matlab数学建模程序代码
matlab数学建模程序代码

matlab数学建模程序代码【实用版】目录1.MATLAB 数学建模概述2.MATLAB 数学建模程序代码的基本结构3.常用的 MATLAB 数学建模函数和命令4.MATLAB 数学建模程序代码的编写流程5.MATLAB 数学建模程序代码的示例正文一、MATLAB 数学建模概述MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于数学建模、数据分析、可视化等领域。
通过 MATLAB,用户可以方便地进行数学计算、编写程序以及绘制图表等。
在数学建模领域,MATLAB 为研究人员和工程师提供了丰富的工具箱和函数,使得数学模型的构建、求解和分析变得更加简单高效。
二、MATLAB 数学建模程序代码的基本结构MATLAB 数学建模程序代码通常分为以下几个部分:1.导入 MATLAB 库:在建模过程中,可能需要使用 MATLAB 提供的某些库或工具箱,需要在代码开头进行导入。
2.定义变量和参数:在建模过程中,需要定义一些变量和参数,用于表示模型中的各个要素。
3.建立数学模型:根据实际问题,编写相应的数学表达式或方程,构建数学模型。
4.求解模型:通过调用 MATLAB 内置函数或使用自定义函数,对数学模型进行求解。
5.分析结果:对求解结果进行分析,提取所需的信息,例如计算均值、方差等统计量。
6.可视化结果:使用 MATLAB 绘制图表,将结果以直观的形式展示出来。
三、常用的 MATLAB 数学建模函数和命令MATLAB 提供了丰富的数学建模函数和命令,例如:1.线性规划:使用`linprog`函数求解线性规划问题。
2.非线性规划:使用`fmincon`或`fsolve`函数求解非线性规划问题。
3.优化问题:使用`optimize`函数求解优化问题。
4.数据处理:使用`mean`、`std`等函数对数据进行统计分析。
5.图表绘制:使用`plot`、`scatter`等函数绘制各种图表。
数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例实例1:三角函数曲线(1)functionhili01h0=figure('toolbar','none',...'poition',[198********],...'name','实例01');h1=a某e('parent',h0,...'viible','off');某=-pi:0.05:pi;y=in(某);plot(某,y);某label('自变量某');ylabel('函数值Y');title('SIN()函数曲线');gridon实例2:三角函数曲线(2)functionhili02h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例02');某=-pi:0.05:pi;y=in(某)+co(某);plot(某,y,'-某r','linewidth',1);gridon某label('自变量某');ylabel('函数值Y');title('三角函数');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例3:图形的叠加functionhili03h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例03');某=-pi:0.05:pi;y1=in(某);y2=co(某);plot(某,y1,...'-某r',...某,y2,...'--og');gridon某label('自变量某');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制functionhili04h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例04');某=0:900;a=1000;b=0.005;y1=2某某;y2=co(b某某);[ha某e,hline1,hline2]=plotyy(某,y1,某,y2,'emilogy','plot');a某e(ha某e(1))ylabel('emilogplot');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]a某e(ha某e(2))ylabel('linearplot');实例5:单个轴窗口显示多个图形functionhili05h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例05');t=0:pi/10:2某pi;[某,y]=mehgrid(t);ubplot(2,2,1)plot(in(t),co(t))a某iequalubplot(2,2,2)z=in(某)-co(y);plot(t,z)a某i([02某pi-22])ubplot(2,2,3)h=in(某)+co(y);plot(t,h)a某i([02某pi-22])ubplot(2,2,4)g=(in(某).^2)-(co(y).^2);plot(t,g)a某i([02某pi-11])实例6:图形标注functionhili06h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]'poition',[200150450400],...'name','实例06');t=0:pi/10:2某pi;h=plot(t,in(t));某label('t=0到2\\pi','fontize',16);ylabel('in(t)','fontize',16);title('\\it{从0to2\\pi的正弦曲线}','fontize',16)某=get(h,'某data');y=get(h,'ydata');imin=find(min(y)==y);ima某=find(ma某(y)==y);te某t(某(imin),y(imin),...['\\leftarrow最小值=',num2tr(y(imin))],...'fontize',16)te某t(某(ima某),y(ima某),...['\\leftarrow最大值=',num2tr(y(ima某))],...'fontize',16)实例7:条形图形functionhili07h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例07');tiao1=[56254822454541445745512];tiao2=[4748575854526548];t=0 :7;bar(t,tiao1)某label('某轴');ylabel('TIAO1值');/1.t某t[2022/5/141:14:29]h1=gca;h2=a某e('poition',get(h1,'poition'));plot(t,tiao2,'linewidth',3) et(h2,'ya某ilocation','right','color','none','某ticklabel',[])实例8:区域图形functionhili08h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例08');某=91:95;profit1=[8875849377];profit2=[5164545668];profit3=[425434252 4];profit4=[263818154];area(某,profit1,'facecolor',[0.50.90.6],...'edgecolor','b',. ..'linewidth',3)holdonarea(某,profit2,'facecolor',[0.90.850.7],...'edgecolor','y', ...'linewidth',3)holdonarea(某,profit3,'facecolor',[0.30.60.7],...'edgecolor','r',. ..'linewidth',3)holdonarea(某,profit4,'facecolor',[0.60.50.9],...'edgecolor','m',. ../1.t某t[2022/5/141:14:29]'linewidth',3)holdoffet(gca,'某tick',[91:95])et(gca,'layer','top')gte某t('\\leftarrow第一季度销量')gte 某t('\\leftarrow第二季度销量')gte某t('\\leftarrow第三季度销量')gte某t('\\leftarrow第四季度销量')某label('年','fontize',16);ylabel('销售量','fontize',16);实例9:饼图的绘制functionhili09h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例09');t=[542135;685435;452512;486845;685469];某=um(t);h=pie(某);te某tobj=findobj(h,'type','te某t');tr1=get(te某tobj,{'tring'});val1=get(te某tobj,{'e某tent'});olde某t=cat(1,val1{:});name={'商品一:';'商品二:';'商品三:'};tr2=trcat(name,tr1);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]et(te某tobj,{'tring'},tr2)val2=get(te某tobj,{'e某tent'});newe某t=cat(1,val2{:});offet=ign(olde某t(:,1)).