全等三角形知识点总结

合集下载

全等三角形知识点归纳

全等三角形知识点归纳

全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。

下面就来对全等三角形的相关知识点进行一个全面的归纳。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等用符号“≌”表示,读作“全等于”。

二、全等三角形的性质1、全等三角形的对应边相等。

也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。

2、全等三角形的对应角相等。

对应角的度数完全相同。

3、全等三角形的周长相等。

因为对应边相等,所以三条边相加的总和也相等。

4、全等三角形的面积相等。

由于形状和大小完全相同,所占的空间大小也就一样。

三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。

比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。

2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。

3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。

4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。

5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。

四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。

例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。

全等三角形的判定(HL)(知识梳理与考点分类讲解)(人教版)(学生版) 24-25学年八年级数学上册

全等三角形的判定(HL)(知识梳理与考点分类讲解)(人教版)(学生版) 24-25学年八年级数学上册

专题12.7全等三角形的判定(HL)(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】直角三角形全等的判定方法——斜边、直角边(HL)(1)判定方法:斜边和一条直角边分别对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).(2)书写格式:如图,在Rt△ABC 和△Rt DEF 中,AB DE AC DF=⎧⎨=⎩ABC DEF ∴∆≅∆(HL)【知识点二】判定两个直角三角形全等的方法判定一般三角形全等的方法对判定两个直角三角形全等全部适用,因此我们可以根据“HL”“SSS”“SAS”“ASA”“AAS”这五种方法来判定两个直角三角形全等.【知识点三】判定两个直角三角形全等的思路(1)已知一条直角边对应相等,可用判定方法“SAS”“HL”“ASA”或“AAS”;(2)已知斜边对应相等,可用判定方法“HL”“AAS”;(3)已知一锐角对应相等,可用判定方法“ASA”或“AAS”.第二部分【题型展示与方法点拨】【题型1】用“HL”证明直角三角形全等【例1】(23-24八年级上·广西南宁·期中)已知,如图,点A 、E 、F 、B 在同一条直线上,CA AB ⊥,DB AB ⊥,AE FB =,CF DE=(1)求证:CAF DBE ≌ ;(2)若25AFC ∠=︒,求D ∠的度数【变式1】如图,已知AB BD ⊥,CD BD ⊥,若用HL 判定Rt △ABD 和Rt BCD 全等,则需要添加的条件是()A .AD CB =B .AC ∠=∠C .BD DB =D .AB CD=【变式2】(23-24八年级上·北京朝阳·阶段练习)如图,BD CF =,FD BC ⊥于点D ,DE AB ⊥于点E ,BE CD =,若145AFD ∠=°,则EDF ∠=.【题型2】全等的性质与“HL”综合【例2】(23-24八年级下·山东青岛·期中)已知:如图AD 为ABC 的高,E 为AC 上一点,BE 交AD 于F 且有BF AC =,ED CD =.(1)问BF 与AC 的数量和位置关系分别是什么?并说明理由.(2)直接写出ABC ∠的度数.【变式1】(23-24八年级上·山东菏泽·期末)如图,Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,EF AB ⊥于点F ,交AC 于点E ,BC BF =,连接BE 交CD 于点G .下列结论:①CE EF =;②CG EF =;③BGC AEB ∠=∠.其中正确的有()A .0个B .1个C .2个D .3个【变式2】(23-24八年级上·吉林·期末)如图,在ABC 中,M 为边BC 的中点,ME AB ⊥于点E ,MF AC ⊥于点F ,且BE CF =.若25BME ∠=︒,则A ∠=°.【题型3】全等三角形的综合问题【例3】(23-24七年级下·广东佛山·阶段练习)如图,ABC 中,AC AB >,D 是BA 延长线上一点,点E 是CAD ∠的平分线上一点,过点E 作EF AC ⊥于F ,EG AD ⊥于G .(1)求证:EGA EFA ≌△△;(2)若2BEC GEA ∠=∠,3AB =,5AC =,求AF 的长.【变式1】(23-24八年级上·河北保定·期末)如图,EB 交AC 于点M ,交FC 于点D ,90E F ∠=∠=︒,B C ∠=∠,AE AF =,给出下列结论:12∠=∠①;②BE CF =;③ACN ABM ≌;CD DN =④,其中正确的有()A .①②③B .①②④C .①③④D .②③④【变式2】(23-24八年级上·江苏南京·阶段练习)如图,ABC 中,AH BC ⊥,BF 平分ABC ∠,BE BF ⊥,EF BC ∥,以下四个结论:①AH EF ⊥,②ABF EFB ∠=∠,③AF BE =,④E ABE ∠=∠.正确的是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2023·陕西·中考真题)如图,在ABC 中,50B ∠=︒,20C ∠=︒.过点A 作AE BC ⊥,垂足为E ,延长EA 至点D .使AD AC =.在边AC 上截取AF AB =,连接DF .求证:DF CB =.【例2】(2023·山东·中考真题)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A B C D E ,,,,均在小正方形方格的顶点上,线段,AB CD 交于点F ,若CFB α∠=,则ABE ∠等于()A .180α︒-B .1802α︒-C .90α︒+D .902α︒+2、拓展延伸【例1】(23-24八年级上·广东汕头·期中)如图,从点O 引射线OM ,ON ,点A ,B 分别在射线OM ,ON 上,点C 为平面内一点,连接AC ,BC ,有ACB O ∠=∠.(1)如图1,若AO BC ∥,则AC 和ON 的位置关系是______;(2)如图2,若ABC ABO ∠=∠,AC OM ⊥,请求出CBD ∠和O ∠的度数的等量关系式;(3)在(2)的条件下,过点C 作CD OM ∥交射线ON 于点D ,当8CDN CBD ∠=∠时,求ABC ∠的度数.【例2】(22-23九年级下·山东滨州·期中)(1)如图1,在四边形ABCD 中,120AB AD BAD =∠=︒,,90ABC ADC ∠=∠=︒,且60EAF ∠=︒,求证:EF BE FD =+.(2)如图2,若在四边形ABCD 中,AB AD =,180B D ∠+∠=︒,E F 、分别是BC CD 、上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立?请说明理由.。

