拉普拉斯变换对照表

合集下载

(完整版)典型常见函数拉氏变换表

(完整版)典型常见函数拉氏变换表

t 0
s
lim f (t) lim sF (s)
t
s0
L
d dt
f
(t)
SF(s)
f
(0)
L
d
2f dt
(t
2
)
S 2F(s)
Sf (0)
f
(0)
f (0 ) lim f (t) lim sF (s)
t 0
s
lim f (t) lim sF (s)
t
s0
Lf (t)g(t)= F sGs
18
1
t n 1-2
e -nt sinn 1-2
1 e -nt sin(n 1-2 t-
) 1-2
19
=
arctan
1-2
1
s2+2ns+n2
s
s2+2ns+n2
典型时间函数的拉普拉斯变换
序号
原函数 f(t) (t >0)
1- 1 e -nt sin(n 1-2 t +
) 1-2
20
1-2
= arctan
典型常见函数 拉氏变换表
典型常见函数拉氏变换表
序号 1
原函数 f(t) (t >0)
1 (单位阶跃函数)
象函数 F(s)=L[f(t)]
1 s
2
(t) (单位脉冲函数)
1
3
K (常数)
K s
4
t (单位斜坡函数)
1 s2
典型常见时间函数拉氏变换表
序号 5 6 7 8
原函数 f(t) (t >0)
t n (n=1, 2, …) e -at

拉普拉斯变换表

拉普拉斯变换表

拉普拉斯变换的基本性质
由于拉普拉斯变换是傅里叶变换在复频域(即s域)中的推广,因而也具有与傅里叶变换的性质相应的一些性质。

这些性质揭示了信号的时域特性与复频域特性之间的关系,利用这些性质可使求取拉普拉斯正、反变换来得简便。

关于拉普拉斯变换的基本性质在表5-1中列出。

对于这些性质,由于读者在工程数学课中已学习过了,所以不再进行证明,读者可复习有关的工程数学书籍。

表5-1 拉普拉斯变换的基本性质
利用式(5-5)和拉普拉斯变换的性质,可以求出和导出一些常用时间常数的拉
普拉斯变换式,如表5-2中所列。

利用此表可以方便地查出待求的像函数
或原函数
表5-2 拉普拉斯变换表
()()t U t f ()s F ()t f。

Laplace拉氏变换公式表

Laplace拉氏变换公式表

Laplace拉氏变换公式表1. 常数变换:对于常数C,其拉普拉斯变换为C/s,其中s是复数频率。

2. 幂函数变换:对于幂函数t^n,其中n为实数,其拉普拉斯变换为n!/s^(n+1)。

3. 指数函数变换:对于指数函数e^(at),其中a为实数,其拉普拉斯变换为1/(sa)。

4. 正弦函数变换:对于正弦函数sin(at),其中a为实数,其拉普拉斯变换为a/(s^2+a^2)。

5. 余弦函数变换:对于余弦函数cos(at),其中a为实数,其拉普拉斯变换为s/(s^2+a^2)。

6. 双曲正弦函数变换:对于双曲正弦函数sinh(at),其中a为实数,其拉普拉斯变换为a/(s^2a^2)。

7. 双曲余弦函数变换:对于双曲余弦函数cosh(at),其中a为实数,其拉普拉斯变换为s/(s^2a^2)。

8. 指数衰减正弦函数变换:对于指数衰减正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(s+a)^2+b^2。

9. 指数衰减余弦函数变换:对于指数衰减余弦函数e^(at)cos(bt),其中a和b为实数,其拉普拉斯变换为s+a)/(s+a)^2+b^2。

10. 指数增长正弦函数变换:对于指数增长正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。

Laplace拉氏变换公式表11. 幂函数与指数函数的乘积变换:对于函数t^n e^(at),其中n为实数,a为实数,其拉普拉斯变换为n!/(sa)^(n+1)。

12. 幂函数与正弦函数的乘积变换:对于函数t^n sin(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。

13. 幂函数与余弦函数的乘积变换:对于函数t^n cos(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。

14. 指数函数与正弦函数的乘积变换:对于函数e^(at) sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。

拉普拉斯变换及其应用

拉普拉斯变换及其应用

第二章 拉普拉斯变换及其应用
2.3
拉氏反变换
① A(s)=0无重根
第二章 拉普拉斯变换及其应用
2.3
拉氏反变换
② A(s)=0有重根
第二章 拉普拉斯变换及其应用
2.3
拉氏反变换
② A(s)=0有重根
第二章 拉普拉斯变换及其应用
2.4
拉氏变换应用举例
例:求典型一阶系统的单位阶跃响应
第二章 拉普拉斯变换及其应用
4 积分定理
上式表明,在初始条件为零的前提下,原函数的n重积分的拉氏式等于其象函 数除以 。
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
在应用拉氏变换时,常需借用拉氏变换运算定理,叙述如下:
5 位移定理
上式表明, 即可,
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
在应用拉氏变换时,常需借用拉氏变换运算定理,叙述如下:
6 延迟定理
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
在应用拉氏变换时,常需借用拉氏变换运算定理,叙述如下:
6 延迟定理
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
在应用拉氏变换时,常需借用拉氏变换运算定理,叙述如下:
7 相似定理
第二章 拉普拉斯变换及其应用
2.2 拉氏变换的运算定理
拉氏变换是经典控制理论的数学基础。
第二章 拉普拉斯变换及其应用
2.1 拉氏变换的概念
第二章 拉普拉斯变换及其应用
2.1 拉氏变换的概念
具体实例如下:
第二章 拉普拉斯变换及其应用
2.1 拉氏变换的概念
例:求单位阶跃函数(Unit Step Function)1(t)的象函数。