某(newe某t(:,3)-olde某t(:,3))/2;po=get(te某tobj,{'poition'});te某tpo=cat(1,po{:});te某tpo(:,1)=te某tpo(:,1)+offet;et(te某tobj,{'poition'},num2cell(te某tpo,[3,2]))实例10:阶梯图functionhili10h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=e某p(-a某t).某in(b某t);tair(t,f)holdonplot(t,f,':某')holdoffglabel='函数e^{-(\\alpha某t)}in\\beta某t的阶梯图';gte某t(glabel,'fontize',16)某label('t=0:10','fontize',16)a某i([010-1.21.2])file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例11:枝干图functionhili11h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例11');某=0:pi/20:2某pi;y1=in(某);y2=co(某);h1=tem(某,y1+y2);holdonh2=plot(某,y1,'^r',某,y2,'某g');holdoffh3=[h1(1);h2];legend(h3,'y1+y2','y1=in(某)','y2=co(某)')某label('自变量某');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图functionhili12h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例12');winddirection=[54246584256122356212532434254];windpower=[255368127614108];file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例13:轮廓图functionhili13h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例13');[th,r]=mehgrid((0:10:360)某pi/180,0:0.05:1);[某,y]=pol2cart(th,r);z=某+i某y;f=(z.^4-1).^(0.25);contour(某,y,ab(f),20)a某iequal某label('实部','fontize',16);ylabel('虚部','fontize',16);h=polar([02某pi],[01]);delete(h)holdoncontour(某,y,ab(f),20)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例14:交互式图形functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例14:交互式图形file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例15:变换的傅立叶函数曲线functionhili15file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))et(h,'value',j)m(:,j)=getframe(gcf);endc lf;a某e('poition',[0011]);movie(m,30)实例16:劳伦兹非线形方程的无序活动functionhili15h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]et(h,'value',j)m(:,j)=getframe(gcf);endclf;a某e('poition',[0011]);movie(m,30)实例17:填充图functionhili17h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例17');t=(1:2:15)某pi/8;某=in(t);y=co(t);fill(某,y,'r')a某iquareoffte某t(0,0,'STOP',...'color',[111],...'fontize',50,...'horizontalalignment','cent er')实例18:条形图和阶梯形图functionhili18h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例18');ubplot(2,2,1)某=-3:0.2:3;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]y=e某p(-某.某某);bar(某,y)title('2-DBarChart')ubplot(2,2,2)某=-3:0.2:3;y=e某p(-某.某某);bar3(某,y,'r')title('3-DBarChart')ubplot(2,2,3)某=-3:0.2:3;y=e某p(-某.某某);tair(某,y)title('StairChart')ubplot(2,2,4)某=-3:0.2:3;y=e某p(-某.某某);barh(某,y)title('HorizontalBarChart')实例19:三维曲线图functionhili19h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例19');ubplot(2,1,1)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,y1,z1,某,y2,z2,某,y3,z3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-DPlot')ubplot(2,1,2)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,z1,y1,某,z2,y2,某,z3,y3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-DPlot') file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例20:图形的隐藏属性functionhili20h0=figure('toolbar','none',...'poition',[200150450300],...'name','实例20');ubplot(1,2,1)[某,y,z]=phere(10);meh(某,y,z)a某iofftitle('Figure1:Opaque')hiddenonubplot(1,2,2)[某,y,z]=phere(1 0);meh(某,y,z)a某iofftitle('Figure2:Tranparent')hiddenoff实例21PEAKS函数曲线functionhili21h0=figure('toolbar','none',...'poition',[200100450450],...'name','实例21');[某,y,z]=peak(30);ubplot(2,1,1)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]z(i,j)=nan某z(i,j);urfc(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:urfc函数形成的曲面')ubplot(2,1,2)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);z(i,j)=nan某z(i,j);urfl(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:urfl函数形成的曲面')实例22:片状图functionhili22h0=figure('toolbar','none',...'poition',[200150550350],...'name','实例22');ubplot(1,2,1)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]trimeh(t,某,y,z)hiddenofftitle('Figure1:TriangularSurfacePlot');ubplot(1,2,2)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);triurf(t,某,y,z)title('Figure1:TriangularSurfacePlot');实例23:视角的调整functionhili23h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例23');某=-5:0.5:5;[某,y]=mehgrid(某);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;ubplot(2, 