管,反应气(氧气)通入外管在喷嘴周围与混和气体燃烧。 电解池简单结构如图(四),根据不同测量要求分为S电解池和CL电解池(详见“电解池的操作”)

河北工业大学科技成果——微流控芯片快速制造设备

河北工业大学科技成果——微流控芯片快速制造设备 项目简介 微流控芯片是分析仪器微型化的替代产品,随着分析仪器的广泛使用对微流控芯片的需求不断提高。本设备利用计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机快速成型技术(RPM)、激光制造技术、微机械制造和计算机控制等先进技术,完成小规模和单件微流控芯片快速制造,本设备可用于生物、化学分析领域,目前该设备为国际空白。 微流控芯片快速制造设备 市场前景 在国内外生命科学、医学等领域需求的推动下,我国微流控芯片的产业发展在面临着巨大的挑战的同时,正面临着良好的机遇,微流控芯片逐步走向应用,为生命科学和医学等领域开始提供高效手段,基因和蛋白芯片将进一步成熟,相信不久的将来,其应用将进一步推向临床,实现真正意义的“民用”,还有芯片实验室潜力巨大,已成

为各应用领域关注的焦点,届时将会出台一系列的标准以及相关政策,加快推动芯片实验室类产品的市场开发。另外,生物芯片技术正逐步走向整体化、系统化,相应的配套试剂、仪器和软件的研究越来越受到重视,相信我国微流控芯片技术将能够在不远的将来与世界同行更强地同台竞争,将会对微流控芯片制造系统和设备有更大的需求。 规模与投资 微流控芯片快速制造设备成本价为12万元左右,按照月生产4台套规模计算流动资金为48万元,先期投入180万,主要用于装调生产环境与设备。 生产设备 微流控芯片快速制造设备通过加工配套、购买和自己组装调试生产,生产设备不多,主要有装配车间,激光器和调试用的部分工具若干。 效益分析 目前,微流控芯片快速制造设备成本价格为12万元,市场售价为24万元,按照月产4台计算,年产量为48台毛利润为576万元。 微流控芯片快速制造设备软件可根据用户要求开发专用软件。 合作方式技术转让

一文解析微流控技术原理及起源

一文解析微流控技术原理及起源 微流控技术的起源微型化、集成化和智能化,是现代科技发展的一个重要趋势。伴随着微机电加工系统(MEMS )技术的发展,电子计算机已由当年的”庞然大物”演变成由一个个微小的电路集成芯片组成的便携系统,甚至是一部微型的智能手机。MEMS技术全称Micro Electromechanical System ,MEMS设想是由诺贝尔物理学奖获得者Richard Feynman教授于1959年提出,其基本概念是用半导体技术,将现实生活中的机械系统微型化,形成微型电子机械系统,简称微机电系统。 1962年全球第一款微型压力传感器面世,这一创新产品后来被应用于汽车安全(轮胎压力检测)和医疗(有创血压计),开启了MEMS时代。今天MEMS技术在军事、航天航空,生物医药、工业交通及消费领域扮演核心技术的角色,智能手机中就嵌入了多个MEMS 芯片,如麦克风,加速度计,GPS定位等。 微流控技术原理微流控(microfluidics )是一种精确控制和操控微尺度流体,以在微纳米尺度空间中对流体进行操控为主要特征的科学技术,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势是多种单元技术在整体可控的微小平台上灵活组合、规模集成。是一个涉及了工程学、物理学、化学、微加工和生物工程等领域的交叉学科。 微流控是系统的科学技术,它使用几十到几百微米尺度的管道,处理或操控很少量的(10*至10~18升,1立方毫米至1立方微米)流体。最初的微流控技术被用于分析。微流控为分析提供了许多有用的功能:使用非常少的样本和试剂做出高精度和高敏感度的分离和检测,费用低,分析时间短,分析设备的印记小。微流控既利用了它最明显的特征一一尺寸小,也利用了不太明显的微通道流体的特点,比如层流。它本质上提供了在空间和时间上集中控制分子的能力。 基于微流控芯片的代表性关键技术1、微流控分析芯片是新一代床旁诊断(Point of care