全等三角形知识点

全等三角形知识点

全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。

本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。

关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。

在数学符号中,我们通常用“≌”来表示全等。

2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。

- 对应角相等:两个全等三角形的对应角度数完全相同。

- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。

- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。

- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。

3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。

- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。

- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。

- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。

- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。

4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。

通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。

5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。

三角形的相似与全等知识点总结

三角形的相似与全等知识点总结

三角形的相似与全等知识点总结 各位今天咱就来唠唠这三角形的相似与全等的知识点。这玩意儿,刚开始学的时候,真能把人绕得晕头转向的,就像我那时候,闹出了不少笑话。

记得有一次,数学老师在黑板上画了两个三角形,然后开始讲相似和全等的区别。老师那是讲得眉飞色舞,可我这脑子,就像被一团迷雾给罩住了,什么也没听明白。下课后,我赶紧拉着同桌,一脸迷茫地问他:“哥们儿,这相似和全等到底是咋回事儿?我咋感觉都差不多。”

同桌白了我一眼,说:“你这数学小迷糊,听好了。全等,就是这两个三角形,就像双胞胎一样,长得一模一样,大小、形状都完全相同。而相似,就好比是一个大人和一个小孩,形状是一样的,但大小不一样。”我听了之后,似懂非懂地点点头,心里想着:“好像有点明白了,但还是有点模糊。”

为了彻底搞清楚这两个概念,我和几个小伙伴决定来一场“三角形大探究”。我们找来了纸和笔,开始自己画三角形。我小心翼翼地画了一个三角形,然后让小伙伴们也画。画完之后,我们就开始比较。

其中一个小伙伴兴奋地说:“看,我画的这个和你的这个,大小一样,角的度数也一样,这是不是就是全等?”大家都围过来,七嘴八舌地讨论起来。另一个小伙伴说:“没错没错,这就是全等,就像我们买的一模一样的拼图块,放一起能完全重合。”

接着,我们又试着画相似的三角形。我先画了一个大的,然后另一个小伙伴按照比例画了一个小的。我们拿着这两个三角形,左看看,右看看。我突然发现,虽然它们大小不一样,但是形状真的很像。我激动地说:“我明白了!这相似就是不管大小,只要形状一样就行,就像不同尺码的同一款衣服。”大家听了,都哈哈大笑起来,纷纷说我终于开窍了。 通过这次有趣的探究活动,我对三角形的相似与全等有了更清楚的认识。全等就像是复制粘贴出来的,一模一样;相似,就是有那么点“家族相似感”,形状差不多,但大小可能有差别。

在后来的数学学习中,只要一遇到三角形相似与全等的题,我就会想起那次和小伙伴们一起探究的经历。这两个知识点,就不再那么让人头疼了。所以,小伙伴们,如果你们也对这部分内容感到困惑,不妨也像我们这样,自己动手画一画,探究探究,说不定就能豁然开朗!这三角形的相似与全等,其实也没那么难嘛!