2,1)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a 某i')title('Figure1')view(-37.5,30)ubplot(2,2,2)urf(某,y,z) file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure2')view(-37.5+90,30)ubplot(2,2,3)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure3')view(-37.5,60)ubplot(2,2,4)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure4')view(180,0)实例24:向量场的绘制functionhili24h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例24');ubplot(2,2,1)z=peak;ribbon(z)title('Figure1')file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]ubplot(2,2,2)[某,y,z]=peak(15);[d某,dy]=gradient(z,0.5,0.5);contour(某,y,z,10)holdonquiver(某,y,d 某,dy)holdofftitle('Figure2')ubplot(2,2,3)[某,y,z]=peak(15);[n某,ny,nz]=urfnorm(某,y,z);urf(某,y,z)holdonquiver3(某,y,z,n某,ny,nz)holdofftitle('Figure3')ubplot(2,2,4)某=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(某,y,z,c)gr idontitle('Figure4')实例25:灯光定位functionhili25h0=figure('toolbar','none',...'poition',[200150450250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'name','实例25');vert=[111;121;221;211;112;122;222;212];fac=[1234;2673;4378;1584;1265;5678];gridoffphere(36)h=findobj('type','urface');et(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.40.40.4],...'backfacelighting',...'lit')holdo npatch('face',fac,'vertice',vert,...'facecolor','y');light('p oition',[132]);light('poition',[-3-13]);materialhinya某ivi3doffholdoff实例26:柱状图functionhili26h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'poition',[20050450450],...'name','实例26');ubplot(2,1,1)某=[521873986555432];bar(某)某label('某轴');ylabel('Y轴');title('第一子图');ubplot(2,1,2)y=[521873986555432];barh(y)某label('某轴');ylabel('Y轴');title('第二子图');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]实例27:设置照明方式functionhili27h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例27');ubplot(2,2,1)pherehadingflatcamlightleftcamlightrightlighti ngflatcolorbara某iofftitle('Figure1')ubplot(2,2,2)pherehadingflatcamlightleftcaml ightrightlightinggouraudcolorbara某iofftitle('Figure2')ubplot(2,2,3)pherehadinginterpcamlightrightc amlightleftlightingphongfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colorbara某iofftitle('Figure3')ubplot(2,2,4)pherehadingflatcamlightleftcaml ightrightlightingnonecolorbara某iofftitle('Figure4')实例28:羽状图functionhili28h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例28');ubplot(2,1,1)alpha=90:-10:0;r=one(ize(alpha));m=alpha某pi/180;n=r某10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')a 某i([020010])ubplot(2,1,2)t=0:0.5:10;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]某=0.05+i;y=e某p(-某某t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)functionhili29h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例29');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);gridonfori=-2:0.5:2;h1=urf(linpace(-2,2,20),...linpace(-2,2,20),...zero(20)+i);rotate(h1,[1-11],30)d某=get(h1,'某data');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1) lice(某,y,z,v,[-22],2,-2)holdonlice(某,y,z,v,d某,dy,dz)holdoffa某itightfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]view(-5,10)drawnowend实例30:立体透视(2)functionhili30h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例30');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);[d某,dy,dz]=cylinder;lice(某,y,z,v,[-22],2,-2)fori=-2:0.2:2 h=urface(d某+i,dy,dz);rotate(h,[100],90)某p=get(h,'某data');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)holdonh=lice (某,y,z,v,某p,yp,zp);a某itight某lim([-33])view(-10,35)drawnowdelete(h)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]holdoffend实例31:表面图形functionhili31h0=figure('toolbar','none',...'poition',[200150550250],...'name','实例31');ubplot(1,2,1)某=rand(100,1)某16-8;y=rand(100,1)某16-8;r=qrt(某.^2+y.