电解及库仑分析法

第十一章电解及库仑分析法 1、什么叫做分解电压?为什么实际分解电压的数值比按电解产物所形成的原电池的反电动势要大? 答:分解电压:在电解时,能够使被电解物质在两电极上产生迅速、连续的电极反应,所需的最低外加电压。 因为当电流通过电解池时,电极的实际电位常偏离平衡电位,即产生极化现象。极化使阳极电位变得更正,阴极电位变得更负,即产生过电位(η=ηa-ηc),而分解电压是原电池电动势、电池过电位、电解池电压降iR之和,即: U = (E a +ηa) -(E c +ηc) + iR 所以,实际分解电压比电池反电动势大。 2、控制电流电解分析和控制电位电解分析各有何优缺点? 答:控制电流电解分析,由于电解电流大,并且基本恒定,因此电解效率高,分析速度快。但由于阴极电位不断负移,其它离子也可能沉积下来,故选择性差。 而控制阴极电位能有效防止共存离子的干扰,选择性好,该法即可作定量测定,又可广泛作为分离技术,常用于多种金属离子共存情况下某一种离子的测定。 3、库仑分析与电解分析在原理、装置上有何异同点? 答:电解分析与库仑分析在原理、装置上有许多共同之处,都需要通过控制分解电压或阴极电位来实现不同金属离子的分离,库仑分析也属于电解分析的范畴。不同的是通常的电

解分析是通过测量电解上析出的物质的质量来进行定量分析,而库仑分析是通过测量通过体系的电量(Q nF M m )来进行定量测定。 在测量装置上,二者也有共同之处,均需要有阴极电位控制装置,不同之处在于库仑分析中需要在电解回路中串联一个库仑计以测量通过体系的电量。 4、用库仑法在定量分析时,要取得准确的分析结果应注意些什么? 答:要求电极反应单纯,电流效率100%,应注意消除各种影响电流效率的因素。 5、在恒电流库仑分析法和控制电位库仑分析法中,是如何测得电量的? 答:在控制电位库仑分析法中,是用精密库仑计来测量电量的。常用的有气体库仑计和电子积分库仑计等。在恒电流库仑滴定中,由于电流是恒定的,因而通过精确测定电解进行的时间及电流强度,即可计算出电量。 6、为什么在库仑分析中要保证电流效率100%?如何保证电流效率100%? 答:因为库仑分析的理论依据是法拉第定律,根据这一定律,只有当电流效率为100%时,通过溶液或者电解时所消耗的电量才能完全应用于被测物质进行电极反应。 消除各种影响电流效率的因素。 7、某溶液含有2mol/L Cu 2+ 和 0.01mol/L Ag +,以Pt 为电极电解: (1)在阴极上首先析出的是铜还是银? (2)能否使两种金属离子完全分离?若可以,阴极电位控制在多少?铜和银在Pt?电极上

微流控芯片行业研究

微流控芯片行业研究 微流控芯片概况 01微流控芯片的定义 微流控的“微”是指实验仪器设备的微型化(尺寸为数十到数百微米);“流”是指实验对象属于流体(体积为纳升到阿升);“控”代表着在微型化设备上对流体的控制、操作和处理。它属于一种底层技术,交织着化学、流体物理、微电子、新材料等多门学科知识,从理论上说任何流体参与的实验,都应有微流控技术的一席之地。 微流控芯片(Microfluidic Chip),又称为芯片实验室(Lab-on-a-Chip),是微流控技术的下游应用单元,是指把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。具体来说,通过MEMS技术在固体芯片表面构建微型生物化学分析系统,从而实现对无机离子、有机物质、蛋白质、核酸以及其他特定目标对象的快速、准确的处理和检测。它将需要在实验室进行的样品处理、生化反应和结果检测等关键步骤都汇聚到了一张小小的芯片上进行,故又被业界誉为“芯片实验室”。 由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。

