第7章 刚体力学

合集下载

刚体力学

刚体力学

刚体力学(一)选择题 1.一刚体以每分钟60转绕z 轴做匀速转动(ω 沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i157.0 125.6 94.2++=v (B) j i 8.18 1.25+-=v (C) j i 8.18 1.25--=v (D) k 4.31=v [ ] 2.如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]3.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变.(C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ]4.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6.有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .(C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]7.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于β. (B) 大于β,小于2 β.(C) 大于2 β. (D) 等于2 β. [ ]8.质量为m 、长度为l 的匀质细杆AB ,对通过杆的中心C 与杆垂直的轴的转动惯量为12/21ml J =,对通过杆端A (或B )与杆垂直的轴的转动惯量为2231ml J =.O 为杆外一点,AO =d ,AO 与AB 间的夹角为θ,如图所示.若杆对通过O 点并垂直于O 点和杆所在平面的轴的转动惯量为J ,则(A)J =J 1+m (d sin θ)2=ml 2/12+md 2sin 2θ(B)J =J 2+m (d sin θ)2=31ml 2+md 2sin 2θ (C)J =J 2+md 2=31ml 2+md 2 (D)J =J 1+m [(21l )2 +d 2–2(21l )d cos θ ]=31ml 2+md 2-mld cos θ [ ] 9.花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(A)31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ] 10.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为(A)L 32v . (B) L54v . (C) L 76v . (D) L98v . (E) L 712v . [ ] 11.如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) ML m 23v . (C) MLm 35v . (D) ML m 47v . [ ] 12.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ ]13.一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2.如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为(A) 2. (B) 3.(C) 2. (D) 3. [ ]O v 俯视图俯视图14.一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O在竖直平面内转动.杆的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要(A) ω 0≥l g 7/34. (B) ω 0≥l g /4.(C) ω 0≥()l g /3/4. (D) ω 0≥l g /12. [已知细杆绕轴O 的转动惯量J =(7/48)ml 2] [ ]15.图(a)为一绳长为l 、质量为m 的单摆.图(b)为一长度为l 、质量为m 能绕水平固定轴O 自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成θ 角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以ω 1、ω 2表示.则:(A) 2121ωω=. (B) ω 1 = ω 2. (C) 2132ωω=. (D) 213/2ωω=. [ ] 16.如图所示,一均匀细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动,杆长l = (5/3) m .今使杆从与竖直方向成60°角的位置由静止释放(g 取10 m/s 2),则杆的最大角速度为(A) 3 rad /s . (B) π rad /s . (C) 5 rad /s . (D) 53 rad /s . [ ]17.