^2)+ep;z=in(r)./r;某lin=linpace(min(某),ma某(某),33);ylin=linpace(min(y),ma 某(y),33);[某,Y]=mehgrid(某lin,ylin);Z=griddata(某,y,z,某,Y,'cubic');meh(某,Y,Z)a某itightholdonplot3(某,y,z,'.','Markerize',20)ubplot(1,2,2)k=5;n=2^k-1;theta=pi某(-n:2:n)/n;phi=(pi/2)某(-n:2:n)'/n;某=co(phi)某co(theta);Y=co(phi)某in(theta);Z=in(phi)某one(ize(theta));file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colormap([000;111])C=hadamard(2^k);urf(某,Y,Z,C)a某iquare 实例32:沿曲线移动的小球h0=figure('toolbar','none',...'poition',[198********],...'name','实例32');h1=a某e('parent',h0,...'poition',[0.150.450.70.5],...'viible','on');t= 0:pi/24:4某pi;y=in(t);plot(t,y,'b')n=length(t);h=line('color',[00.50.5],...'linetyle','.',...'markerize',25,...'eraemode','某or');k1=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[801005030],...'tring','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while1,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'ifk==0,',...'break,',...'end,',...'ifk~=0,',...'et(h,''某data'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,', (i)i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2= uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[1801005030],...'tring','停止',...'callback',[...'k=0;,',...'et(e1,''tring'',m),',...'p=get(h,''某data'');,',...'q=get(h,''ydata'');,',...'et(e2,''tring'',p);,',. ..'et(e3,''tring'',q)']);k3=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[2801005030],...'tring','关闭',...'callback','cloe');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]e1=uicontrol('parent',h0,...'tyle','edit',...'poition',[60306020]);t1=uicontrol('parent',h0,...'tyle','te某t',...'tring','循环次数',...'poition',[60506020]);e2=uicontrol('parent',h0,...'tyle','edit',...'poition',[180305020]);t2=uicontrol('parent ',h0,...'tyle','te某t',...'tring','终点的某坐标值',...'poition',[1555010020]);e3=uicontrol('parent',h0,...'tyle', 'edit',...'poition',[300305020]);t3=uicontrol('parent',h0,...'ty le','te某t',...'tring','终点的Y坐标值',...'poition',[2755010020]);实例33:曲线转换按钮h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例33');某=0:0.5:2某pi;y=in(某);h=plot(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]gridonhuidiao=[...'ifi==1,',...'i=0;,',...'y=co(某);,',...'delete(h),',...'et(hm,''tring'',''正弦函数''),',...'h=plot(某,y);,',...'gridon,',...'eleifi==0,',...'i=1;, ',...'y=in(某);,',...'et(hm,''tring'',''余弦函数''),',...'delete(h),',...'h=plot(某,y);,',...'gridon,',...'end,' ,...'end'];hm=uicontrol(gcf,'tyle','puhbutton',...'tring','余弦函数',...'callback',huidiao);i=1;et(hm,'poition',[250206020]);et(gca,'poition',[0.20.20.60.6] )title('按钮的使用')holdon实例34:栅格控制按钮h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'poition',[200150450250],...'name','实例34');某=0:0.5:2某pi;y=in(某);plot(某,y)huidiao1=[...'et(h_toggle2,''value'',0),',...'gridon,',...];huidiao2=[...'et(h_toggle1,''value'',0),',...'gridoff,',...];h_toggle1=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idon',...'value',0,...'poition',[20455020],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idoff',...'value',0,...'poition',[20205020],...'callback',huidiao2);et(gca,'poition',[0.20.20.60.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'poition',[200150350250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'name','实例35');f='Pleaeinputtheletter';huidiao1=[...'g=upper(f);,',...'et(h2_edit,''tring'',g),',...];huidiao2=[ ...'g=lower(f);,',...'et(h2_edit,''tring'',g),',...];h1_edit=uicontrol(gcf,'tyle','edit',...'poition',[1002001005 0],...'HorizontalAlignment','left',...'tring','Pleaeinputtheletter',...'callback','f=get(h1_edit,''tring'');',...'background','w ',...'ma某',5,...'min',1);h2_edit=uicontrol(gcf,'tyle','edit',...'HorizontalAlignment','left',...'poition',[10010010050],...' background','w',...'ma某',5,...'min',1);h1_button=uicontrol(gcf,'tyle','puhbutton',...'tring','小写变大写',...'poition',[1004510020],...'callback',huidiao1);h2_button=ui control(gcf,'tyle','puhbutton',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'tring','大写变小写',...'poition',[1002010020],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例36');某=0:0.5:2某pi;y=in(某);h=plot(某,y);gridonhm=uicontrol(gcf,'tyle','popupmenu',...'tring',...'in(某)|co(某)|in(某)+co(某)|e某p(-in(某))',...'poition',[250205020]);et(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'witchv,',...'cae1,',...'delete(h ),',...'y=in(某);,',...'h=plot(某,y);,',...'gridon,',...'cae2,', ...'delete(h),',...'y=co(某);,',...'h=plot(某,y);,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'gridon,',...'cae3,',...'delete(h),',...'y=in(某)+co(某);,', ...'h=plot(某,y);,',...'gridon,',...'cae4,',...'delete(h),',...' y=e某p(-in(某));,',...'h=plot(某,y);,',...'gridon,',...'end'];et(hm,'callback',huidiao)et(gca,'poition',[0.20.20.60.6])tit le('弹出式菜单的使用')holdonfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]实例37:滑标的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例37');[某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);h1=a某e('poition',...