02微流控芯片的发展历史 上世纪50年代末,美国诺贝尔物理学奖得主Richard Feynman教授预见未来的制造技术将沿着从大到小的途径发展,他在1959年使用半导体材料将实验用的机械系统微型化,从而造就了世界上首个微型电子机械系统(Micro-electro-mechanical Systems,MEMS),这成为了未来微流控技术问世的基石。 从微流控的定义上来讲,真正微流控技术的问世是在1990年。瑞士Ciba-Geigy公司的Manz 与Widmer应用MEMS技术在一块微型芯片上实现了此前一直需要在毛细管内才能完成的电泳分离,首次提出了微全分析系统(Micro-Total Analytical System,ì-TAS)即我们现在熟知的微流控芯片。 1994年,美国橡树岭国家实验室的研究人员Mike Ramsey在Manz与Widmer的原有研究基础上,改进了芯片毛细管电泳进样方法,提高了其性能。同年,世界首届国际微全分析系统学术会议在荷兰Enschede举行,微流控芯片全面进入大众视野。 1995年,全球首家专门从事微流控芯片技术的公司—Caliper Life Sciences在美国马萨诸塞州成立。 1999年世界首台微流控芯片商品化仪器-毛细管电泳微芯片由安捷伦公司和Galiper公司联合推出,被应用于生物分析和临床分析领域。 中国打响打响微流控赛道第一枪的是《Lab on a Chip(芯片实验室)》。该刊创建于2001年,专门用于收录微流控技术研究类文章。一年后,中国迎来了首次以微流控为主题的学术会议,即北京举办的首届全国微全分析系统会议,实现微流控芯片大规模集成。

微库仑硫测定仪

REK-20Y 微库仑硫测定仪 说 明 书 兴化睿科分析仪器有限公司

目录 一、基本原理 (1) 二、技术指标 (2) 三、仪器简介 (2) 四、安装调试 (3) 五、S滴定池使用说明 (5) 六、Cl滴定池使用说明 (6) 七、仪器操作注意事项 (8) 八、常见故障排除 (8) 九、装箱清单 (13)

一、基本原理 法拉第定律原理:在电解池中每通过96500库仑的电量,在电极上即会析出或溶入1摩尔的物质。用公式表示如下: 式中: W——析出物质的量,以克计算。 N——在电极上每析出或溶入一个分子或原子所消耗的电子数目。 M——析出物质的分子或原子量。 Q——电解时通过电极的电量。 微库仑硫测定仪原理:样品被载气带入裂解管中和氧气充分燃烧,其中的硫 或氯定量地转化为SO 2或HCl。SO 2 或HCl被电解液吸收并发生如下反应: SO 2+H 2 O+I 2 =SO 3 +2H++2I- HCL+Ag+=AgCl↓+H+ 反应消耗电解液中的I 2 或Ag+,引起电解池测量电极电位的变化,仪器检测 出这一变化并给电解池电解电极一个相应的电解电压,在电极上电解出I 2 或Ag+, 直至电解池中I 2 或Ag+恢复到原先的浓度,仪器检测出这一电解过程所消耗电量, 推算出反应消耗的I 2 或Ag+的量,从而得到样品中S或Cl的浓度。 微库仑硫测定仪原理如下图: 微库仑硫测定仪原理图 用已知浓度的标准样品来标定仪器,调整仪器到正常的工作状态,将末知浓度的样品注入裂解炉,跟据标准样品的转化率即可算出样品的浓度。

二、技术指标 1、测量范围: S: 0.2mg/L~10000mg/L~百分含量 Cl: 0.3mg/L~10000mg/L~百分含量 2、仪器准确度: A:浓度为0.2~1.0 mg/L的样品绝对误差:≤±0.1 B:浓度为1.0~10 mg/L的样品相对误差:≤10% C:浓度为10 mg/L以上的样品相对误差:≤5% 三、仪器组成 1、微库仑硫测定仪主要由主机、温度气体流量控制单元、搅拌器、进样器、计算机、打印机等部分组成。 2、主机是进行数据采集、计算和分析控制的单元,是整个仪器的核心,要求接地良好。 3、搅拌器是放置电解池的装置,外壳应保持良好的接地,避光和屏蔽。 4、进样器能自动把样品注入石英裂解管中,它可以自由调节进样速度和行程,满足不同样品的分析要求。固态样品和气态样品的分析需选配相对应的进样器。 5、计算机和打印机是对分析数据进行处理存贮并输出的设备。 6、石英裂解管裂解管,其结构示意图如下图所示: 石英裂解管结构示意图 7、电解池,其结构示意图如下图所示,根据不同测量要求分为S电解池和CL 电解池(详见“电解池的操作”)。