如图所示,将一根质量为m 、长为l 的均匀细杆悬挂于通过其一端的固定光滑水平轴O 上.今在悬点下方距离x 处施以水平冲力F ,使杆开始摆动,要使在悬点处杆与轴之间不产生水平方向的作用力,则施力F 的位置x 应等于(A) 3l / 8. (B) l / 2.(C) 2l / 3. (D) l . [ ]18.一均匀细杆原来静止放在光滑的水平面上,现在其一端给予一垂直于杆身的水平方向的打击,此后杆的运动情况是:(A) 杆沿力的方向平动.(B) 杆绕其未受打击的端点转动.(C) 杆的质心沿打击力的方向运动,杆又绕质心转动.(D) 杆的质心不动,而杆绕质心转动. [ ]19.实心圆柱体、空心圆筒和实心球,三者质量相同,且柱的半径、筒的外径和球的半径均相同.当它们沿同一斜面,由同一高度同时从静止无滑动地滚下时,它们到达斜面底的先后次序是(A) 实心球最先,圆柱体次之,圆筒最后.(B) 圆柱体最先,圆筒次之,实心球最后.(C) 圆筒最先,实心球次之,圆柱体最后.(D) 实心球最先,圆筒次之,圆柱体最后.(E) 圆筒最先,圆柱体次之,实心球最后. [ ]20.质量不同的一个球和一个圆柱体,前者的半径和后者的横截面半径相同.二者放在同一斜面上,从同一高度静止开始无滑动地滚下(圆柱体的轴始终维持水平),则(A) 两者同时到达底部. (B) 圆柱体先到达底部.Ol(a)(b)(C) 圆球先到达底部. (D) 质量大的先到达底部. [ ](二)填空题1.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s ,再转60转后角速度为ω2=30π rad /s ,则角加速度β =_____________,转过上述60转所需的时间Δt=________________.2.半径为r =1.5 m 的飞轮,初角速度ω 0=10 rad · s -1,角加速度 β=-5 rad · s -2,则在t =___________时角位移为零,而此时边缘上点的线速度v =___________.3.绕定轴转动的飞轮均匀地减速,t =0时角速度为ω 0=5 rad / s ,t =20 s 时角速度为ω =0.8ω 0,则飞轮的角加速度β =______________,t =0到 t =100 s 时间内飞轮所转过的角度θ=___________________.4.半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =________,法向加速度a n =_______________.5.用三根长度为l 、质量为M 的均匀细杆,将四个质量为m 的质点连接起来,成一条直线,如图所示.这一系统对通过端点O 并垂直于杆的轴的转动惯量为________________.6. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =_____________,此时该系统角加速度的大小β =________________.7.如图所示,一质量为m 、半径为R 的薄圆盘,可绕通过其一直径的光滑固定轴A A '转动,转动惯量J =mR 2 /4.该圆盘从静止开始在恒力矩M 作用下转动,t 秒后位于圆盘边缘上与轴A A '的垂直距离为R 的B点的切向加速度a t =_____________,法向加速度a n =_____________.8.如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为____________.9.一定滑轮质量为M 、半径为R ,.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦.物体下落的加速度为a ,则绳中的张力T =_________________.10.三根匀质细杆,质量均为m ,长度均为l ,将它们首尾相接构成一个三角架.三角架对通过角顶与架面垂直的轴的转动惯量为____________.11.定轴转动刚体的角动量(动量矩)定理的内容是___________________________________________________________________________,其数学表达式可写成___________________________________________.动量矩守恒的条件是____________________________________________.12.如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的______________守恒,原因是__________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.13.