拉普拉斯变换及其逆变换表

拉普拉斯变换及其逆变换表

拉普拉斯变换及其逆变换表Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】拉普拉斯变换及其反变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式11n 1n n n 011m 1m m m a s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >) 式中系数n 1n 10a ,a ,...,a ,a -,m1m 10b ,b ,b ,b - 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=n 1i iin n i i 2211s s c s s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:或式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数② 0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为 =nni i 1r 1r 111r 11r r 1r s s c s s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: 原函数)(t f 为ts n 1r i it s 122r 1r 1r r 1e c e c t c t )!2r (c t )!1r (c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-= (F-6)。

常用拉普拉斯变换公式表

常用拉普拉斯变换公式表

常用拉普拉斯变换公式表拉普拉斯变换是一种重要的数学工具,它可以将一个函数从时域转换到频域,从而方便地进行分析和处理。

在工程、物理、数学等领域中,拉普拉斯变换都有着广泛的应用。

本文将介绍常用的拉普拉斯变换公式表。

1. 基本公式拉普拉斯变换的基本公式如下:$$F(s)=\int_{0}^{\infty}f(t)e^{-st}dt$$其中,$f(t)$是时域函数,$F(s)$是频域函数,$s$是复变量。

2. 常用公式(1) 常数函数$$\mathcal{L}\{1\}=\frac{1}{s}$$(2) 单位阶跃函数$$\mathcal{L}\{u(t)\}=\frac{1}{s}$$(3) 指数函数$$\mathcal{L}\{e^{at}\}=\frac{1}{s-a}$$(4) 正弦函数$$\mathcal{L}\{\sin(at)\}=\frac{a}{s^2+a^2}$$(5) 余弦函数$$\mathcal{L}\{\cos(at)\}=\frac{s}{s^2+a^2}$$(6) 阶跃函数$$\mathcal{L}\{u(t-a)\}=\frac{e^{-as}}{s}$$(7) 带指数的函数$$\mathcal{L}\{te^{at}\}=\frac{1}{(s-a)^2}$$(8) 带阶跃的函数$$\mathcal{L}\{(t-a)u(t-a)\}=\frac{e^{-as}}{s^2}$$(9) 带正弦的函数$$\mathcal{L}\{t\sin(at)\}=\frac{2as}{(s^2+a^2)^2}$$(10) 带余弦的函数$$\mathcal{L}\{t\cos(at)\}=\frac{s^2-a^2}{(s^2+a^2)^2}$$ 3. 总结本文介绍了常用的拉普拉斯变换公式表,包括基本公式和常用公式。

这些公式在工程、物理、数学等领域中都有着广泛的应用,可以方便地将时域函数转换到频域进行分析和处理。

第二章 拉普拉斯变换的数学方法


F ( s ) ⋅ e st ds
(2-2)
2-3 典型时间函数的拉氏变换
1 (t
)=
⎧0 , ⎨ ⎩1,
t < 0 t ≥ 0

f t
) (
1
L [1(t ) ] = ∫
∞Байду номын сангаас
0
e − st 1(t ) ⋅ e dt = − s
− st
0
1 = s
t
图2-5 单位阶跃函数
δ (t ) = ⎨
⎧∞ , ⎩ 0,
7. 幂函数 幂函数 t 的拉氏变换式为
n
s s + ω2
2
L[t n ] = ∫ t n e − st dt
0

采用换元法,令 u = st , t =
u 1 , dt = du ,得 s s
∞ 0
L[t n ] = ∫
式中
u n −u 1 1 ∞ e ⋅ du = n +1 ∫ u n e− u du n 0 s s s
续 表 2-1 序号 −1 1−ζ
2
f (t )
e
− ζω n t
F ( s)
2
sin ω n 1 − ζ t − ψ
(
)
s s + 2ζωn s + ωn
2 2
17
ψ = tan
−1
1−ζ
2
ζ
− ζω n t
1−
1 1−ζ
2
e
sin(ω n 1 − ζ t + ψ )
2
18
ψ = tan
−1
ωn
L [t ] = ∫
=∫

典型常见函数拉氏变换表


象函数 F(s) = L[f(t)]
n2 s2+2ns+n2
18
1
t n 1-2
e -nt sinn 1-2
1 e -nt sin(n 1-2 t-
) 1-2
19