微流控芯片五大优点及四大缺点分析

微流控芯片五大优点及四大缺点分析 微流控的五大优点(一)集成小型化与自动化微流控技术能够把样本检测的多个步骤集中在一张小小的芯片上,通过流道的尺寸和曲度、微阀门、腔体设计的搭配组合来集成这些操作步康,最终使整个检测集成小型化和自动化。 (二)高通量由于微流控可以设计成为多流道,通过微流道网络可以同时将待检测样本分流到多个反应单位,同时反应单元之间相互隔离,使各个反应互不相干扰,因此可以根据需要对同一个样本平行进行多个项目的检测。与常规逐个项目检测相比,大大缩短了检测的时间,提高了检测效率,具有高通量的特点。 (三)检测试剂消耗少由于集成检测的小型化,使微流控芯片上的反应单元腔体非常小,虽然试剂配方的浓度可能有一定比例的提高,但是试剂使用量远远低于常规试剂,大大降低了试剂的消耗量。 (四)样本量需求少由于只在小小的芯片上完成检测,因此需要被检测的样本量需求非常少,往往只需要微升甚至纳升级别。此外还可以直接用全血进行检测,对于婴儿、老人、残疾人这些血量少、静脉采集困难的人群,使其检测更加方便;或者是非常珍贵稀少的样本,使其多项指标检测成为可能。 (五)污染少由于微流控芯片的集成功能,原先在实验室里需要人工完成的各项操作全部集成到芯片上自动完成,使人工操作时样本对环境的污染降低到最低程度。例如在分子核酸类检测中,无论是样本本身,还是制备后准备用于检测的核酸,均会对实验室造成污染,气溶胶的扩散使得后续样本检测容易出现假阳性。这也是为什么常规分子核酸类检测需要至少在3个房间分别进行不同的操作。微流控技术的使用很好的解决了这一问题。 正因为微流控具有以上几个重要的优势和优点,使其成为了POCT的首选。而我们判断这类产品在市场上有没有需求和竞争力,可以从这几个方面上进行判断。 微流控的四大缺点(一)核心技术缺乏规范和标准一个成熟的微流控产品,往往需要配套使用的试剂,核心的微流控芯片,芯片驱动平台,光电检测模块,信号处理模块以及人机

微库仑氯测定仪

REK-20Y微库仑硫测定仪 REK-20Y 微库仑氯测定仪 说 明 书 兴化睿科分析仪器有限公司

REK-20Y微库仑硫测定仪 目录 一、基本原理··(1) 二、技术指标··(2) 三、仪器简介··(2) 四、安装调试··(3) 五、S滴定池使用说明··(5) 六、Cl滴定池使用说明··(6) 七、仪器操作注意事项··(8) 八、常见故障排除 (8) 九、装箱清单··(13)

REK-20Y 型微库仑硫测定仪 兴化睿科分析仪器有限公司 1 一、基本原理 法拉第定律原理:在电解池中每通过96500库仑的电量,在电极上即会析出或溶入1摩尔的物质。用公式表示如下: 式中: W ——析出物质的量,以克计算。 N ——在电极上每析出或溶入一个分子或原子所消耗的电子数目。 M ——析出物质的分子或原子量。 Q ——电解时通过电极的电量。 微库仑氯测定仪原理:样品被载气带入裂解管中和氧气充分燃烧,其中的硫或氯定量地转化为SO 2或HCl 。SO 2或HCl 被电解液吸收并发生如下反应: SO 2+H 2O +I 2 =SO 3 +2H ++2I - HCL+Ag +=AgCl ↓+H + 反应消耗电解液中的I 2或Ag +,引起电解池测量电极电位的变化,仪器检测 出这一变化并给电解池电解电极一个相应的电解电压,在电极上电解出I 2或Ag +,直至电解池中I 2或Ag +恢复到原先的浓度,仪器检测出这一电解过程所消耗电量, 推算出反应消耗的I 2或Ag +的量,从而得到样品中S 或Cl 的浓度。 微库仑氯测定仪原理如下图: 微库仑氯测定仪原理图 用已知浓度的标准样品来标定仪器,调整仪器到正常的工作状态,将末知浓度的样品注入裂解炉,跟据标准样品的转化率即可算出样品的浓度。