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为31l ,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 S ′ m2m l R 俯视图___________________.14. 质量为m 、长为l 的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O 在水平面内自由转动(转动惯量J =m l 2 / 12).开始时棒静止,现有一子弹,质量也是m ,在水平面内以速度v 0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度ω =_____________________. 15.如图所示,一均匀细杆AB ,长为l ,质量为m .A 端挂在一光滑的固定水平轴上,它可以在竖直平面内自由摆动.杆从水平位置由静止开始下摆,当下摆至θ角时,B 端速度的大小v B =________________________.16.一滑冰者开始张开手臂绕自身竖直轴旋转,其动能为E 0,转动惯量为J 0,若他将手臂收拢,其转动惯量变为021J ,则其动能将变为__________________.(摩擦不计) 17.水平桌面上有一圆盘,质量为m ,半径为R ,装在通过其中心、固定在桌面上的竖直转轴上.在外力作用下,圆盘绕此转轴以角速度ω 0转动.在撤去外力后,到圆盘停止转动的过程中摩擦力对圆盘做的功为__________.18.如图所示,一长为l ,质量为M 的均匀细棒悬挂于通过其上端的光滑水平固定轴上.现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以021v 的速度穿出棒.在此射击过程中细棒和子弹系统对轴的____________守恒.如果此后棒的最大偏转角恰为90°,则0v 的大小v 0=________. 19.如图所示的质点组A 1、A 2、A 3,其质心坐标为x c =________;y c =________. 20.如图所示,一个细杆总长为L ,单位长度的质量为ρ=ρ0+ax ,其中ρ0和a 为正常量.此杆的质心的坐标x c =______________.21.质量为m 、横截面半径为R 的实心匀质圆柱体,在水平面上做无滑动的滚动,如果圆柱体的中心轴线方向不变,且其质心以速度v 作水平匀速运动,则圆柱体的动量的大小为____________,动能等于______________,对中心轴线的角动量大小为____________________.22.如图所示.圆柱体的半径为R ,其上有一半径为r 的固定圆盘(圆盘质量忽略不计),盘周绕有细绳,今沿垂直于圆盘轴的水平方向以力F 拉绳.若使该圆柱体在水平面上作纯滚动,则该柱体与水平面间的静摩擦力f =________.当r =R /2时静摩擦力f =________. (三)计算题1.一飞轮以等角加速度2 rad /s 2转动,在某时刻以后的5s 内飞轮转过了100 rad .若此飞轮是由静止开始转动的,问在上述的某时刻以前飞轮转动了多少时间?2.已知一定轴转动体系,在各个时间间隔内的角速度如下:ω=ω0 0≤t ≤5 (SI)ω=ω0+3t -15 5≤t ≤8 (SI)ω=ω1-3t +24 t ≥8 (SI)式中ω0=18 rad /s(1) 求上述方程中的ω1.(2) 根据上述规律,求该体系在什么时刻角速度为零.3.一作匀变速转动的飞轮在10s 内转了16圈,其末角速度为15 rad /s ,它的角加速度的大小等于多少?4.一电唱机的转盘以n = 78 rev/min 的转速匀速转动.m 0 俯视图0v(1) 求转盘上与转轴相距r = 15 cm 的一点P 的线速度v 和法向加速度a B .(2) 在电动机断电后,转盘在恒定的阻力矩作用下减速,并在t = 15 s 内停止转动,求转盘在停止转动前的角加速度β及转过的圈数N .5.有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 6. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.7.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度. 8.质量分别为m 和2m 、半径分别为r 和2r轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2/ 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小. 9.质量为M 1=24 kg 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 的圆盘形定滑轮悬有m =10 kg 的物体.求当重物由静止开始下降了h =0.5 m 时,(1) 物体的速度;(2) 绳中张力.(设绳与定滑轮间无相对滑动)10.