全等三角形SAS和ASA知识点总结

全等三角形SAS和ASA知识点总结

全等三角形SAS和ASA知识点总结基础知识1、SAS的判定方法:两边及其夹角对应相等的两个三角形全等,这可以用符号表示为“边边角”。

在具体证明中,需要先找到两个三角形的对应边和对应角,并证明它们相等。

2、ASA的判定方法:一角及其对边对应相等的两个三角形全等,这可以用符号表示为“角边角”。

与SAS类似,在具体证明中,需要先找到两个三角形的对应边和对应角,并证明它们相等。

重难点分析对于初学者来说,理解SAS和ASA的概念并不困难,但在实际应用中往往会遇到一些问题。

以下是一些常见的重难点:1、找准对应边和对应角:在证明全等三角形时,找到准确的对应边和对应角是关键步骤。

初学者往往在这一步容易出现混淆或错误。

2、灵活运用全等三角形的性质:熟练掌握全等三角形的性质对于解决相关问题非常重要。

例如,全等三角形的对应边和对应角相等,以及全等三角形的对应中线、高线也相等。

3、综合运用其他知识点:在解决全等三角形相关问题时,往往需要综合运用其他知识点,如平行线、等腰三角形等。

对于这些知识点的理解与应用也是解决全等三角形问题的关键。

练习题精选为了巩固对全等三角形SAS和ASA的理解,以下提供一些练习题:在△ABC和△DEF中,AB=DE,∠B=∠E,BC=EF。

求证:△ABC ≌△DEF(SAS)。

在△ABC中,∠ACB=90°,CD是高线,且∠B=25°。

求证:AC=BC(ASA)。

通过完成这些练习题,可以加深对全等三角形SAS和ASA的理解,并提高解题能力。

总结全等三角形SAS和ASA是八年级数学中的重要知识点,掌握这两种判定方法对于解决相关问题至关重要。

在理解概念的基础上,通过大量练习来加深对全等三角形的理解是非常必要的。

同时,注意在解题过程中灵活运用全等三角形的性质和其他相关知识点,以提高解题效率。

掌握好全等三角形SAS和ASA的知识点,不仅对于解决几何问题有帮助,还将为后续学习奠定坚实的基础。

三角形全等知识点归纳

三角形全等知识点归纳

三角形全等知识点归纳一、全等三角形的定义全等三角形就是能够完全重合的两个三角形。

就像两个一模一样的双胞胎,它们的形状和大小完全相同。

这里要注意哦,全等用符号“≌”来表示。

二、全等三角形的性质1. 全等三角形的对应边相等。

比如说一个三角形的三条边分别是3cm、4cm、5cm,那么和它全等的三角形的三条边也一定是3cm、4cm、5cm。

2. 全等三角形的对应角相等。

如果一个三角形的三个角分别是30°、60°、90°,那它全等的三角形的三个角也是30°、60°、90°。

三、全等三角形的判定方法1. SSS(边边边)如果两个三角形的三条边对应相等,那么这两个三角形全等。

这就好比我们搭积木,如果三根积木的长度都一样,那搭出来的形状肯定是一样的。

2. SAS(边角边)当两个三角形的两条边及其夹角对应相等时,这两个三角形全等。

可以想象一下,有两条边固定了长度和它们之间的夹角,那这个三角形的形状也就确定了。

3. ASA(角边角)两个三角形的两个角及其夹边对应相等,这两个三角形全等。

就像我们知道了两个角的大小和它们中间那条边的长度,这个三角形也就确定下来了。

4. AAS(角角边)两个角和其中一个角的对边对应相等的两个三角形全等。

这个可能稍微难理解一点,但是只要记住它也是一种判定方法就好啦。

5. HL(斜边、直角边)这是直角三角形特有的判定方法哦。

如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等。

四、全等三角形的应用1. 证明线段相等当我们要证明两条线段相等的时候,如果能找到包含这两条线段的两个全等三角形,那么根据全等三角形对应边相等的性质,就可以证明这两条线段相等啦。