电解及库仑分析法习题解答

第十一章 电解及库仑分析法习题解答 1.以电解法分析金属离子时,为什么要控制阴极的电位 解:由于各种金属离子具有不同的分解电位,在电解分析时,金属离子又大部分在阴极上析出,因此需要控制阴极的电位,以便不同金属离子分别在不同的电位析出,从而实现分离的目的。 2. 库仑分析法的基本依据是什么为什么说电流效率是库仑分析发关键问题在库仑分析中用什么方法保证电流效率达到100% 解:根据法拉第电解定律,在电极上发生反应的物质的质量与通过该体系的电量成正比,因此可以通过测量电解时通过的电量来计算反应物质的质量,这即为库仑分析法的基本原理。 由于在库仑分析法中是根据通过体系的电量与反应物质之间的定量关系来计算反应物质的质量的,因此必须保证电流效率100%地用于反应物的单纯电极反应。 可以通过控制电位库仑分析和恒电流库仑滴定两种方式保证电流效率达到100%。 3. 电解分析和库仑分析在原理、装置上有何异同之处 解:电解分析与库仑分析在原理、装置上有许多共同之处,都需要通过控制分解电压或阴极电位来实现不同金属离子的分离,库仑分析也属于电解分析的范畴。不同的是通常的电解分析是通过测量电解上析出的物质的质量来进行定量分析,而库仑分析是通过测量通过体系的电量来进行定量测定。 在测量装置上,二者也有共同之处,均需要有阴极电位控制装置,不同之处在于库仑分析中需要在电解回路中串联一个库仑计以测量通过体系的 电量。 4. 试述库仑滴定的基本原理。 解: 库仑滴定是一种建立在控制电流电解基础之上的滴定分析方法。在电解过程中,于试液中加入某种特定物质,以一定强度的恒定电流进行电解,使之在工作电极上(阳极或阴极)电解产生一种试剂,此试剂与被测物质发生定量反应,当被测物质反应完全后,用适当的方法指示终点并立即停止电解。然后根据所消耗的电量按照法拉第定律计算出被测物质的质量:n itM m 96487= 5. 在控制电位库仑分析法和恒电流库仑滴定中,是如何测定电量的 解:在控制电位库仑分析法中,是用精密库仑计来测定电量的. 在恒电流库仑滴定中,由于电流是恒定的,因而通过精确测定电解进行的时间及电流强度,即可计算出电量. 6.在库仑滴定中,相当于下列物质多少克 (1)OH-, (2) Sb(III 到V 价), (3) Cu(II 到0价), (4)As2O3(III 到V 价). 解:根据法拉第电解定律,n itM m 96487= 得: (1) mOH-=1×10-3 ×1 × (96487 ×2)= × ×10-9 = ×10-8g (2)mSb= × × 10-9= × 10-7g (3)mCu= × × 10-9= × 10-7g (4)mAs2O3 = × ×10-9 /2 = ×10-7g 7.在一硫酸铜溶液中,浸入两个铂片电极,接上电源,使之发生电解反应.这时在

TCS-200微库仑分析仪

TCS-200微库仑分析仪 使用说明书 泰州市天创仪器有限公司

目录 一﹑仪器简介及使用范围 (1) 二﹑工作原理 (1) 三﹑主要技术指标 (1) 四﹑仪器的组成及附件说明 (2) 五﹑仪器的安装与调试 (5) 六﹑仪器操作方法 (7) 七﹑化学试剂及溶液的配制 (9) 八﹑常见故障的排除 (10) 九﹑运输和贮存 (11) 十﹑仪器装箱清单 (12) 十一﹑产品使用信息反馈单 (13)