如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m .11.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)12.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?5.2v m '13.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间. 14.一均匀木杆,质量为m 1 = 1 kg ,长l = 0.4 m ,可绕通过它的中点且与杆身垂直的光滑水平固定轴,在竖直平面内转动.设杆静止于竖直位置时,一质量为m 2 = 10 g 的子弹在距杆中点l / 4处穿透木杆(穿透所用时间不计),子弹初速度的大小v 0 = 200 m/s ,方向与杆和轴均垂直.穿出后子弹速度大小减为v= 50 m/s ,但方向未变,求子弹刚穿出的瞬时,杆的角速度的大小.(木杆绕通过中点的垂直轴的转动惯量J = m 1l 2 / 12)15.质量为M 、长为l 的均匀直棒,可绕垂直于棒的一端的水平固定轴O 无摩擦地转动.转动惯量231Ml J =.它原来静止在平衡位置上,如图,图面垂直于O 轴.现有一质量为m 的弹性小球在图面内飞来,正好在棒的下端与棒垂直相撞.相撞后使棒从平衡位置摆动到最大角度θ=60°处,(1) 设碰撞为弹性的,试计算小球刚碰前速度的大小v 0. (2) 相撞时,小球受到多大的冲量? 16.如图所示,一长为l 质量为M 的匀质竖直杆可绕通过杆上端的固定水平轴O 无摩擦地转动.一质量为m 的泥团在垂直于轴O 的图面内以水平速度v 0打在杆的中点并粘住,求杆摆起的最大角度. 17.一长为L 、质量为m 的均匀细棒,一端可绕固定的水平光滑轴O 在竖直平面内转动.在O 点上还系有一长为l (<L )的轻绳,绳的一端悬一质量也为m 的小球.当小球悬线偏离竖直方向某一角度时,由静止释放(如图所示).已知小球与静止的细棒发生完全弹性碰撞,问当绳的长度l 为多少时,碰撞后小球刚好停止?略去空气阻力.18.一个半径为R ,质量为m 的硬币,竖直地立放在粗糙的水平桌面上.开始时处于静止状态,而后硬币受到轻微扰动而倒下.求硬币平面与桌面碰撞前(即硬币平面在水平位置)时质心的速度大小.(已知质量为m ,半径为R 的圆盘对沿盘直径的轴的转动惯为241mR ) 19.有质量分别为12 kg 和20 kg 的两球,球心相距4 m ,中间并未连结.二者最初都静止,今以64 N 的恒力沿球心连线方向作用于20 kg 的球上,如图所示.设两球半径相等,求从力开始作用起,第三秒末质心的位置.20.两个人分别在一根质量为m 的均匀棒的两端,将棒抬起,并使其保持静止,今其中一人突然撒手,求在刚撒开手的瞬间,另一个人对棒的支持力f .21.水平桌面上的一圆柱体的质量 m =1 kg ,半径R =0.05 m .今用F =30 N 的水平拉力垂直于柱轴作用于圆柱体的质心C 上(如图).求此圆柱体作纯滚动时的质心加速度a c .(已知圆柱体对其中心轴的转动惯量为221mR J =). (四)理论推导与证明题1.一刚体绕固定轴从静止开始转动,角加速度为一常数.试证明该刚体中任一点的法向加速度和刚体的角位移成正比.2.从牛顿运动定律出发,推导出刚体的定轴转动定律.A m 1 ,l 1v 2 俯视图3.质量为m 1、半径为r 1的匀质圆轮A ,以角速度ω绕通过其中心的水平光滑轴转动,此时将它放在质量为m 2、半径为r 2的另一匀质圆轮B 上,B 轮原为静止,但可绕通过其中心的水平光滑轴转动.放置后A 轮的重量由B 轮支持,如图所示(水平横杆的质量不计).设两轮间的摩擦系数为μ.A 、B 轮对各自转轴的转动惯量分别为21121r m 和22221r m .证明:A 轮放在B 轮上到两轮间没有相对滑动为止,经过的时间为()21122m m g r m t +=μω 4.一可绕定轴转动的刚体,在合外力矩M 作用下由静止开始转动.试根据合外力矩对刚体所作的功等于刚体动能的增量以及转动定律,证明刚体的动能表示式为221ωJ E k = 式中的J 和ω分别为刚体对于转轴的转动惯量和角速度.5.试证,不同质量,不同半径之均匀实心圆柱体在同一斜面上无滑动地滚下同样距离时圆柱体质心具有同样大小的线速度.6.两质点的质量各为m 1,m 2,试证明它们的质量中心在它们的连线上并且质心到两个质点的距离与两质点的质量成反比.(五)问答题1.绕固定轴作匀变速转动的刚体,其上各点都绕转轴作圆周运动.试问刚体上任意一点是否有切向加速度?是否有法向加速度?切向加速度和法向加速度的大小是否变化?理由如何?2.刚体转动惯量的物理意义是什么?它与什么因素有关?3.一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1) 转台、人与哑铃以及地球组成的系统机械能守恒否?为什么?(2) 转台、人与哑铃组成的系统角动量守恒否?为什么?(3) 每个哑铃的动量与动能守恒否?为什么?22。