2. 证明角相等同理,要证明两个角相等,也可以通过找到包含这两个角的全等三角形,利用全等三角形对应角相等的性质来证明。

全等三角形的知识点虽然有点多,但是只要我们理解了定义、性质和判定方法,并且多做一些练习题,就一定能掌握得很好哦。

全等三角形讲义知识点

全等三角形讲义知识点一、全等三角形的概念。

1. 定义。

- 能够完全重合的两个三角形叫做全等三角形。

重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

- 例如,在△ABC和△DEF中,如果△ABC与△DEF能够完全重合,那么A与D、B 与E、C与F是对应顶点,AB与DE、BC与EF、AC与DF是对应边,∠A与∠D、∠B与∠E、∠C与∠F是对应角。

2. 表示方法。

- 全等用符号“≌”表示,读作“全等于”。

- 例如,△ABC≌△DEF,表示△ABC全等于△DEF。

书写时要注意对应顶点写在对应的位置上。

二、全等三角形的性质。

1. 对应边相等。

- 如果△ABC≌△DEF,那么AB = DE,BC = EF,AC = DF。

- 这一性质可以用于求线段的长度。

例如,已知两个全等三角形的一组对应边的长度,就可以根据全等三角形对应边相等的性质求出另一组对应边的长度。

2. 对应角相等。

- 若△ABC≌△DEF,则∠A=∠D,∠B = ∠E,∠C = ∠F。

- 在解决角度问题时,这个性质非常有用。

比如在几何证明中,当证明两个角相等时,如果能证明包含这两个角的三角形全等,就可以得出角相等的结论。

三、全等三角形的判定。

1. SSS(边边边)判定定理。

- 内容:三边对应相等的两个三角形全等。

- 例如,在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。

- 应用:当已知两个三角形的三条边分别相等时,可以直接判定这两个三角形全等。

在实际解题中,可能需要通过计算或者已知条件推导出三边相等的关系。

2. SAS(边角边)判定定理。

- 内容:两边和它们的夹角对应相等的两个三角形全等。

- 即如果在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。

- 注意这里的角必须是两边的夹角。

在解题时,要准确找出两个三角形中对应的两边及其夹角。

3. ASA(角边角)判定定理。

初二数学全等三角形知识点总结

初二数学全等三角形知识点总结1. 什么是全等三角形全等三角形指的是具有相同形状和大小的三角形。

当两个三角形的所有对应边长和对应角度相等时,它们是全等三角形。

2. 判断全等三角形的条件两个三角形全等的判断条件有三个:•SSS(边边边)法则:当两个三角形的三条边分别对应相等时,它们是全等的。

•SAS(边角边)法则:当两个三角形的一个边和两个角分别对应相等时,它们是全等的。

•ASA(角边角)法则:当两个三角形的两个角和一个边分别对应相等时,它们是全等的。

3. 全等三角形的性质全等三角形具有以下性质:•对应边相等性质:全等三角形的对应边相等。

•对应角相等性质:全等三角形的对应角相等。

•全等三角形的三个内角和完全相等。

4. 全等三角形的应用全等三角形的知识在解决实际问题中有着广泛的应用。

•测量不可直接测量的长度:通过构造辅助的全等三角形,可以测量一些不可直接测量的长度。

•几何证明:全等三角形的性质可以用于几何证明过程中,简化证明的步骤。

•建模和仿真:在建模和仿真过程中,全等三角形的概念可以用于确定相似物体的尺寸和位置。

5. 解题技巧和注意事项在解题过程中,需要注意以下技巧和事项:•注意给定条件:仔细阅读题目,了解给定条件,判断是否可以使用全等三角形的知识进行解题。

•画图辅助理解:通过画图,可以更清晰地理解问题,辅助解题。

•注意证明过程:在使用全等三角形进行几何证明时,需要注意证明过程的严谨性和逻辑性。

•多做练习:通过多做一些练习题,加深对全等三角形知识的理解和应用能力。

6. 总结全等三角形是初中数学中重要的概念,它可以帮助我们解决实际问题,简化几何证明过程,并应用于建模和仿真。

在学习和应用全等三角形的过程中,我们需要掌握判断全等三角形的条件,了解全等三角形的性质,注意解题技巧和注意事项。

通过不断练习和应用,我们可以更好地理解和掌握全等三角形的知识。

全等三角形的知识点归纳

全等三角形知识点总结一、关于三角形的一些概念1、三角形的角平分线。

三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)三条角平分线交于一点(交点在三角形内部,是三角形内切圆的圆心,称为内心)2、三角形的中线三角形的中线也是一条线段(顶点到对边中点间的距离)三条中线线交于一点(交点在三角形内部,是三角形的几何中心,称为中心)3.三角形的高三角形的高线也是一条线段(顶点到对边的距离)注意:三角形的中线和角平分线都在三角形内。

