三角形向量恒成立问题

三角形向量恒成立问题

在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c 。若对任意λ∈R ,不等式|λBC

????? ?BA ????? |≥|BC ????? | 恒成立,则c b +b c

的最大值为____ ∵|λBC ????? ?BA ????? |2≥|BC ????? |2 a 2λ2+c 2?2accosBλ≥a 2 a 2λ2?2accosBλ+c 2?a 2≥0 ∴△=4a 2c 2cos 2B ?4a 2(c 2?a 2)≤0 c 2cos 2B ?(c 2?a 2)≤0 a 2≤c 2sin 2B 也就是a ≤csinB 恒成立 令csinB =a

c 2+a 2?2accosB =b 2 c 2+(csinB )2?2(csinB )ccosB =b 2 c 2+c 2sin 2B ?2c 2sinBcosB =b 2 1+sin 2B ?2sinBcosB =b 2c 1+1?cos2B 2?sin2B =b 2c 2 32?(cos2B 2+sin2B)=b 2c 2 32?√52(cos2B 2=b 2c 2 b 2c 2取最大值3+√2,c b =1+√2,b c = y =b c +c b ,当b c 取最大值时y 取最大值 y =b c +c b =1+√5225+1=

三角形三边关系

第九章:多边形 9.1.3三角形三边关系 学习目标: 1.了解构成三角形的条件 2.知道三角形三边关系 3.了解三角形的稳定性 过程与方法: 1.经历探索构成三角形的条件的过程。 2.通过操作演示,让学生体验三角形的稳定性。 教学重点:三角形三边关系及其简单应用 教学难点:探究构成三角形的条件 教学关键:让学生用不同长度的三根棍子进行演示,从中体验三角形三边的关系及构成三角形的条件。 教学过程: 一复习引入 1.什么样的图形是三角形? 2.是不是任意三条线段都能组成三角形? 二探索新知 小组活动:让学生拿出预先准备好的四根小棒(6cm、5cm、3cm、2cm),让学生任意的取其中的三根,首尾连接,摆成三角形。 1、有哪几种取法? 2、是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以? 3、用三根什么样的小棒才能拼成三角形呢?你从中发现了什么? (1)6cm、5cm、2cm(2)6cm、5cm、3cm (3)2cm、3cm、5cm(4)2cm、3cm、6cm 经过实践可知: (1)、(2)可以摆出三角形 (3)、(4)不可以摆出三角形 我们可以发现这四根小棒中,如果较短的两根的和不大于最长的第三根,就不能组成三角形。 这就是说:三角形的任意两边的和大于第三边 a.b.c分别是三角形ABC的三边:则有 a+ b﹥c

a+ c﹥b b+ c﹥a 根据不等式的性质得出 c - b ﹤a b - a ﹤c a – c ﹤b 这就是说:三角形的任意两边的差小于第三边 练习: 下列长度的三条线段能否组成三角形?为什么? (1)3,4,8 () (2)2,5,6 () (3)5,6,10 () (4)3,5,8 () 思考 判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才解题经验,有没有更简便的判断方法? 技巧:只要满足较小的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形. 考考你:有人说他一步能走3米,你相信吗?能否用今天学过的知识去解答呢? 姚明腿长1.28米 答:不能。如果此人一步能走3米,由三角形三边的关系得,此人两腿长要大于3米,这与实际情况相矛盾,所以它一步不能走3米。 练习: 木工师傅小李要做一个三角形的木架,已有两根长分别为1m和1.5m的木条,需要再找一根木条,把它们首尾相接钉在一起。这根木条长0.4m合适吗?2.3米呢?这根木条长度为多少米才合适呢? 已知三角形两边的长度,第三边长度范围是: 第三边长度的范围你能确定吗? 两边之差<第三边<两边之和 牛刀小试: 1、四根小木棒的长度分别为2cm、5cm、9cm、10cm,任取3根可以搭出()个三角形。 A、1 B、2 C、3 D、4 2、三角形的两边分别为5和11,第三边a的取值范围是()

《三角形的三边关系》观课教学反思

《三角形的三边关系》观课教学反思 《三角形的三边关系》观课教学反思 《三角形的三边关系》观课教学反思(原创2016.10.20) 我观看了许超老师的《三角形的三边关系》一课,选择了“教师语言”的维度进行了观课,具体观课情况如下: 一、观课维度说明 在课堂教学过程中,数学知识的讲授、学生掌握知识的情况,师生之间间的情感交流等,都通过良好的数学语言来反馈。正是在此观念指导下,我通过教师的语言这一维度进行了观课。 二、观课分析 1.总体评价 《三角形的三边关系》是人教版四年级下册第五单元的内容。教学主要让学生动手操作,想像猜测,使学生知道三角形中任意两边之和大于第三边。总体来说,教师首先通过创设具体的生活情境入手,让学生任选两个地点来选择合适路线来猜测哪一条路线最近;然后教师通过小组活动让学生通过画一画、摆一摆、的方法进行了探究活动,从而得出结论:三角形中任意两边之和大于第三边;最后通过各种形式的练习进行了巩固拓展提升。在整个教学过程中,许老师通过顺畅的过渡语、富有表现力的体态语、真实自然的评价语,在知识的传递、学生学习效果等方面较好地完成了本节课预定的教学目标。 2.主要优点