第7.5节刚体平面运动的动力学

第7.5节刚体平面运动的动力学

第7.5节 刚体平面运动的动力学7.5.1 10m 搞得烟筒因底部损坏而倒下来,求其上端到达地面时的线速度。

设倾倒时底部未移动。

可近似认为烟筒为均质杆。

解:烟筒的长度l =10m 。

设烟筒上端到达地面的瞬间,烟筒绕其底部的转动角速度为ω。

在倾倒过程中,只受重力作用,做的功为:mg ⋅½l 。

由刚体定轴转动的动能定理:lgmlI I l mg 323122121=∴==⋅ωω烟筒上端到达地面时的线速度为:s m gl l v /2.17108.933≈⨯⨯===ω7.5.2 用四根质量各为m 长度各为l 的均质细杆制成正方形框架,可围绕其中一边的中点在竖直平面内转动,支点O 是光滑的.最初,框架处于静止且AB 边沿竖直方向,释放后向下摆动,求当AB 边达到水平时,框架质心的线速度C v。

以及框架作用于支点的压力N .解:先求正方形框架对通过其质心且与其垂直的转轴(质心轴)的转动惯量:框架的质心位于框架的中心,即两条对角线的交点上。

每根细杆对其本身的质心轴的转动惯量:21210ml I =,细杆的质心与框架的质心的距离为l 21,由平行轴定理:2342210])([4ml l m I I c =⋅+⋅=再由平行轴定理,得框架对通过0点的转轴的转动惯量:237221)(4ml l m I I c =⋅+=(1)求框架质心的线速度v c框架在下摆过程中,只有重力做功,机械能守恒。

选取杆AB 达到水平时框架质心位置位势能零点,得:gll v l h m M I Mgh c lgc c 7321712212214===∴===ωωω(2)求框架对支点的压力N以框架为研究对象,它受到重力M g 和支点的支撑力N 的作用,由质心运动定理:c a M g M N =+取自然坐标系,τ沿水平方向,n 铅直向上,得投影方程:βτττc n c c n n Mh Ma N mgmg mg N mg l gl m h v M Ma Mg N n===+=⇒=⋅===-7372472421732744:ˆ:ˆ在铅直位置时,外力矩为0,故角加速度β=0,==〉N τ = 07.5.3 由长为l ,质量各为m 的均质细杆组成正方形框架,其中一角连于光滑水平转轴O ,转轴与框架所在平面垂直.最初,对角线OP 处于水平,然后从静止开始向下自由摆动.求OP 对角线与水平成450时P 点的速度,并求此时框架对支点的作用力.解:先求正方形框架对通过其质心且与其垂直的转轴(质心轴)的转动惯量:框架的质心位于框架的中心,即两条对角线的交点上。

刚体力学

刚体力学
物体运动问题的影响因素(物体的性质) (1)大小(2)形状(3)质量 (4)占有空间位置(5)变形
理想化的模型: 刚体性质(1)具有质量 (2)占有空间位置 (3)大小、形状 不具有性质: 则力变形
突出主要因素 主要因素
忽略次要因素 次要因素
2.2 刚体转动定律与转动惯量
一、转轴 定轴转动
当刚体上所有的点都绕一条固定直线矩圆周运动时, 这种运动就叫定轴转动,这条固定直线就叫转轴。
东北农业大学 Northeast Agricultural University
刚体力学
物理教研室
2.1 变速圆周运动和角量描述 一、匀速圆周运动
圆周运动 质点曲线运动 圆周运动:质点运动的轨迹是一对圆。 圆周运动:质点运动的轨迹是一对圆。 质点的匀速圆周运动:质点在任何相同的时间 质点的匀速圆周运动: 匀速圆周运动 间隔所行经的弧长相等 弧长相等。 间隔所行经的弧长相等。
0
mg − T = ma LL( 1 ) TR = Iβ 2 LLL( 2 )
mgR β2 = mR 2 + m0 R 2 / 2 mg mg a = β2R = = I m + 2 m + m0 / 2 R
T
mg
例题
两对匀质圆盘,同轴地粘结在一起,构成一对组合轮。
小圆盘的半径为r,质量为 ;大圆盘的半径r’=2r,质量 = 2m。 小圆盘的半径为 ,质量为m;大圆盘的半径 ,质量m’ 。 组合轮可以绕通过其中心且垂直对盘面的光滑水平固定轴o转动 转动, 组合轮可以绕通过其中心且垂直对盘面的光滑水平固定轴 转动, 轴的转动惯量J=9mr2/2 。两圆盘边缘上分别绕有轻质细绳, 两圆盘边缘上分别绕有轻质细绳, 对o轴的转动惯量 轴的转动惯量 细绳下端各悬挂质量为m的物体 的物体A和 ,这一系统从静止开始运动, 细绳下端各悬挂质量为 的物体 和B,这一系统从静止开始运动 绳与盘无相对滑动且长度不变。已知r =10cm 。 求:(1)组合轮 绳与盘无相对滑动且长度不变。已知 的角加速度; 当物体上升h=0.4m时,组合轮的角速度。 的角加速度;(2)当物体上升 时 组合轮的角速度。