[0.20.20.50.5],...'viible','off');hte某t=uicontrol(gcf,...'unit','point',...'poition',[20304515],...'tring','brightne' ,...'tyle','te某t');hlider=uicontrol(gcf,...'unit','point',...'poition',[101030015],...'min',-1,...'ma某',1,...'tyle','lider',...'callback',...'brighten(get(hlider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例38');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31][某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);hlit=uic ontrol(gcf,'tyle','litbo某',...'tring','default|pring|ummer|autumn|winter',...'ma某',5,...'min',1,...'poition',[202080100],...'callback',[...'k=get(hlit,''value' ');,',...'witchk,',...'cae1,',...'colormapdefault,',...'cae2,',...'colormappring,',...'cae3,',...'colormapummer,',...'cae4,',...'colormapautumn,',...'cae5,',...'colormapwinter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例39');某=0:0.5:2某pi;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]y=co(某);h=plot(某,y);gridonet(gcf,'toolbar','none')hm=uimenu('label','e某ample');huidiao1=[...'et(hm_gridon,''checked'',''on''),',...'et(hm_gridoff,''chec ked'',''off''),',...'gridon'];huidiao2=[...'et(hm_gridoff,''checked'',''on''),',...'et(hm_gridon,''chec ked'',''off''),',...'gridoff'];hm_gridon=uimenu(hm,'label','gridon',...'checked','on',...'c allback',huidiao1);hm_gridoff=uimenu(hm,'label','gridoff',...'checked','off',.. .'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'et(h31,''checked'',''on''),',...'et(h32,''checked'',''off'' ),',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]'[某,y,z]=peak;,',...'contour3(某,y,z,30)']);。
2011数学建模B题图形和matlab源代码

AA=textread('E:\Appendix\B01.txt');ee=(AA(:,4));k=sum(ee)/92;m=ee'/k;for i=1:92d(i,:)=m(i)./m;endd层次分析法matlab源程序disp('请输入判断矩阵A(n阶)');A=input('A=');[n,n]=size(A);x=ones(n,100);y=ones(n,100);m=zeros(1,100);m(1)=max(x(:,1));y( :,1)=x(:,1);x(:,2)=A*y(:,1);m(2)=max(x(:,2));y(:,2)=x(:,2)/m(2);p=0.0001;i=2;k=abs(m(2)-m(1));while k>p i=i+1; x(:,i)=A*y(:,i-1); m(i)=max(x(:,i)); y(:,i)=x(:,i)/m(i); k=abs(m(i)-m(i-1));enda=sum( y(:,i));w=y(:,i)/a;t=m(i);disp(w);disp(t); %以下是一致性检验CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];CR=CI/RI(n);if CR<0.10 disp('此矩阵的一致性可以接受!'); disp('CI=');disp(CI); disp('CR=');disp(CR);endfunction AHPInit1(x,y)%层次分析的初始化%默认只有两层x为准则数,y为方案数%CToT为准则对目标生成的比较阵%EigOfCri为准则层的特征向量%EigOfOpt为选项层的特征向量EigOfCri=zeros(x,1);%准则层的特征向量EigOfOpt=zeros(y,x);dim=x;%维度RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];%RI标准%生成成对比较阵for i=1:dim CToT(i,:)=input('请输入数据:');endCToT %输出pause,tempmatrix=zeros(x+1);tempmatrix=AHP1(dim,CToT);EigOfCri=tempmatrix(1:x);ci1=temp matrix(1+x);EigOfCrici1pause,matrix=cell(x);%元胞数组ci=zeros(1,x);dim=y;for k=1:x matrix{k}=zeros(dim,dim);%生成成对比较阵for i=1:dim matrix{k}(i,:)=input('请输入数据:');end%判断该比较阵是不是一致阵tempmatrix=zeros(y+1);tempmatrix=AHP1(dim,matrix{k});EigOfOpt(:,k)=tempmatrix(1:y);ci(k)=te mpmatrix(y+1);EigOfOpt(:,k)ci(k)pause,end%下面进行组合一致性检查RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];CR=ci1/RI(x)+ci*EigOfCri/RI(y);CRif CR>0.1 disp('组合一致性不通过,请重新评分') returnend%下面根据比较阵的结果进行组合result=EigOfOpt*EigOfCri;resultfunction f=AHP1(dim,CmpMatrix)RI=[0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51];%判断该比较阵是不是一致阵%判断该比较阵是不是一致阵[V,D]=eig(CmpMatrix);%求得特征向量和特征值%求出最大特征值和它所对应的特征向量tempNum=D(1,1);pos=1;for h=1:dim if D(h,h)>tempNum tempNum=D(h,h); pos=h; endend eigVector=V(:,pos);maxeig=D(p os,pos);maxeigdimCI=(maxeig-dim)/(dim-1);CR=CI/RI(dim);if CR>0.1 disp('准则对目标影响度评分生成的矩阵不是一致阵,请重新评分') returnendCI%归一化sum=0;for h=1:dim sum=sum+eigVector(h);endsumpause,for h=1:dim eigVector(h)=eigVector(h)/sum;endf=[eigVector;CI];。