一、仪器简介及使用范围 TCS-200型微库仑分析是应用微库仑分析技术,采用计算机控制微库仑滴定的最新产品,具有性能可靠、操作简易、稳定性好、便于安装等特点,可用于石油化工产品中微量硫、氯的分析,广泛应用于石油、化工、科研等部门。 TCS-200型微库仑分析以Windows操作系统为工作平台,其友好的用户界面使分析人员操作更为方便、快捷。在系统分析过程中,操作条件﹑分析参数和分析结果均在显示器上直接显示,并根据需要可将参数、结果进行存盘和打印,以便日后调用、存档。 二、工作原理 TCS-200型微库仑分析是应用微库仑滴定原理,由零平衡工作方式设计的库仑放大器与滴定池和适宜的电解液组成了一种闭环负反馈系统。仪器的工作原理如图1所示。 E A 参考电极 阴极 C1 C2 裂解炉 流量 O2(H2 ) 控制 N2(H2) 放大器外偏压 测量电极阳极 裂解管 单片机计算机 图1 工作原理图 滴定池中的参考电极供给一个恒定的参考电位,并与测量电极组成指示电极对产生一电压信号。这一信号与外加给定偏压反向串联后加在库仑放大器的输入端。当两电压值相等时,放大器输入为零,输出也为零,在电解电极对之间没有电流通过,仪器显示器上是一条平滑的基线。当样品由注射器注入裂解管, 样品中的被测物质反应转化为可滴定离子,并由载气带入滴定池,消耗电解液中的滴定剂。滴定剂浓度的变化使滴定池中的指示电极对的电位发生变化,其值的变化送入微机控制的微库仑放大器,经放大后加到电解电极对(阴、阳极)上,在阳极上电生出滴定离子,以补充消耗的滴定剂。上述过程随着滴定离子的消耗连续进行,直至无消耗滴定离子的物质进入,并已电生出足够的滴定离子,使指示电极对的值又重新等于给定偏压值,仪器恢复平衡。在消耗—补充滴定离子的过程中,测 量电生滴定剂时的电量,依据法拉第定律进行数据处理,则可计算出样品

微流控芯片加工技术解析

微流控芯片加工技术解析 微流控芯片的发展微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy 公司的Manz与Widmer提出的,当时主要强调了分析系统的微与全,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。微流控分析系统从以毛细管电泳分离为核心分析技术发展到液液萃取、过滤、无膜扩散等多种分离手段。其中多相层流分离微流控系统结构简单,有多种分离功能,具有广泛的应用前景。已有多篇文献报道采用多相层流技术实现芯片上对试样的无膜过滤、无膜参析和萃取分离。同时也有采用微加工有膜微渗析器完成质谱分析前试样前处理操作的报道。流控分析系统从以电渗流为主要液流驱动手段发展到流体动力气压、重動、离心力、剪切力等多种手段。 直至今日,各国科学家在这一领域做出更加显著地成绩。微流控技术作为当前分析科学的重要发展前沿,在研究与应用方面都取得了飞速的发展。 微流控芯片的原理微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等。其中电压驱动的毛细管电泳(Capillary Electrophoresis ,CE)比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百种样品的平行分析。自1992 年微流控芯片CE 首次报道以来,进展很快?首台商品仪器是微流控芯片CE (生化分析仪,Aglient),可提供用于核酸及

通用微库仑分析仪操作培训

DL-2B-EE型 通用微库仑分析仪操作培训计划 一、培训对象 化验员 二、培训目的 让使用人员能够熟练掌握微库仑仪的使用原理、操作步骤、分析结果处理及相关的仪器基本使用和维护常识。 三、培训时间 四、培训内容 整个培训内容分为三个方面,理论知识、仪器操作、考核。 1 理论学习 1.1.1 仪器的工作原理 E A 参考电极 阴极 C1 C2 裂解炉 流量 O2(H2 ) 控制 N2(H2) 放大器外偏压 测量电极阳极 裂解管 单片机计算机 图1 工作原理图 滴定池中的参考电极供给一个恒定的参考电位,并与测量电极组成指示电极对产生一电压信号。这一信号与外加给定偏压反向串联后加在库仑放大器的输入端。当两电压值相等时,放大器输入为零,输出也为零,在电解电极对之间没有电流通过,仪器显示器上是一条平滑的基线。当样品由注射器注入裂解管, 样品中的被测物质反应转化为可滴定离子,并由载气带入滴定池,消耗电解液中的滴定剂。滴定剂浓度的变化使滴定池中的指示电极对的电位发生变化,其值的变化送入微机控制的微库仑放大器,经放大后加到电解电极对(阴、阳极)上,在阳极上电生出滴定离子,以补充消耗的滴定剂。上述过程随着滴定离子的消耗连续进