=
arctan
1-2
1
s2+2ns+n2
s
s2+2ns+n2
典型时间函数的拉普拉斯变换
t
s0
L

d dt
f (t)
SF(s)
f (0)
Ld来自2f dt(t
2
)


S 2F(s)

Sf
(0)
f
(0)
f (0 ) lim f (t) lim sF (s)
t 0
s
lim f (t) lim sF (s)
t
s0
t n (n=1, 2, …) e -at
tn e -at (n=1, 2, …)
t
1e T
T
象函数 F(s) = L[f(t)]
n! s n+1
1 s+a
n! (s+a) n+1
1 Ts + 1
典型时间函数的拉普拉斯变换
序号 9 10 11 12
原函数 f(t) (t >0)
sint cost
序号
原函数 f(t) (t >0)
1- 1 e -nt sin(n 1-2 t +
) 1-2
20
1-2
= arctan
象函数 F(s) = L[f(t)]

拉普拉斯变换及其应用

uc U s RC
两边同时积分:
ln(
uc
Us)
t RC
c1
e e 两边再同时取指数: ln(uc Us )
( t RC)c1
整理得:uc Us e( t RC) ec1 并令:c2 ec1
则有: uc Us e( t RC) c2
将初始条件:t=0时,Uc(0-)=0代入上式,可得: c2 U s
(
RCs
1)U
c
(s)
U
s
1 s
单位阶跃函数的Laplace变换
整理,可得:
Uc (s)
Us
1 s(1 RCs)
Us(
A s
B) 1 RCs
U
s
[
A(1 RC ) s(1 RCs)
s(1
Bs RCs
)
]
U
s
A ( ARC B)s s(1 RCs)
利用待定系数法可求得:
A 1 ARC B 0
例 求 2的s 原1 函数。 s(s 1)
解:首先用部分分式展开法,将所给的象函数展开:
2s 1 A B s(s 1) s s 1
其中,A、B是待定系数,将上式进行通分后可得:
A B A(s 1) Bs (A B)s A
s s 1 s(s 1)
s(s 1)
比较以上两式的分子,可得: A
2. K倍原函数的拉氏变换等于原函数拉氏变换的K倍。
即: L[Kf (t)] KL( f (t) KF(s)
3. 在零初始条件下,即:f (0) f ' (0) f n1(0) 0
则:L[ f n (t)] snF(s)
上式表明,在初始条件为零的前提下,原函数的 n

拉普拉斯变换


某线性系统由微分方程描述 例1.
d 2 y (t ) dy (t ) +3 2 y (t ) + x(t ), x(t ) 2u (t ) 2 dt dt y (0 ) = 5 求响应 y (t ) y (0 ) = 3,
解:对方程进行单边拉氏变换:
s 2 ( s)
sy (0 )
y (0 )
2 3[ s ( s ) y (0 )] 2 ( s ) + s 代入 y (0 ) = 3, y (0 ) = 5 可得: 3( s + 3) 5 2 (s) = 2 2 2 s + 3 s 2 s + 3 s 2 s ( s + 3s 2) 1ð 4ð4 ð 4ð 4ð 2 1ð4 ð 4ð 2
拉普拉斯(Laplace)变换
(1)拉普拉斯变换的定义
F ( s ) = L [ f (t ) ] =
0
f (t )e st dt
s:拉普拉斯算子,复变量, s = f(t):原函数(时间域、实域) F(s):象函数(s 域、复数域)
+j
Laplace变换表
(2)基本函数的拉氏变换
序号
( t)
s2 + s + 2 (s + 1) = 2 K2 = s (s + 1)(s + 2 ) s= 1
思考:有重根? 有虚根呢?
s2 + s + 2 (s + 2 ) = 2 K3 = s(s + 1)(s + 2) s= 2
F (s ) =
1 s
2 2 + s +1 s + 2
2t
故得
f (t ) = U (t ) 2e tU (t ) + 2e 2tU (t ) = (1 2e t + 2e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉普拉斯变换对照表
f(t) F(s)
1
)(t单位脉冲
1

2
)(1t单位阶跃
s

1

3 t
2

1

s

4
ate
as

1

5
atte
2
)(1as

6
tsin
22

1


s

7
tcos
22


s

8
n
t
(n=1,2,3,…)

1!n
s

n

9
atnet
(n=1,2,3,…)

1)(!n
as

n

10
)(1btateeab

))((1bsas

11
)(1atbtaebeab

))((bsass

12



)(111btataebe

baab
))((1bsass

13
teatsin

22
)(as

14
teatcos

22
)(as

as

15
)1(12ateata
)(12ass

16
tentnn221sin1

22

2

2nnnss
17






21tan)1sin(11122

te
n
t

n

22
2nnsss

18






21tan)1sin(111122

te
n
t

n

)2(222nnnsss

相关文档
最新文档