(1)教学语言自然、简洁,富有指向性。在课始,教师直奔主题,“大家知道,许多数学问题都来源于生活,今天我们就到生活中寻找三角形的三边关系。”这样朴实、真实、自然的过渡语直接为下面的问题做好了铺垫。接着教师通过一个指向性的问题引发学生的思考,比如“小明要从家到学校,可以怎么走?”让学生初步感知生活中的三条路线就是数学中的三角形的三条边,从而激发学生的探究学习的好奇心和欲望。 (2)教学语言富有启发性,引领学生对问题进行深入思考。在学生自主探究过程中,教师通过富有启发性的语言巧妙进行设疑。比如“为什么同样是三段小棒,有的能围成一个三角形,有的不能围成一个三角形呢?”一石激起千层浪,学生的思维瞬间活跃起来。学生通过经历围的过程直观的发现:当两根小棒长度之和小于或等于第三根小棒时,不能摆成一个三角形;只有大于第三根小棒时,才能摆成一个三角形。从而得出三角形两边之和大于第三边的结论。此时,教师看似一句平淡的.提问“这样的归纳全面吗?”使学生敏锐地意识到结论的不严谨性。接着教师借助体态语言,在黑板上写出实验过程中的一种情形让学生用不等式表示,学生立即顿悟问题出在了“任意三角形”上面,从而对三角形三边关系的特征有了更进一步的认识和理解。结论探究出来后,教师并没有止于这一步,而是又抛出一个更具挑战性的问题,提问学生“我们实验的结果严密吗?”目的是让学生意识到,动手实践有时会存在疑点偏差,必须通过理性作图这一过程来验证实验的正确性,培养了学生思维的严谨性。

例说三角形三边关系的几种典型运用

例说三角形三边关系的几种典型运用 三角形的三条边之间主要有这样的关系:三角形的两边的和大于第三边,三角形的两边的差小于第三边.利用这两个关系可以解决许多典型的几何题目.现举例说明. 一、已知两边求第三边的取值范围 例1用三条绳子打结成三角形(不考虑结头长),已知其中两条长分别是3m和7m,问第三条绳子的长有什么限制. 解析根据三角形三边之间关系定理和推论可得结论:已知三角形的两边为a、b,则第三边c满足|a-b|<c<a+b. 设第三条绳子的长为x m,则7-3<x<7+3,即4<x<10.故第三条绳子的长应大于4m且小于10m. 二、判定三条线段能否围成三角形 例2以下列各组线段为边,能组成三角形的是() A.1cm,2cm,4cm B.8cm,6cm,4cm C.12cm,5cm,6cm D.2cm,3cm,6cm 解析根据三角形的三边关系,只需判断较小的两边之和是否大于最大边即可.因为6+4>8,由三角形的三边关系可知,应选B. 例3 有下列长度的三条线段能否组成三角形? (1)a-3,a,3(其中a>3); (2)a,a+4,a+6(其中a>0); (3)a+1,a+1,2a(其中a>0). 解析(1)因为(a-3)+3=a,所以以线段a-3,a,3为边的三条线段不能组成三角形. (2)因为(a+6)-a =6,而6与a+4的大小关系不能确定,所以以线段a,a+4,a+6为边的三条线段不一定能组成三角形. (3)因为(a+1)+(a+1)=2a+2>2,(a+1)+2a=3a+1>(a+1),所以以线段a+1,a +1,2a为边的三条线段一定能组成三角形. 三、确定组成三角形的个数问题 例4、现有长度分别为2cm、3cm、4cm、5cm的木棒,从中任取三根,能组成三角形

青岛版四年级下册小学数学《三角形三边关系》教学设计

三角形三边关系

教学内容:青岛版四年级上册第五单元信息窗二82页 教材简析: “三角形三边的关系”是青岛版课程标准实验教材四年级上册“三角形”中的一课时,该课时是在学生初步了解了三角形的定义的基础上,进一步研究三角形的特征,即三角形任意两边的和大于第三边。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准,熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。 教学目标: 1、让学生通过实践,体验探索三角形边的关系的过程,培养学生的问题意识,以及提出问题、解决问题的能力。 2、激发学生对数学的浓厚兴趣和热爱,引导学生树立自己去探求真理的志向,享受成功的喜悦。 3、能自觉运用三角形的有关知识解决生活中的问题,体验三角形知识与生活的密切联系。 教学重难点: 三角形三边的关系的探索。 教学准备: 学具:小棒若干根、合作探究表。 教学过程: 课前游戏:五足赛跑 师:刚才是他在中间,还可以怎样组合呢?会玩这个游戏了吗?那同学们可以课下玩玩看。 【设计意图:通过课前游戏,调节课前师生紧张的情绪,拉近师生距离。初步让学生体会三人两两不同的组合方式,为探究三边关系埋下伏笔。】 一、5分钟:合作习惯训练