力学第七章练习题

力学第七章练习题

3解题例如例题5—5 如图5—9所示。

弹簧的质量忽略不计,而倔强系数6.11=k 牛顿/米。

绳子质量忽略不计且不可伸长。

滑轮的半径=R 10厘米,绕其抽转动的转动惯量01.0=I 千克.2米。

空气阻力不计,求质量1=m 千克的物体从静止开始(此时弹簧无伸长)落下1=h 米时的速度大小(h v )。

己知 m N k /6.11=,cm R 10= ,201.0m kg I ⋅=,m h 1=,kg m 1=求 h v例题5一6 一均匀棒长4.0=l 米,质量1=M 千克,可绕通过其上端O 的水平轴转动,质量01.0=m 千克的弹片以速度200=v 米/秒射入棒中,射入处离O 点为米〔图5-11〕。

求棒与弹片一起转动时的角速度ω,及转过的角度θ。

l 、M 、m 、弹片射入处求ω、θ角动量与刚体转动练习题一. 选择题1. 人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和远地点分别为 A 和 B 。

用 L 和 Ek 分别表示对地心的角动量及其动能的瞬时值,那么应有.,)(kB kA B A E E L L A >>.,)(kB kA B A E E L L B <=.,)(kB kA B A E E L L C >=.,)(kB kA B A E E L L D << 解:由角动量守恒 B A L L = 由机械能守恒,因为势能 pB pA E E < .kB kA E E >∴答案 :(C)2. 由一半径为 R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为 J ,开始时转台以匀角速度ωo 转动,此时有一质量为 m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为图5—9.)(02ωmR J J A + .)()(02ωRm J J B + .)(02ωmR J C .)(0ωD 解:由角动量守恒 ωω)(020mR J J +=+.02ωωmR J J +=∴ 答案 :(A)3. 如下图,一静止的均匀细棒,长为 L 、质量为 M ,可绕通过棒的端点且垂直于棒长的光滑固定轴 O 在水平面内转动,转动惯量为1/3 ML2. 一质量为 m 、速率为 v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为1/2 v , 那么此时棒的角速度应为.)(ML mv A .23)(ML mv B .35)(ML mv C .47)(MLmv D 解:由角动量守恒 ω23121ML vl m mvl +⋅= .23ML mv =∴ω 答案 :(B )4. 关于力矩有以下几种说法:〔1〕对某个定轴而言,内力矩不会改变刚体的角动量。