二、三角形三条边的关系三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。

等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。

按接边相等关系来分类:推论三角形两边的差小于第三边。

不符合定理的三条线段,不能组成三角形的三边。

例如三条线段长分别为5,6,1人因为5+6<12,所以这三条线段,不能作为三角形的三边。

三、三角形的内角和定理三角形三个内角的和等于180°由定理可以知道,三角形的.三个内角中,只可能有一个内角是直角或钝角。

推论1:直角三角形的两个锐角互余。

三角形按角分类:三角形一边与另一边的延长线组成的角,叫三角形的外角。

推论2:三角形的一个外角等于和它不相邻的两个内角的和。

推论3:三角形的一个外角大于任何一个和它不相邻的内角。

∠1 >∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8;∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。

四、全等三角形能够完全重合的两个图形叫全等形。

两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。

全等三角形的对应边相等;全等三角形的对应角相等。

五、全等三角形的判定1、边角边公理:“SAS”注意:一定要是两边夹角,而不能是边边角。

2、角边角公理:ASA3、AAS4、SSS3、直角三角形全等的判定:斜边,直角边”或HL三角形的重要性质:三角形的稳定性。

全等三角形的知识点梳理

全等三角形的知识点梳理全等三角形一、结构梳理概念:全等:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同。

全等三角形特征:形:能够完全重合的两个三角形叫全等三角形。

特例全等三角形。

全等三角形条件。

画三角形。

二、知识梳理一)概念梳理1.全等图形:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同。

2.全等三角形:能够完全重合的两个三角形叫全等三角形。

符号“≌”表示图形大小和形状都相等。

二)性质与判定梳理1.全等图形性质:全等多边形的对应边、对应角分别相等。

全等三角形的对应边、对应角分别相等。

2.全等三角形的判定:判断两个三角形全等的方法有:1)三边对应相等的两个三角形全等,XXX为:SSS;2)两角和它们的夹边对应相等的两个三角形全等,XXX 为:ASA;3)两角和其中一角的对边对应相等的两个三角形全等,XXX为:AAS;4)两边和它们的夹角对应相等的两个三角形全等,XXX 为:SAS。

若是直角三角形,则还有斜边、直角边公理(HL)。

判断三角形全等的基本思路:要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),从而得到判定两个三角形全等的思路。

例如:已知两边,找另一边:SSS。

已知边为角的对边,找任一角:AAS。

已知两角,找任一边:ASA。

已知一边一角,找这条边上的对角:AAS。

边就是角的一条边,找该角的另一边:SAS。

找两角的夹边:ASA。

何格式错误,删除明显有问题的段落,改写如下。

学会辨认全等三角形的对应元素是很重要的。

方法是先找出全等三角形的对应顶点,再确定对应角和对应边。

例如,如果已知△ABC≌EFD,则A与E、B与F、C与D对应,因此三角形的边AB与EF、BC与FD、AC与ED对应。

对应边所夹的角就是对应角。

此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形知识点总结
全等三角形知识点总结
经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形 ,而该两个
三角形的三条边及三个角都对应相等。以下是全等三角形知识点总结,欢迎阅读。

一、推论
以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:
S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地
相等的话,该两个三角形就是全等三角形。

S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都
对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等三角
形。

A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应
地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等三角形。

A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应
地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等三角
形。

H.L.(hypotenuse -leg) (斜边、直角边):直角三角形中一条斜边和一条直角
边都对应相等,该两个三角形就是全等三角形。

不同的定义推理出不同的判定方法,这就是全等三角形的特殊之处。
二、基础知识梳理
(一)、基本概念
1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小
相等的图形;

即能够完全重合的`两个图形叫全等形。同样我们把能够完全重合的两个三角
形叫做全等三角形。

2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
(二)灵活运用定理
证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的
确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件
转化为所需的条件,从而使问题得到解决。运用定理证明三角形全等时要注意以下
几点。

1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对
应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)②任一组等角的对边相等(AAS)
(2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)
三、疑点、易错点
1、对全等三角形书写的错误
在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。切记不
要弄错。

2、对全等三角形判定方法理解错误;
3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定
势的消极影响。

相关文档
最新文档