师:前面我们认识了三角形,知道了三角形是由三条线段围成的图形,这节课我们继续研究三角形。 师:三根小棒,如果每根小棒代表一条线段,用它来围成一个三角形,小组四人必须都围成才算成功,比比哪个小组最快! 师:现在我们知道了,不是任意的三根小棒都能围成三角形。三角形的这三边存在着什么样的秘密呢?这节课我们就来研究三角形三边的关系。 【设计意图:实验小学课堂教学“5+35+X”教学模式,每节课前5分钟被称之为“五分钟习惯加油站”。本月训练主题是合作的习惯。通过小组挑战,既考验小组相互配合的能力,同时学生亲身经历把三根小棒围成或者围不成三角形的过程,从亲身体验的基础上认知不是任意的三根小棒都能围成三角形,从而也激发学生探索三角形三边关系的欲望。】 二、小组合作,猜测探究 1、师:刚才谁的小棒围不成三角形,围给给大家看一看。真的围不成吗?为什么不能围成三角形? 师:如果可以改变小棒的长度,该怎么办呢? 【设计意图:小棒太短围不成三角形,怎么办?顺着学生的思维:换小棒,换成多长的合适呢?猜想是探究活动中的一种非常重要的思维方式。如何使学生学会猜想,如何引导学生进行合理的猜想,既是本节课走向成功的一个关键,也是培养学生探究意识的起点。】 2、师:换成几厘米的呢? 师:说一说为什么觉得换成5厘米能围成? 生交流猜想理由,并操作验证。 师:还能换成几厘米呢?小组合作继续探究:满足什么条件才能围成三角形? 集体交流: 师小结研究结果:看来大家都认为两边之和大于第三边才能围成三角形,老师把这个发现记录下来。(板书:两边之和大于第三边。) 3、用已有结论初步验证猜测:根据咱们的结论,同学们继续猜,还能换成几

平面向量中的三角形四心问题

平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在 给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。 一、重心(baryce nter) 三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。 结论1 : 若G为ABC所在平面内一点,则G 是三角形的重心 证明:设BC中点为D,则2GD GA GB GC 0 GA GB GA 2GD, 这表明,G在中线AD上 同理可得G在中线BE,CF上 故G为ABC的重心

结论2: 1 —. 若P 为 ABC 所在平面内 点,贝S PG (PA PB 3 G 是ABC 的重心 PC) - 1 — 证明:PG (PA PB PC) (PG PA) (PG PB) (PG PC) 0 GA GB GC 0 G 是ABC 的重心 二、垂心(orthocenter) 三角形的三条高线的交点叫做三角形的垂心。 结论3: H 是ABC 的垂心 证明:HA HB HB HC HB ? S- HB AC 0 HB AC 同理,有 HA CB,HC AB 故H 为三角形垂心 若H 为ABC 所在平面内一点,则HA HB HB HC HC HA (HA

结论4: 2 ------ 2 ------ 2 ------ 2 -------- 2 ------ 2 若H 为 ABC 所在平面内一点,贝U HA BC HB AC HC AB H 是ABC 的垂心 2 2 2 2 HB CA 得,HA (HB HC)2 HB (HC HA)2 HB HC HC HA 同理可证得,HA HB HB HC HC HA 由结论3可知命题成立 三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点 做圆心可以画三角形的外接圆。 结论5: 若0是ABC 所在平面内一点,则 OA OB OC 0是ABC 的外心 证明:由外心定义可知 命题成立 2 2 证明:由HA BC 结论6: 若0是ABC 所在平面内一点,则

三角形三边之间的关系教案

《三角形边的关系》教学案例 一、三角形边的关系一课教学设计的研究背景与理论依据。 《数学课程标准》在数学教学活动要求中明确指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究、合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。 建构主义学习理论也强调学习过程中学生主动地建构知识,强调学习过程应以学生为中心,教师不再是以自己的看法及课本现有的知识来直接教给学生,学习者必须通过自己主动的、互动的方式学习新的知识,学生在学习的过程中是自主的、能动的、富于创造性的。因此,学生必须主动地参与到整个学习过程中,要根据自己先前的经验来建构新知识的意义,这样,传统的老师“说”、学生“听”的学习方式就不复存在。 现代教学论观点认为数学教师不能充当数学知识施舍者的角色。教师不该是至高无上的权威。事实上,学生的数学素质是通过数学活动而得到,即学生自己通过研究、比较、建构,逐步形成自己的知识框架。所以,应多设计一些数学活动课,让学生真正动起来,非常有必要。 实践证明,数学学习对于学生来说不但需要观察,更需要实验。事实上,孩子并不喜欢老师给他们一些结论,他们更喜欢通过实验、操作等手段进行学习。因此我将这节课设计为活动课,引导学生在实验中发现数学,欣赏数学。通过学生参与猜一猜、摆一摆等实验活动,创造性地使用教材。 本课内容是根据《标准》要求,让学生在实验活动中体验探索的过程。目的是使学生认识到数学与现实世界联系,认识数学知识之间的内在联系,同时又提高学生自主探究、动手实践、合作交流等能力。 二、教学背景分析: 本课内容是学生已经通过观察、操作、比较、概括等学习方法体验了长方形、正方形的基础上,对三角形的三边特点进行研究的。学生之前具备了一定的观察、操作能力,掌握了一定的数学技能,初步具备了观察分析、总结概括的能力。但是由于受到学生心智发展水平和生活经验等诸方面的影响,加上三角形边的特点与正方形和长方形等四边形的特点还有一定的差异性的,更不容易直接观察出来。学生对于三角形三边关系的认识会更困难,故本课旨在使学生主动地参与到数学活动中来,让学生充分体会数学活动带给他们的