工程力学刚体的受力分析

工程力学刚体的受力分析

工程力学——刚体的受力分析1. 引言工程力学是工程学科的基础课程之一,对于工程师来说,掌握刚体的受力分析是非常重要的。

刚体是一个非常基础的物体模型,广泛应用于机械、土木、航空等各个工程领域中。

本文将介绍刚体的受力分析方法,并通过实例进行说明。

2. 刚体的基本概念刚体是指具有保持形状和大小不变的特性的物体。

在受力作用下,刚体可以执行平动运动和转动运动。

在刚体力学中,主要研究刚体在平面内的运动。

3. 刚体的力学模型为了方便研究刚体的受力分析,我们将刚体简化为力学模型。

常用的力学模型有绳、杆、轮等。

对于简化的刚体模型,需要考虑以下几个方面:3.1 质点与刚体的区别刚体模型中质点与刚体是两个不同的概念。

质点指的是一个不含有结构的物体,可以看作是粒子的模型。

而刚体是由多个质点组成的,具有一定的形状和结构。

3.2 对刚体的受力分析在刚体的受力分析中,我们需要考虑刚体所受的外力和内力。

外力包括作用在刚体上的重力、支撑力、摩擦力等。

内力包括刚体内部各个部分之间的相互作用力。

3.3 绳的作用和特点绳是常用的刚体模型之一,它可以用来连接物体、传递力量。

在绳的受力分析中,需要考虑绳的拉力以及绳与物体之间的接触力。

4. 刚体的受力分析方法刚体的受力分析有多种方法,下面将介绍一些常用的方法。

4.1 分解法分解法是一种常用的受力分析方法。

通过将受力分解为水平方向和竖直方向上的分力,可以简化问题的分析过程。

4.2 力矩法力矩法是一种基于力矩平衡的分析方法。

通过分析刚体受力的力矩作用,可以确定刚体的平衡条件。

4.3 自由体法自由体法是一种将刚体与其周围环境分离开来进行受力分析的方法。

通过将刚体从整体中分离出来,可以更清晰地分析受力情况。

5. 实例分析下面通过一个实例对刚体的受力分析方法进行说明。

假设一个位于水平面上的刚体上有一个绳子和一个悬挂的重物。

我们可以采用分解法进行受力分析,将刚体的受力分解为水平方向和竖直方向的分力,再进行力的平衡和力矩的平衡条件的分析,最终得出刚体的受力分布情况。

刚体动力学7.3碰撞T

刚体动力学7.3碰撞T

Ce
运动分析
碰撞前瞬时 t 0
碰撞后瞬时 t
滑块的 平动 v0
突变 绕O的定轴转动
设定正向
y
C
v0 px0
x
O I
滑块的动量
px0 mv0
对点O 的动量矩
对点O 的动量矩
LOz
JOz
2 3
ml
2
l
LOz0 mv0
冲量分析
2
铰O I
n
n
LOz LOz0
M
Oz
(
I
a k
)
M
O
A C2
6
刚体动力学/碰撞/刚体动量与动量矩的变化/解
[解](1)求撞击后 杆的角速度与方块的速度
惯性基 O e
先求碰撞发生前杆的角速度:
重力
杆由水平位置
铅垂位置
m1 g
势能
V
'
m1g
l 2
动能 T 0
V0 0
T0
1 2
1 3
m1l
2
2 10
约束力不作功 机械能守恒
T V T0 V0
对点C的动量矩
LCz
JCz
1 6
ml
2
y
C
v0
v px0
p
x
O Ix
Iy
px px0 lm / 2 mv0 Ix py 0 lm / 2 I y
LCz
LCz0
1 6
ml
2
l 2
I
y
l 2
I
x
2021年1月16日 理论力学CAI 刚体动力学
3v0 4l
5
刚体动力学/碰撞/刚体动量与动量矩的变化/例

刚体力学基础


非专业训练,请勿模仿
例 解 由转动定律得
1 mgl sin J 2 1 2 式中 J ml 3 3g sin 得 2l
角加速度与质量无关,与长 度成反比,竹竿越长越安全。
-------------------------------------------------------------------------------
刚体的一般运动 质心的平动
+
绕质心的转动
-------------------------------------------------------------------------------
二、刚体绕定轴转动定律
F外力 F内力 mi ai
ai :质元绕轴作圆运动
-------------------------------------------------------------------------------
二、定轴转动的角动量守恒定律
质点角动量(相对O点)
定轴转动刚体
L r p r mv
-------------------------------------------------------------------------------
解:
M 1l gdl cos M mgL cos 2 m g1 l cos dl cos mgl M 2 3g cos L 1 22 J 2l M ml L g 3 cos L 2 3g cos d d d d 1 2 l dt cos d d mgL dt 2
2 法向: F cos F cos m r 法向力的作用线过转轴 i i i i. 内力 ,其力矩为零 外力 切向:F外力 sin i F内力 sin i mi ri

刚体力学


转动定律
M J
3) M ——外力矩之和,而不是合外力之矩。
4)适用条件:惯性系 两类基本问题:
1) 地位等同于平动问题中的牛顿第二定律,适于研究刚体转动 的瞬时效应; 2)对于有固定转轴的刚体转动,转动定理可以写为标量式, Mz = Jβz 此时,外力、位矢应当分解到与转轴垂直的平面内。
A.已知刚体转动状态求刚体所受力矩
——力矩的瞬时效应
上午5时46分
9
力矩——改变物体转动状态的原因
1、力对固定点的力矩
1)定义:作用于质点的力对惯性系 中某参考点的力矩,等于力的作用 点对该点的位矢与力的矢积,即
M r F
M
o
--力矩是矢量 大小:
r
F
m