行,直至无消耗滴定离子的物质进入,并已电生出足够的滴定离子,使指示电极对的值又重新等于给定偏压值,仪器恢复平衡。在消耗—补充滴定离子的过程中,测量电生滴定剂时的电量,依据法拉第定律进行数据处理,则可计算出样品含量。 1.1.2 仪器的主要参数 (1)分析范围:硫: 0.1mg/L ~5000mg/L 。 (2)重复性误差极限: ⑴试样浓度<1.0mg/L时,不大于50%; ⑵ 1.0mg/L≤试样浓度≤10mg/L时,不大于10%; ⑶试样浓度>10mg/L时,不大于5%。 (3)载气流量:仪器氮气和氧气流量一般不能低于100mL/min,氮气不要超过300 mL/min。(4)仪器温度:一段温度(汽化段)650℃;二段温度(燃烧段)820℃。 (5)仪器转化率:80%~120%;1mg/L标样含量0.9~1.1mg/L。 (6)仪器进样量:进样器取7.6μl样品然后拉到9.0μl处(保证进样器针头根部露出空气段),记录为8μl 1.2 仪器组成 仪器由计算机、通用微库仑分析仪主机、温度流量控制器、搅拌器、进样器等组成。主要附件为滴定池和裂解管。 2 仪器操作 学习分光光度计的使用方法及注意事项,学习培训资料[DL-2B-EE型通用微库仑分析仪操作]。 3.考核 分为理论考试(60分)和操作考试(40分) DL-2B-EE型通用微库仑分析仪操作

微库仑综合分析仪

REK-20Y 微库仑综合分析仪 说 明 书 兴化睿科分析仪器有限公司

目录 一、基本原理 (1) 二、技术指标 (2) 三、仪器简介 (2) 四、安装调试 (3) 五、S滴定池使用说明 (5) 六、Cl滴定池使用说明 (6) 七、仪器操作注意事项 (8) 八、常见故障排除 (8) 九、装箱清单 (13)

一、基本原理 法拉第定律原理:在电解池中每通过96500库仑的电量,在电极上即会析出或溶入1摩尔的物质。用公式表示如下: 式中: W——析出物质的量,以克计算。 N——在电极上每析出或溶入一个分子或原子所消耗的电子数目。 M——析出物质的分子或原子量。 Q——电解时通过电极的电量。 微库仑综合分析仪原理:样品被载气带入裂解管中和氧气充分燃烧,其中的 硫或氯定量地转化为SO 2或HCl。SO 2 或HCl被电解液吸收并发生如下反应: SO 2+H 2 O+I 2 =SO 3 +2H++2I- HCL+Ag+=AgCl↓+H+ 反应消耗电解液中的I 2 或Ag+,引起电解池测量电极电位的变化,仪器检测 出这一变化并给电解池电解电极一个相应的电解电压,在电极上电解出I 2 或Ag+, 直至电解池中I 2 或Ag+恢复到原先的浓度,仪器检测出这一电解过程所消耗电量, 推算出反应消耗的I 2 或Ag+的量,从而得到样品中S或Cl的浓度。 微库仑综合分析仪原理如下图: 微库仑综合分析仪原理图 用已知浓度的标准样品来标定仪器,调整仪器到正常的工作状态,将末知浓度的样品注入裂解炉,跟据标准样品的转化率即可算出样品的浓度。