三角形三边关系归纳

三角形三边关系的考点问题 三角形的三条边之间主要有这样的关系:三角形的两边的和大于第三边,三角形的两边的差小于第三边.利用这两个关系可以解决许多典型的几何题目.现举例说明. 一、确定三角形某一边的取值范围问题 根据三角形三边之间关系定理和推论可得结论:已知三角形的两边为a、b,则第三边c 满足|a-b|<c<a+b. 例1 用三条绳子打结成三角形(不考虑结头长),已知其中两条长分别是3m和7m,问第三条绳子的长有什么限制. 简析设第三条绳子的长为x m,则7-3<x<7+3,即4<x<10.故第三条绳子的长应大于4m且小于10m。 二、判定三条线段能否组成三角形问题 根据三角形的三边关系,只需判断最小的两边之和是否大于第三边即可. 例2(1)下列长度的三根木棒首尾相接,不能做成三角形框架的是() A,5cm、7cm、10cm B,7cm、10cm、13cm C,5cm、7cm、13cm D,5cm、10cm、13cm (2)(2004年哈尔滨市中考试题)以下列各组线段为边,能组成三角形的是()A,1cm,2cm,4cm B,8cm,6cm,4cm C,12cm,5cm,6cm D,2cm,3cm,6cm 简析由三角形的三边关系可知:(1)5+7<13,故应选C;(2)6+4>8,故应选B. 例3 有下列长度的三条线段能否组成三角形? (1)a-3,a,3(其中a>3); (2)a,a+4,a+6(其中a>0); (3)a+1,a+1,2a(其中a>0). 简析(1)因为(a-3)+3=a,所以以线段a-3,a,3为边的三条线段不能组成三角形. (2)因为(a+6)-a =6,而6与a+4的大小关系不能确定,所以以线段a,a+4,a+6为边的三条线段不一定能组成三角形. (3)因为(a+1)+(a+1)=2a+2>2,(a+1)+2a=3a+1>(a+1),所以以线段a +1,a+1,2a为边的三条线段一定能组成三角形. 三、求三角形某一边的长度问题 此类问题往往有陷阱,即在根据题设条件求得结论时,其中可能有一个答案是错误的,需要我们去鉴别,而鉴别的依据就是这里的定理及推论. 例4 已知等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个三角形的腰长. 简析如图1,设腰AB=x cm,底BC=y cm,D为AC边的中点.根据题意,得x+1 2 x= 12,且y+1 2 x=21;或x+ 1 2 x=21,且y+ 1 2 x=12.解得x=8,y=17;或x=14,y =5.显然当x=8,y=17时,8+8<17不符合定理,应舍去.故此三角形的腰长是14cm. 例5一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,则第三边长为______. 简析设第三边长为x厘米,因为9-2

向量与三角形四心的一些结论

【一些结论】:以下皆是向量 1 若P是△ABC的重心PA+PB+PC=0 2 若P是△ABC的垂心PA?PB=PB?PC=PA?PC(内积) 3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外心|PA|2=|PB|2=|PC|2(AP就表示AP向量|AP|就是它的模) 5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心 6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心 8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点 【以下是一些结论的有关证明】 1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与

三角形三边关系性质的应用

三角形三边关系性质的应用 “三角形任意两边的和总大于第三边”这个性质是三角形最基本的性质之一,它的应用十分广泛,下面举例说明. 例1 等腰三角形的两边为4,8,则它的周长为_______. 分析:从表面上看本题有两种可能,以4、4、8为边的等腰三角形和以8、8、4为边的等腰三角形,但前者不符合三角形的三边关系,所以周长为20. 例2 不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么最大边上的高与最小边上的高的比k的取值范围是 [ ] (98年江苏省初中数学竞赛题) 解:如图1,设BC=a,AC=b(a>b),高AD、BE分别为h a,

说明:利用三角形的三边关系衡量能否组成三角形或已知三角形的三边确定某边的敢值范围时,要注意性质中“大于”二字,而不是相等,“任意”两边而不是其中两边. 例3四边形ABCD中,O为对角线交点, 解:如图2,在△ABC中,由三边关系得 AB+BC>AC,① 同理可得: BC+CD>BD,② CD+DA>AC,③ DA+AB>BD.④ 由①②③④得2(AB+BC+CD+DA)>2(BD+AC). ∴AB+BC+CD+DA>BD+AC 在△AOB中 OA+OB>AB,① 同理得OB+OC>BC,② O C+OD>CD ③ OD+OA>AD ④ 由①②③④得2(OA+OB+OC+OD)>AB+BC+CD+DA. 例4若a、b、c为△ABC的三边,求证关于x的方程b2x2+(b2+c2-a2)x+c2=0没有实数根. 证明:∵△=(b2+c2-a2)2-4b2c2=(b+c+a)(b+c-a)(b-c+a)(b-c-a) 在△ABC中,∵b+c>a,∴b+c-a>0. 同理 b-c+a>0,b-c-a<0.