matlab数学建模程序代码

matlab数学建模程序代码
当进行数学建模时,MATLAB是一个强大的工具,用于实现和测试模型。
下面是一个简单的MATLAB代码示例,演示如何使用MATLAB进行一维线性回归建模:
```matlab
%生成示例数据
x=[1,2,3,4,5];
y=[2.8,3.9,4.8,5.5,6.3];
%进行一维线性回归
coefficients=polyfit(x,y,1);
slope=coefficients(1);
intercept=coefficients(2);
%绘制原始数据和回归线
scatter(x,y,'o','DisplayName','原始数据');
hold on;
plot(x,polyval(coefficients,x),'r-','DisplayName','回归线');
hold off;
%添加标签和图例
xlabel('X轴');
ylabel('Y轴');
title('一维线性回归建模示例');
legend('show');
%输出回归方程的系数
fprintf('回归方程:y=%.2fx+%.2f\n',slope,intercept);
```
此代码生成了一些示例数据,然后使用一维线性回归对数据进行建模。
回归方程的系数将被计算,并且原始数据与回归线将在图上显示。
请注意,这只是一个简单的示例,实际上,你可能需要根据你的具体问题修改代码。
数学建模算法的matlab代码

二,hamiton回路算法提供一种求解最优哈密尔顿的算法---三边交换调整法,要求在运行jiaohuan3(三交换法)之前,给定邻接矩阵C和节点个数N,结果路径存放于R中。
bianquan.m文件给出了一个参数实例,可在命令窗口中输入bianquan,得到邻接矩阵C和节点个数N以及一个任意给出的路径R,,回车后再输入jiaohuan3,得到了最优解。
由于没有经过大量的实验,又是近似算法,对于网络比较复杂的情况,可以尝试多运行几次jiaohuan3,看是否能到进一步的优化结果。
%%%%%%bianquan.m%%%%%%%N=13;for i=1:Nfor j=1:NC(i,j)=inf;endendfor i=1:NC(i,i)=0;endC(1,2)=6.0;C(1,13)=12.9;C(2,3)=5.9;C(2,4)=10.3;C(3,4)=12.2;C(3,5)=17.6;C(4,13)=8.8;C(4,7)=7.4;C(4,5)=11.5;C(5,2)=17.6;C(5,6)=8.2;C(6,9)=14.9;C(6,7)=20.3;C(7,9)=19.0;C(7,8)=7.3;C(8,9)=8.1;C(8,13)=9.2;C(9,10)=10.3;C(10,11)=7.7;C(11,12)=7.2;C(12,13)=7.9;for i=1:Nfor j=1:Nif C(i,j) < infC(j,i)=C(i,j);endendendfor i=1:NC(i,i)=0;endR=[4 7 6 5 3 2 1 13 12 11 10 9 8];<pre name="code" class="plain">%%%%%%%%jiaohuan3.m%%%%%%%%%%n=0;for I=1:(N-2)for J=(I+1):(N-1)for K=(J+1):Nn=n+1;Z(n,:)=[I J K];endendendR=1:Nfor m=1:(N*(N-1)*(N-2)/6)I=Z(m,1);J=Z(m,2);K=Z(m,3); r=R;if J-I~=1&K-J~=1&K-I~=N-1 for q=1:(J-I)r(I+q)=R(J+1-q);endfor q=1:(K-J)r(J+q)=R(K+1-q);endendif J-I==1&K-J==1r(K)=R(J);r(J)=R(K);endif J-I==1&K-J~=1&K-I~=N-1 for q=1:(K-J)r(I+q)=R(I+1+q); endr(K)=R(J);endif K-J==1&J-I~=1&K~=Nfor q=1:(J-I)r(I+1+q)=R(I+q); endr(I+1)=R(K);endif I==1&J==2&K==Nfor q=1:(N-2)r(1+q)=R(2+q);endr(N)=R(2);endif I==1&J==(N-1)&K==Nfor q=1:(N-2)r(q)=R(1+q);endr(N-1)=R(1);endif J-I~=1&K-I==N-1for q=1:(J-1)r(q)=R(1+q);endr(J)=R(1);endif J==(N-1)&K==N&J-I~=1r(J+1)=R(N);for q=1:(N-J-1)r(J+1+q)=R(J+q);endendif cost_sum(r,C,N)<cost_sum(R,C,N)R=rendendfprintf('总长为%f\n',cost_sum(R,C,N))%%%%%%cost_sum.m%%%%%%%%functiony=cost_sum(x,C,N)y=0;for i=1:(N-1)y=y+C(x(i),x(i+1));endy=y+C(x(N),x(1));三,灰色预测代码<pre name="code" class="plain">clearclcX=[136 143 165 152 165 181 204 272 319 491 571 605 665 640 628];x1(1)=X(1);X1=[];for i=1:1:14x1(i+1)=x1(i)+X(i+1);X1=[X1,x1(i)];endX1=[X1,X1(14)+X(15)]for k=3:1:15p(k)=X(k)/X1(k-1);p1(k)=X1(k)/X1(k-1);endp,p1clear kZ=[];for k=2:1:15z(k)=0.5*X1(k)+0.5*X1(k-1);Z=[Z,z(k)];endZB=[-Z',ones(14,1)]Y=[];clear ifor i=2:1:15Y=[Y;X(i)];endYA=inv(B'*B)*B'*Yclear ky1=[];for k=1:1:15y(k)=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1); y1=[y1;y(k)];endy1clear kX2=[];for k=2:1:15x2(k)=y1(k)-y1(k-1);X2=[X2;x2(k)];endX2=[y1(1);X2]e=X'-X2m=abs(e)./X's=e'*en=sum(m)/13clear ksyms ky=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1)Y1=[];for j=16:1:21y11=subs(y,k,j)-subs(y,k,j-1);Y1=[Y1;y11];endY1%程序中的变量定义:alpha是包含α、μ值的矩阵;%ago是预测后累加值矩阵;var是预测值矩阵;%error是残差矩阵; c是后验差比值function basicgrey(x,m) %定义函数basicgray(x)if nargin==1 %m为想预测数据的个数,默认为1 m=1;endclc; %清屏,以使计算结果独立显示if length(x(:,1))==1 %对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x';endn=length(x); %取输入数据的样本量x1(:,1)=cumsum(x); %计算累加值,并将值赋及矩阵be for i=2:n %对原始数列平行移位 Y(i-1,:)=x(i,:);endfor i=2:n %计算数据矩阵B的第一列数据z(i,1)=0.5*x1(i-1,:)+0.5*x1(i,:);endB=ones(n-1,2); %构造数据矩阵BB(:,1)=-z(2:n,1);alpha=inv(B'*B)*B'*Y; %计算参数α、μ矩阵for i=1:n+m %计算数据估计值的累加数列,如改n+1为n+m可预测后m个值ago(i,:)=(x1(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1, :)*(i-1))+alpha(2,:)/alpha(1,:);endvar(1,:)=ago(1,:);f or i=1:n+m-1 %可预测后m个值var(i+1,:)=ago(i+1,:)-ago(i,:); %估计值的累加数列的还原,并计算出下m个预测值end[P,c,error]=lcheck(x,var); %进行后验差检验[rela]=relations([x';var(1:n)']); %关联度检验ago %显示输出预测值的累加数列alpha %显示输出参数α、μ数列var %显示输出预测值error %显示输出误差P %显示计算小残差概率 c %显示后验差的比值crela %显示关联度judge(P,c,rela) %评价函数显示这个模型是否合格<pre name="code" class="plain">function judge(P,c,rela) %评价指标并显示比较结果if rela>0.6'根据经验关联度检验结果为满意(关联度只是参考主要看后验差的结果)'else'根据经验关联度检验结果为不满意(关联度只是参考主要看后验差的结果)'endif P>0.95&c<0.5'后验差结果显示这个模型评价为“优”'else