方向: 垂直于 r 和 F 所决定的平面,其指向用右手螺旋法则
F
F
B)力的方向沿矢径的方向
r
sin 0
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用

上午5时46分
14
合力矩等于各分力矩的矢量和
M M1 M 2 M 3
f ji
质点系内一对内力对任一点的力矩之矢量和为零
M i 0 M j 0 ri fij rj f ji f ij f ji
M i 0 M j 0 (r j ri ) f ji r ji f ji 0
上午5时46分
rj
j
rji
i
o
ri
f ij
上午5时46分
3
转动:刚体中所有的点都绕同一直线做圆周运动. 定轴转动、非定轴转动

物理学和力学


讲授的主要内容
第一章 物理学和力学 第二章 质点运动学 第九章 振动 第十章 波动
第三章 质点动力学
第四章 动能和势能
第十二章 相对论
第五章 角动量
第六章 万有引力定律
第七章 刚体力学
课时、学分及考试
本课程:48学时/3学分
考核方式:闭卷考试
成绩评定方法:百分制。 总成绩=期终70%+平时30%
针对不同的研究对象,力学又包括:
流体力学、固体力学、工程力学等。 普通物理: 力学、热学、电磁学、光学和 原子物理。 四大力学:理论力学、热力学与统计物理、 电动力学、量子力学。
§1-2 力学与物理学的关系 中学学的力学与大学要学的力学有何区别?
五个字:从不变到变。
例如: 一个醉汉在马路上行走时,他的轨迹 如图所示。问 2 ˆ ˆ
§1-1 物理学的概念及其研究对象
§1-1 物理学的概念及其研究对象
元素周期表
§1-1 物理学的概念及其研究对象 根据不同的研究对象,物理学又可划分为 以下八个所谓的二级学科: 1、理论物理 6、光学
2、粒子物理与核物理
3、凝聚态物理 4、原子和分子物理
7、声学
8、无线电物理
5、等离子体物理
§1-2 力学与物理学的关系 力学是物理学的有机组成部分。
r t i 3t j
该醉汉在任意时刻的 速度和加速度分别
是多少?
补充数学知识: 微积分(P.452~463)
作业: 仔细阅读第一章 。
理学院物理系
E-mail: yhluo@
教材及参考书
[1] 漆安慎,杜婵英,《力学》(第二版), 高等教育出版社,2005 [2] 张三慧,《大学物理学(第一册):力学》 (第二版),清华大学出版社, 1999 [3] 赵凯华 ,《新概念力学 》,高等教育出版 社, 1998 [4] 梁昆淼,《力学 》,高等教育出版社, 1965

刚体力学刚体动力学举例

1

2
2
1 M zdt 1 M zd
T
1 2
x
y
z
I xx
I yx


I
zx
I xy I yy Izy
I xz x I yz y I zz z
T

1 2
I z
2
刚体的动能定理可表示为:A
Jo

1 4
mR2( 2k

21k')
(六) 动能定理
五、 刚体动力学—动能定理
对于刚体来说,由于内力功的代数和为零,故动能
定理可表为: W e T T2 T1
①刚体动能的一般表示 — 柯尼希定理
T
i
1 2
mi ri
ri

1 2
mrc
rc

2 1
M zd

1 2
I
2
z2

1 2
I
2
z1
机械能守恒:
1 2
I zz 2
V

E
(5) 刚体的重力势能
刚体的定轴转动
对于一个不太大的质量为 m 的物体,它的重
力势能应是组成刚体的各个质点的重力势能之和
即:
质心高度为:
hc

mihi
m
Ep mghc
若只有保守力做功
E

mghc
刚体的定轴转动
刚体的定轴转动
(4) 定轴转动的动能定理


对定轴转动的情况,假设 k ,则:
W e
2 2 F dr F vdt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档