例讲三角形中与向量有关的问题

例讲三角形中与向量有关的问题 教学目标:1、三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法 2、向量的加法、数量积等性质 3、利用向量处理三角形中与向量有关的问题 4、数形结合 教学重点:灵活应用向量性质处理三角形中与有关向量的问题 教学难点:针对性地运用向量性质来处理三角形中与向量有关的问题 教学过程: 1、课前练习 1.1已知O 是△ABC 内的一点,若222OC OB OA ==,则O 是△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 1.2在△ABC 中,有命题①=-;②=++;③若()()0=-?+AC AB AC AB ,则△ABC 为等腰三角形;④若0>?,则△ABC 为锐角三角形,上述命题中正确的是〔 〕 A 、①② B 、①④ C 、②③ D 、②③④ 2、知识回顾 2.1 三角形的重心、内心、垂心、外心及简单的三角形形状判断方法 2.2 向量的有关性质 2.3 上述两者间的关联 3、利用向量基本概念解与三角形有关的向量问题 例1、已知△ABC 中,有0=???+BC 21=,试判断△ABC 的形状。 练习1、已知△ABC 中,=,=,B 是△ABC 中的最大角,若0

5、运用向量等式图形化解与三角形有关的向量问题 例3、已知P 是△ABC 所在平面内的一动点,且点P 满 足 ()+∞∈?? ?++=,0,λλOA OP ,则动点P 一定过△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 练习2、已知O 为平面内一点,A 、B 、C 平面上不共线的三点,动点P 满足 ()+∞∈?? ? ??++=,0,21λλ,则动点P 的轨迹一定通过△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 例4、已知O 是△ABC 所在平面内的一点,动点P 满 足 ()+∞∈?? ?++=,0,λλ,则动点P 一定过△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 练习3、已知O 是△ABC 所在平面内的一点,动点P 满 足 ()+∞∈?? ?+++=,0,2λλOP ,则动点P 一定过△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 例5、已知点G 是的重心,过G 作直线与AB 、AC 分别相交于M 、N 两点,且 y x ?=?=,,求证:311=+y x 6、小结 处理与三角形有关的向量问题时,要允分注意数形结合的运用,关注向量等式中的实数互化,合理地将向量等式和图形进行转化是处理这类问题的关键。 7、作业 1、已知O 是△ABC 内的一点,若=++,则O 是△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 2、若△ABC 的外接圆的圆心为O ,半径为1,且=++,则?等于

三角形三边关系的常见应用

专题一 三角形三边关系的常见应用 一. 专题目标 1. 了解和掌握三角形的定义和三角形的三边关系 2. 通过例题学习,学会用三边关系解决“能否构成三角形”类型的题目 3. 通过例题学习,学会用三边关系解决“第求三边长或可能性”类型的题目 4. 通过例题学习,学会用三边关系解决“三角形中和边长之间的关系”类型的题目 5. 通过例题学习,学会用三边关系解决“绝对值化简”类型的题目 二. 专题环节 三角形的三边关系: 1. 在一个三角形中,任意两边之和大于第三边 2. 在一个三角形中,任意两边之差小于第三边 三角形的定义:由不在同一直线上的三条线段首尾依次连结所组成的图形叫做三角形。 一. 能否构成三角形 例1,1、若等腰三角形的两边长分别为3和7,则它的周长为_______; 若等腰三角形的两边长分别是3和4,则它的周长为_____. 分析:根据线段MN 平行于Y 轴,MN=M N y y -,分别讲M 点所在二次函数解析式和N 点所在AB 直线解析式 求得代入即可得到MN 关于x 的函数关系式。 详解:设直线AB 的解析式为y 2=kx +b , 由y 1=-x 2 +2x +3求得B 点的坐标为(0,3).把A (3,0),B (0,3)代入y 2=kx +b ,解得k =-1 b =3. ∴直线AB 的解析式为y 2=-x +3. ∵MN ∥y 轴,M (x,-x 2+2x +3),N(x,-x +3) ∴MN=M N y y -=-x 2+2x +3-(-x +3)=-x 2+3x=-(x-32)2 +94 (0≤x ≤3)