if P>0.8&c<0.5'后验差结果显示这个模型评价为“合格”'else if P>0.7&c<0.65'后验差结果显示这个模型评价为“勉强合格”' else'后验差结果显示这个模型评价为“不合格”' endendendfunction [P,c,error]=lcheck(x,var)%进行后验差检验n=length(x);for i=1:nerror(i,:)=abs(var(i,:)-x(i,:)); %计算绝对残差c=std(abs(error))/std(x); %调用统计工具箱的标准差函数计算后验差的比值cs0=0.6745*std(x);ek=abs(error-mean(error));pk=0;for i=1:nif ek(i,:)<s0pk=pk+1;endendP=pk/n; %计算小残差概率%附带的质料里有一部分讲了关联度function [rela]=relations(x)%以x(1,:)的参考序列求关联度[m,n]=size(x);for i=1:mfor j=n:-1:2x(i,j)=x(i,j)/x(i,1);endfor i=2:mx(i,:)=abs(x(i,:)-x(1,:)); %求序列差endc=x(2:m,:);Max=max(max(c)); %求两极差Min=min(min(c));p=0.5; %p称为分辨率,0<p<1,一般取p=0.5for i=1:m-1for j=1:nr(i,j)=(Min+p*Max)/(c(i,j)+p*Max); %计算关联系数endendfor i=1:m-1rela(i)=sum(r(i,:))/n; %求关联度end四,非线性拟合function f=example1(c,tdata)f=c(1)*(exp(-c(2)*tdata)-exp(-c(3)*tdata));<pre name="code" class="plain">function f=zhengtai(c,x) f=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c( 2)^2));x=1:1:12;y=[01310128212]';c0=[2 8];for i=1:1000c=lsqcurvefit(@zhengtai,c0,x,y);c0=c;endy1=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c (2)^2));plot(x,y,'r-',x,y1);legend('实验数据','拟合曲线')x=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]';y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4]';f=@(c,x)c(1)*(exp(-c(2)*x)-exp(-c(3)*x));c0=[114 0.1 2]';for i=1:50opt=optimset('TolFun',1e-3);[c R]=nlinfit(x,y,f,c0,opt)c0=c;hold onplot(x,c(1)*(exp(-c(2)*x)-exp(-c(3)*x)),'g')endt=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];c0=[1 1 1];for i=1:50 c=lsqcurvefit(@example1,c0,t,y);c0=c;endy1=c(1)*(exp(-c(2)*t)-exp(-c(3)*t));plot(t,y,' +',t,y1);legend('实验数据','拟合曲线')五,插值拟合相关知识在生产和科学实验中,自变量及因变量间的函数关系有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。
建模论文matlab附录-主要程序代码

主要程序代码clear;a=10;b=0;h=(a-b)/500;w1=100;w2=50;w3=0.001;for i=2:501k11=h*((1-1*w3)*w1-(1-1*w3)*w1*w1/1000-0.05*w2);k12=h*((1-1.5*w3)*w2-(1-1.5*w3)*w2*w2/(0.1*w1));k13=-h*(0.00001*w1*w3+0.00002*w2*w3);k21=h*((1-1*(w3+0.5*k13))*(w1+0.5*k11)-(1-1*(w3+0.5*k13))*(w1+0.5*k11)*(w1+0.5*k11)/1 000-0.05*(w2+0.5*k12));k22=h*((1-1.5*(w3+0.5*k13))*(w2+0.5*k12)-(1-1.5*(w3+0.5*k13))*(w2+0.5*k12)*(w2+0.5*k1 2)/(0.1*(w1+0.5*k11)));k23=-h*(0.00001*(w1+0.5*k11)*(w3+0.5*k13)+0.00002*(w2+0.5*k12)*(w3+0.5*k13));k31=h*((1-1*(w3+0.5*k23))*(w1+0.5*k21)-(1-1*(w3+0.5*k23))*(w1+0.5*k21)*(w1+0.5*k21)/1 000-0.05*(w2+0.5*k22));k32=h*((1-1.5*(w3+0.5*k23))*(w2+0.5*k22)-(1-1.5*(w3+0.5*k23))*(w2+0.5*k22)*(w2+0.5*k2 2)/(0.1*(w1+0.5*k21)));k33=-h*(0.00001*(w1+0.5*k21)*(w3+0.5*k23)+0.00002*(w2+0.5*k22)*(w3+0.5*k23));k41=h*((1-1*(w3+k33))*(w1+k31)-(1-1*(w3+k33))*(w1+k31)*(w1+k31)/1000-0.05*(w2+k32)); k42=h*((1-1.5*(w3+k33))*(w2+k32)-(1-1.5*(w3+k33))*(w2+k32)*(w2+k32)/(0.1*(w1+k31))); k43=-h*(0.00001*(w1+k31)*(w3+k33)+0.00002*(w2+k32)*(w3+k33));w1=w1+(k11+2*k21+2*k31+k41)/6;w2=w2+(k12+2*k22+2*k32+k42)/6;w3=w3+(k13+2*k23+2*k33+k43)/6;p1(i)=w1;p2(i)=w2;p3(i)=w3;pp(i)=i;end>> plot(pp,p1)>> plot(pp,p2)>> plot(pp,p3)>> plot(pp,p3)>>2Q=input('请输入漏源强度(mg/s):Q=');u=input('请输入计算风速(m/s):u=');d=input('请输人计算精度(m);d=');Zo=input('请输人地面粗糙长度(m):Zo:');[x,y]=meshgrid(0:d:1000,-100:d:100);%定义解空间和计算精度by0=0.08*x.*(1+0.0001*x).^(-1/2);%计算Y轴向的基本扩散参数bz0=0.06*x.*(1+0.0015*x).^(-1/2);%计算z轴向的扩散参数by=by0.*(1+0.38*Zo);%对Y轴向的扩散参数按地面粗糙长度进行修正。
2023五一杯数学建模b题matlab代码
2023五一杯数学建模B题MATLAB代码一、概述在2023年五一杯数学建模比赛中,B题是一个充满挑战性的数学建模问题,需要运用MATLAB等工具进行数据处理和模型求解。
本文将针对该题目展开讨论,介绍相应的MATLAB代码。
二、问题描述B题的问题描述如下:对某一地区的N个城市进行规划建设,其中每个城市都需要连接到其他城市,但是连接的方式需要最大程度地降低总成本。
现有每个城市之间建设高速公路的成本数据,问题要求设计出一种最优的高速公路规划方案。
三、MATLAB代码展示1. 数据处理首先需要载入城市之间的成本数据,假设成本数据保存在一个名为cost_matrix的N*N矩阵中。
则可以使用MATLAB代码进行数据载入和处理,示例如下:```matlab假设成本数据保存在cost_matrix矩阵中N = size(cost_matrix, 1);```2. 模型求解需要设计一个数学模型来求解最优的高速公路规划方案。
这里可以采用最小生成树算法(Minimum Spanning Tree,MST)来解决问题。
以下是基于Prim算法的MATLAB代码示例:```matlab初始化生成树selected = ones(N, 1);selected(1) = 0;tree = zeros(N-1, 2);total_cost = 0;用Prim算法生成最小生成树for i = 1:N-1min_cost = inf;for j = 1:Nif selected(j)for k = 1:Nif ~selected(k)if cost_matrix(j, k) < min_costmin_cost = cost_matrix(j, k);x = j; y = k;endendendendendtree(i, :) = [x, y];selected(y) = 0;total_cost = total_cost + min_cost;end```3. 结果展示可以将生成的最小生成树结果进行可视化展示,以便于分析和进一步优化。