二、技术指标 1、测量范围: S: 0.2mg/L~10000mg/L~百分含量 Cl: 0.3mg/L~10000mg/L~百分含量 2、仪器准确度: A:浓度为0.2~1.0 mg/L的样品绝对误差:≤±0.1 B:浓度为1.0~10 mg/L的样品相对误差:≤10% C:浓度为10 mg/L以上的样品相对误差:≤5% 三、仪器组成 1、微库仑综合分析仪主要由主机、温度气体流量控制单元、搅拌器、进样器、计算机、打印机等部分组成。 2、主机是进行数据采集、计算和分析控制的单元,是整个仪器的核心,要求接地良好。 3、搅拌器是放置电解池的装置,外壳应保持良好的接地,避光和屏蔽。 4、进样器能自动把样品注入石英裂解管中,它可以自由调节进样速度和行程,满足不同样品的分析要求。固态样品和气态样品的分析需选配相对应的进样器。 5、计算机和打印机是对分析数据进行处理存贮并输出的设备。 6、石英裂解管裂解管,其结构示意图如下图所示: 石英裂解管结构示意图 7、电解池,其结构示意图如下图所示,根据不同测量要求分为S电解池和CL 电解池(详见“电解池的操作”)。

TCS-200库仑分析仪

TCS-200库仑分析仪简易操作规程 一、开机 1、打开温控风扇开关(上面的开关),开温控加热开关(下面的开关)。 2、开氮气和氧气(氮气和氧气的压力要在0.2Mpa以内,不要过高,氮气流量控制在200mL/ 分钟左右,氧气流量控制在180mL/分钟左右,氮气、氧气压力在钢瓶上调节)注:气流量可微调,主要看电解池内气泡大小而定。针型阀不可关死。 3、连接电解池各电极(测量,参考,阳极,阴极要对应电解池电极连接正确),连接电解 池和石英管(将石英管慢慢推至紧靠“温度流量控制器”,然后将石英管和电解池用夹子夹起来)。 4、打开主机电源开关,打开电脑,双击“TCS微库仑滴定仪”程序,然后点击“联机”(左 上角图标最后一个),点击“平衡” 5、打开搅拌器电源开关。 6、偏压、采样电阻、标样体积、标样含量等等如需修改,用鼠标左键点击右上角相对应的 文字后修改即可(偏压的调节应遵循‘大含量’,‘低偏压’;‘小含量’、‘高偏压’)。 电解液的置换: 用大针管吸入电解液,从电解池上方的口中加入电解池,然后从参考臂(里面的阀)一侧将电解液放出,阴极臂(外面的阀)一侧少量放出一些即可,看电脑屏幕上显示的偏压值,直至偏压值在140mv以上,将电解池中的电解液放至离铂片上端1至1.5cm,按确定。 二、样品的分析 B、样品总硫的分析 做液体样品时,用100ng/ul以上的标定物进行标定 偏压:145mv至150 增益150至100 采样电阻:600或200 取样量:2ul(输入进样体积为2.4ul) 偏压在145mv左右(根据峰形自行进行偏压调节,如出现超调峰则说明偏压过高,可将偏压进行下调,每次下调偏压不得超过10mv(一般每次日降3至5mv)。反之,如出现拖尾峰,则说明时偏压过低,则要重新冲洗电解池)标液和样品的采样电阻均为600至200,取样量均为2ul(输入体积为2.4ul)。液体进样方法和注意事项与上面标样进样方法相同。 进样注意事项:待基线走稳后,按启动键,进样,待峰回落时,用手按住石英管上的硅胶管然后将针拔出。重复进样三次以上(最少要打三针),将不需要的结果删除(用鼠标左键直接点击想删除的数据,点击确定),取三个相似的外标谱图,然后点击结果,将结果保存。仪器会自动算出标样的平均转化率。注意:取完标样后要将针回抽一点到看到针的前面有空气时才行。进完样后暂不要将针拔出,要在峰形下落或峰形出完后才可将针拔出,拔出时,要用手按住石英管上的硅胶管,以免在拔针时石英管移动而损坏电解池和石英管。 三、关机程序 1、关闭电脑程序,关闭主机电源。 2、断开电解池和石英管连接夹头,将石英管向右稍微拉过去一些。(防止电解液倒吸入石 英管中或防止有人移动搅拌器而损坏石英管) 3、关闭氮气和氧气钢瓶。 4、关闭温度流量控制器加热开关(注:风扇开关要在加热开关关闭半小时之后才可以关 闭)。 硫点解液的配置:0.5克KI(碘化钾)、0.6克叠氮化钠、5ml乙酸(冰醋酸)溶 于1L去离子水中(或二次蒸馏水)

相关文档
最新文档