∵a=-1<0 ∴当x=32时,线段MN 最大值为94 关键词:二次函数表示线段长 一 图形问题:周长 例2,如图,已知二次函数2 45y x x =--的图像与坐标轴交于点A (-1,0)和B (0,-5) 对称轴存在一点P ,使得△ABP 的周长最小,请求出P 的坐标 分析: 二次函数中的周长最小值,往往是用利用轴对称求线段最值的办法来获得的: 即:△ABP 周长为AB+BP+AP ,由于AB 是定线段,所以周长最小值转化 为PA+PB 最小,所以可以做A 关于对称轴的对称点C ,连接BC,和对称轴的交点P .此时PA+PB 获得最小值BC , 此时只需要将对称轴的横坐标代入BC 所在直线解析式,就可以求出P 点坐标。 详解:由题意对称轴为x=2, 如图,抛物线和x 轴另个交点为C (),0c x , P 为AB 上任意一点, 根据A 和C 关于对称轴对称,-1+c x =2×2,∴c x =5, C(5,0) △ABP 周长为AB+BP+AP ,由于AB 长度一定,可知PA+PB 获得最小,即可使得周长最小。 根据轴对称求最值方法可知:A 关于对称轴的对称点为C ,PA=PC,所以要使得PC+PB 最小, P ,B,C 三点成一线时候此时PC+PB 最小,即为BC 长。 此时P 点 即为直线BC 和对称轴的交点。 设BC 所在直线y=kx+b,将B (0.-5)和C (5,0)坐标代入得 505 k b b +=??=-? 解得k=-1,b=-5,所以BC 所在直线解析式为:y=-x -5 将x=2,代入得y=-3,所以P 点坐标为(2,-3),此时△ABP 周长获得最小值。 关键词:轴对称求线段和最小值,二次函数应用 一.图形问题:面积 例3.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,其他三边用总长为60m 栅栏围住(如图),若设绿化带的BC 边长为x m ,绿化带的面积为y 平方米. (1)求y 与x 的函数关系式,并写出自变量的取值范围; (2)请问绿化带面积的最大值为多少,此时BC 长为多少?

三角形“四心”向量表示

三角形四心的向量问题 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?0OC OB OA =++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心??=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心 则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4)O 是内心ABC ?的充要条件是 | CB || CA |OC | BC || BA |( OB AC | AB |OA =-?=-?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则 刚 才 O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是c b a =++

(完整版)平面向量与三角形四心问题.docx

平面向量基本定理与三角形四心 已知 O 是ABC 内的一点,BOC ,AOC , AOB 的面积分别为S A, S B, S C,求证:S A? OA S B? OB S C? OC 0 A 如图 2延长 OA 与 BC 边相交于点 D 则 O B C 图 1 BD S A BD S BOD S ABD S BOD S C DC S ACD S COD S ACD S COD S B OD DC OB BD OC BC BC A O S B OB S C OC S B S C S B S C B D C OD S BOD S COD S BOD S COD S A OA S BOA S COA S BOA S COA S B S C 图2 OD S A OA S B S C S A OA S B OB S C OC S C S B S B S C S B S C S A? OA S B? OB S C? OC 0 推论 O 是 ABC 内的一点,且 x?OA y?OB z?OC0 ,则S BOC: S COA: S AOB x : y : z

有此定理可得三角形四心向量式O 是ABC 的重心 S BOC: S COA: S O 是ABC 的内心 S BOC: S COA: S O 是ABC 的外心 S BOC: S COA: S AOB AOB AOB 1:1:1OA OB OC0 a : b : c a ?OA b ?OB c ?OC0 sin 2A :sin 2B : sin 2C sin 2A ? OA sin 2B ? OB sin 2C ?OC0 O 是ABC 的垂心 S BOC: S COA: S AOB tan A: tan B : tan C tan A ?OA tan B ? OB tan C ?OC0 C O A D B 证明:如图 O 为三角形的垂心, tan A CD , tan B CD tan A: tan B DB : AD AD DB S BOC: S COA DB : AD S BOC: S COA tan A : tan B 同理得 S COA: S AOB tan B : tan C , S BOC: S AOB tan A : tan C S BOC: S COA: S AOB tan A: tan B : tan C 奔驰定理是三角形四心向量式的完美统一

三角形三边关系(带答案)

【考点训练】三角形三边关系-2 一、选择题(共10小题) 1.(2011?青海)某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形, 4.(2012?长沙)现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可 二、填空题(共10小题)(除非特别说明,请填准确值) 11.(2007?安顺)如果等腰三角形的两边长分别为4和7,则三角形的周长为_________.12.(2004?云南)已知三角形其中两边a=3,b=5,则第三边c的取值范围为_________.

13.(2007?柳州)如果三角形的两条边长分别为23cm和10cm,第三边与其中一边的长相等,那么第三边的长为_________cm. 14.(2006?连云港)如图,∠BAC=30°,AB=10.现请你给定线段BC的长,使构成△ABC能惟一确定.你认为BC的长可以是_________. 15.(2005?泸州)一个等腰三角形的两边分别为8cm和6cm,则它的周长为_________cm. 16.(2007?贵阳)在△ABC中,若AB=8,BC=6,则第三边AC的长度m的取值范围是_________. 17.(2006?梧州)△ABC的边长均为整数,且最大边的边长为7,那么这样的三角形共有_________个. 18.(2004?芜湖)已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________. 19.(2004?玉溪)已知一个梯形的两底长分别是4和8,一腰长为5,若另一腰长为x,则x的取值范围是_________. 20.(2004?嘉兴)小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是:_________,_________,_________(单位:cm). 三、解答题(共10小题)(选答题,不自动判卷) 21.已知三角形的三边互不相等,且有两边长分别为5和7,第三边长为正整数. (1)请写出一个三角形符合上述条件的第三边长. (2)若符合上述条件的三角形共有n个,求n的值. (3)试求出(2)中这n个三角形的周长为偶数的三角形所占的比例. 22.如果一个三角形的各边长均为整数,周长大于4且不大于10,请写出所有满足条件的三角形的三边长. 23.一个三角形的边长分别为x,x,24﹣2x, (1)求x可能的取值范围; (2)如果x是整数,那么x可取哪些值? 24.已知三角形的三边长分别为2,x﹣3,4,求x的取值范围. 25.三角形的三边长分别为(11﹣2x)m、(2x2﹣3x)cm、(﹣x2+6x﹣2)cm

三角形三边关系案例

“三角形三边关系”教学案例分析 案例背景: 此前,学生已经初步认识了三角形,知道三角形的特点以及三角形的稳定性等知识,为学习本课内容,探究“三角形任意两边的和大于第三边”做好了准备。课前调查发现,学生都知道了三角形是由3条线段围成的图形,但绝大多数的学生却不清楚并不是任意的3条线段都能围成三角形。本节课的教学设计就是基于学生这样的认知特点展开的。开始通过师生谈话,复习三角形的概念和特点,通过动手操作摆三角形(学生发现有的摆不成功),这样学生会产生强烈的认知冲突。这样的设计,是希望能最大限度地激发学生强烈的探究欲望,然后通过合理的猜想、积极的验证,归纳出“三角形任意两边的和大于第三边”。最后是让学生用发现的规律解释身边的一些生活现象,解决生活中的一些简单问题,既巩固了新学知识,又体现数学与生活的密切联系。 课堂写真: 片段(一) 师:同学们对三角形已经有哪些了解?是不是任意三条线段都能围成三角形呢?老师这里有三根小棒(代替线段),分别长3、5、10厘米,这3根小棒能围成一个什么图形? 生:三角形。 师:谁愿意上来围一围?围得时候要注意小棒首尾相连。 生:怎么围不成三角形? 师:是呀,这三根小棒为什么围不成三角形呢? 生:有一根小棒太短了 生:下面一根长了一点。 师:同学们说的都有道理,看来要围成三角形,须考虑三条小棒的长短关系。那么三角形的三条边之间到底有什么关系呢?从而引出课题 分析点评 从抽象的知识中发现问题,激发学生的求知欲。在片断一中,教师故意拿出摆不成三角形的三根小棒(3、5、10),首先提出这三根小棒能围成什么图形?学生异口同声的回答是三角形,然后让学生在黑板演示,结果不能围成三角形。学生感到很意外,激发了学生进一步探究的兴趣。以此引出三角形三边关系的课题。 片段(二) 师:小明去上学,他从家到学校可以怎么走?哪条路最近?(课件演示) 师:你怎么知道中间这条路最近? 生1:这条路是直的,经过邮局的路拐了弯,绕远了。 生2:这是一条直线(线段),(两点间)直线(线段)最短。 师:是啊!拐了弯的路比直走的路远。

和三角形有关的向量问题

与三角形有关的向量问题 三角形有关的问题可以很好体现向量的核心问题如和差、数乘、数量积。在与三角形的重心、垂心、外心、内心等问题的联系上特别值得重视。 一、 三角形基本问题 例1. 如图?ABC 中,= c ,= a ,= b , 则下列推导不正确的是…(D ) A .若a ?b < 0,则△ABC 为钝角三角形。 B .若a ?b = 0,则△AB C 为直角三角形。 C .若a ?b = b ?c ,则△ABC 为等腰三角形。 D .若c ?(a + b + c ) = 0,则△ABC 为正三角形。 解:A .a ?b = |a ||b |θcos < 0,则θcos < 0,θ为钝角 B .显然成立 C .由题设:|a |cos C = |c |cos A ,即a 、c 在b 上的投影相等 D .∵a + b + c = 0, ∴上式必为0,∴不能说明△ABC 为正三角形 例2. 如图:已知MN 是△ABC 的中位线, 求证:MN =2 1BC , 且MN ∥BC 证:∵MN 是△ABC 的中位线, ∴21=, 21= ∴2 1)(212121=-=-=-= ∴MN =2 1BC , 且MN ∥BC 例 3. 已知:平面上三点O 、A 、B 不共线,求证:平面上任一点C 与A 、B 共线的充要条件是存在实数λ和μ,使=λ+ μ,且λ+ μ = 1。 证:必要性:设A ,B ,C 三点共线,则可设AC = t AB (t ∈R) 则OC =OA +AC =OA + t AB =OA + t (OB -OA ) = (1-t )OA + t OB 令1-t =λ,t = μ,则有:=λ+ μ,且λ+ μ = 1 充分性:=-=λ+ μ-= (λ-1)+ μ = -μ+ μ= μ(-) = μ ∴三点A 、B 、C 共线 例4.(04浙江) 已知平面上三点C B A ,, 3= 4= 5=,则 AB CA CA BC BC AB ?+?+?的值等于 一般地对于?ABC 的结论是 A B C N M

三角形三边关系的巧用

专项训练一:三角形三边关系的巧用 名师点金:三角形的三边关系应用广泛,利用三边关系可以判定三条线段能否组成三角形、已知两边求第三边的取值范围、证明线段不等关系、化简绝对值、求解等腰三角形的边长及周长等问题. 判断三条线段能否组成三角形 1.下列每组数分别表示三根木棒的长度,将它们首尾顺次连结后,不能摆成三角形的一组是() A.4,4,8 B.5,5,1 C.3,7,9 D.2,5,4 2.有四条线段,长度分别为4 cm,8 cm,10 cm,12 cm,选其中三条组成三角形,试问可以组成多少个三角形? 求三角形第三边的长或周长的取值范围 3.一个三角形的两边长分别为5和3,第三边的长是整数,且周长是偶数,则第三边的长是() A.2或4 B.4或6 C.4 D.2或6 4.如果三角形的两边长分别为3和5,则周长l的取值范围是() A.6<l<15 B.6<l<16 C.11<l<13 D.10<l<16 5.若三角形的三边长是三个连续自然数,其周长m满足10<m<22,则这样的三角形有________个.

三角形的三边关系在等腰三角形中的应用 6.等腰三角形的一条边长为6,另一条边长为13,则它的周长为() A.25 B.25或32 C.32 D.19 7.已知,等腰三角形ABC的底边BC=8 cm,|AC-BC|=2 cm,则AC=________. 8.若等腰三角形的底边长为4,且周长小于20,则它的腰长b的取值范围是____________. 三角形的三边关系在代数中的应用 9.已知三角形三边长分别为a,b,c,且|a+b-c|+|a-b-c|=10,求b的值. 10.已知a,b,c是△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a 为方程|x-4|=2的解,求△ABC的周长. 利用三角形的三边关系证明边的不等关系 11.如图,已知D,E为△ABC内两点,求证:AB+AC>BD+DE+CE.

平面向量与三角形四心问题-浙江省台州市书生中学2020届高三数学专题复习讲义(无答案)

平面向量与三角形四心问题 问题探究: 已知点G 是ABC 内任意一点,点 M 是ABC 所在平面内一点.试根据下列条件判断G 点可能通过ABC 的__________心.(填“内心”或“外心”或“重心”或“垂心”). (1)若存在常数λ,满足()(0)AB AC MG MA AB AC λλ=++≠,则点G 可能通过ABC 的____. (2)若点D 是ABC 的底边BC 上的中点,满足GD GB GD GC =,则点G 可能通过ABC 的_______. (3)若存在常数λ,满足()(0)sin sin AB AC MG MA AB B AC C λλ=++≠,则点G 可能通过ABC 的 _______. (4)若存在常数λ,满足()(0)cos cos AB AC MG MA AB B AC C λλ=++≠,则点G 可能通过ABC 的 ________. 一.基础梳理 (一)重心:中线的交点 重心性质:(1)重心是中线的三等分点—重心到顶点的距离与到对边中点的距离之比为2:1 (2)重心的向量公式:=++G ?是ABC ?的重心O ?是平面内任意一点,且 1()3 OG OA OB OC =++ (3)重心的坐标公式:??? ????++=++=33321321y y y y x x x x

(4)重心面积公式:G 是ABC ?的重心ABC BCG ACG ABG S S S S ????= ==?3 1 ?重心到3条边的距离与3条边的边长成反比 (二)垂心:高线的交点,高线与对应边垂直 垂心的向量表示:??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. (三)内心:角平分线的交点(内切圆的圆心), (1)角平分线上的任意点到角两边的距离相等; (2)内心的向量式:AB c =,AC b =,BC a = ,且0aIA bIB cIC ++=,?I 是 ABC △的内心 (3)设O 为△ABC 所在平面内任意一点, c b a c b a OI ++++= ,?I 是 ABC △的内心 (4)内心坐标公式:内心I ),(c b a cy by ay c b a cx bx ax C B A C B A ++++++++ (四)外心:中垂线的交点(外接圆的圆心) (1)外心到三角形各顶点的距离相等; (2)外心的向量式:222OA OB OC ==?O 是ABC △的外心. ?().().().0OA OB AB OB OC BC OA OC AC +=+=+= ※ 锐角三角形的外心在三角形的内部,钝角三角形的外心在三角形的外部,直角三角形的外心在 斜边的中点. 二、典例分析 例1、 证明:(1)重心到顶点的距离与到对边中点的距离之比为2:1.

相关文档
最新文档