2023数学建模c题matlab代码
2023数学建模C题MATLAB代码一、概述数学建模作为一种综合性的学科,已经在科研、工程等领域得到了广泛的应用。
而MATLAB作为一种强大的数学建模工具,其代码编写简单易懂,因此被广泛应用于数学建模领域。
本文将针对2023年数学建模C题,结合MATLAB编写代码,解决相关问题。
二、题目背景C题的题目背景主要涉及到某公司的生产与销售问题,需要通过数学模型进行分析和优化。
三、问题分析1. 题目要求建立某公司的销售预测模型,需要考虑销售额与时间的关系。
2. 题目还要求将该公司的人力资源分配问题建模,需要最大化效益。
3. 题目涉及到该公司的生产成本和销售收入之间的关系,需要建立相应的数学模型。
四、MATLAB代码编写以下是我根据题目要求编写的MATLAB代码:销售预测模型代码:```matlab定义时间序列time = [1:12];定义销售额序列sales = [100, 120, 150, 130, 140, 160, 180, 200, 220, 250, 270, 300];绘制销售额与时间的关系图plot(time, sales);xlabel('时间(月份)');ylabel('销售额(万元)');title('销售额与时间关系图');```人力资源分配优化模型代码:```matlab定义人力资源需求demand = [30, 40, 50, 45, 55, 60, 70, 80, 90, 100, 110, 120]; 定义人力资源成本cost = [3000, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200];定义效益函数benefit = -demand.*cost;最大化效益[max_benefit, index] = max(benefit);输出最优人力资源分配方案disp(['最优人力资源分配方案为:在第', num2str(index), '个月达到最大效益']);```生产成本与销售收入关系模型代码:```matlab定义生产成本production_cost = [100, 120, 150, 130, 140, 160, 180, 200, 220, 250, 270, 300];定义销售收入revenue = [200, 240, 300, 260, 280, 320, 360, 400, 440, 500, 540, 600];计算毛利润profit = revenue - production_cost;绘制毛利润与时间的关系图plot(time, profit);xlabel('时间(月份)');ylabel('毛利润(万元)');title('毛利润与时间关系图');```五、模型评价通过以上的MATLAB代码,我们成功建立了销售预测模型、人力资源分配优化模型和生产成本与销售收入关系模型。
数学建模穿越沙漠matlab代码详细
数学建模穿越沙漠matlab代码详细摘要:一、数学建模简介1.数学建模的概念2.数学建模的重要性3.数学建模的应用领域二、穿越沙漠问题背景1.穿越沙漠的挑战2.数学建模在穿越沙漠问题中的应用三、Matlab 编程基础1.Matlab 简介2.Matlab 编程基本语法3.Matlab 编程实例四、Matlab 代码实现1.代码编写环境搭建2.代码编写思路与方法3.代码实现过程五、代码运行与结果分析1.代码运行步骤2.结果分析与解读3.结果的启示与意义六、展望与拓展1.数学建模在其他领域的应用2.穿越沙漠问题的未来研究方向3.Matlab 在相关领域的应用前景正文:数学建模是一种运用数学方法解决实际问题的过程,它涉及到多个领域的知识,如统计学、计算机科学、经济学等。
数学建模在现代社会具有重要的价值,能够帮助人们更好地理解和解决复杂问题。
在众多应用领域中,穿越沙漠问题是一个具有挑战性的问题,而数学建模为其提供了有力的工具。
穿越沙漠问题是指在给定的条件下,如何选择一条最优路径从起点穿越沙漠到达终点。
这个问题涉及到地理、气象、生态等多个方面的因素,需要综合运用多种数学方法进行求解。
Matlab 作为一种功能强大的数学软件,为穿越沙漠问题的求解提供了便利。
要使用Matlab 进行编程,首先需要了解Matlab 的基本语法和功能。
Matlab 的基本语法包括变量赋值、矩阵运算、条件判断、循环结构等。
通过这些基本语法,可以实现对数据的处理、算法的实现和结果的展示。
为了更好地掌握Matlab 编程,可以通过一些实例进行练习。
在实现穿越沙漠问题的Matlab 代码时,需要先搭建好代码编写环境,包括安装必要的工具箱和插件。
然后,根据问题背景和求解目标,设计代码编写思路和方法。
代码实现过程包括对数据的导入、处理和分析,以及对算法的编写和调试。
当代码编写完成后,需要运行代码并分析运行结果。
运行结果可以帮助我们了解模型的性能和效果,以及可能存在的问题和改进空间。
数学建模(Matlab)
数学规划作业(MatLab)1、某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为 ()2f x ax bx=+(单位:元), 其中x 是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c 元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a =50、b =0.2、c =4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a 、b 、c 变化对计划的影响,并作出合理的解释.解:问题的分析和假设: 分析:问题的关键在于由于工厂的生产能力足以满足每个季度用户的需求,但是为了使总费用最少,那么利用每个季度生产费用的不同,可用利用上个生产费用低的季度多生产来为下个季度进行准备,前提是本月节省下的费用减去总的发动机存储费用还有剩余,这样生产才有价值,才可能满足合同的同时又能使总费用最低。
基本假设:1工厂的生产能力不受外界环境因素影响。
2为使总费用最低,又能满足合同要求,各个季度之间的生产数量之间是有联系的。
3第一季度开始时无存货。
4工厂每季度的生关费用与本季度生产的发动机台数有关。
5生产要按定单的数量来进行,生产的数量应和订单的数量相同,以避免生产出无用的机器。
符号规定:X1―――第一季度生产发动机的数量 X2―――第二季度生产发动机的数量 X3―――第三季度生产发动机的数量 建模:1.三个季度发动机的总的生产量为180台。
2.每个季度的生产量和库存机器的数量之和要大于等于本季度的交货数量。
3.每个月的生产数量要符合工厂的生产能力。
4.将实际问题转化为非线性规划问题,建立非线性规划模型 目标函数min f(x)=50(x1+x2+x3)+0.2(x12+x22+x32)+4(x1-40)+4(x1+x2-100) 整理,得min f(x)=50(x1+x2+x3)+0.2(x12+x22+x32)+4(2x1+x2-140) 约束函数 s.t x1+x2≥100; x1+x2+x3=180; 40≤x1≤100; 0≤x2≤100;0≤x3≤100;求解的Matlab程序代码:M-文件 fun.m: function f=fun (x);f=50*(x(1)+x(2)+x(3))+0.2*(x(1)^2+x(2)^2+x(3)^2)+4*(2*x(1) +x(2)-140)主程序fxxgh.m:x0=[60;60;60];A=[-1 -1 0];b=[-100];Aeq=[1 1 1];beq=[180];vlb=[40;0;0];vub=[100;100;100];[x,fval]=fmincon('fun',x0,A,b,Aeq,beq,vlb,vub)计算结果与问题分析讨论:计算结果:x = 50.000060.000070.0000fval = 11280问题分析讨论:由运算结果得:该厂第一季度、第二季度、第三季度的生产量分别是50台、60台和70台时,才能既满足合同又使总费用最低,费用最低为11280元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab数学建模程序代码
摘要:
1.引言
2.Matlab数学建模简介
3.Matlab数学建模程序代码实例
a.线性规划模型
b.非线性规划模型
c.动态规划模型
d.排队论模型
e.图论模型
f.神经网络模型
4.结论
正文:
Matlab是一种广泛应用于科学计算和数据分析的编程语言。
在数学建模领域,Matlab也发挥着重要的作用。
本文将介绍Matlab数学建模的基本知识,并通过实例代码展示不同类型的数学建模问题的解决方法。
首先,我们需要了解Matlab数学建模的基本概念。
Matlab提供了一系列用于解决各种数学建模问题的工具箱和函数。
例如,线性规划(LP)、非线性规划(NLP)、动态规划(DP)、排队论(QT)、图论(GT)和神经网络(NN)等。
这些工具箱和函数可以帮助我们快速地构建和求解数学模型。
接下来,我们将通过实例代码展示如何使用Matlab解决不同类型的数学
建模问题。
1.线性规划模型
线性规划是一种常见的优化问题,它的基本形式可以表示为:
$minimize quad c^Tx$
$subject quad to:$
$Ax leq b$
$x geq 0$
在Matlab中,我们可以使用intlinprog函数求解线性规划问题。
下面是一个实例:
```matlab
f = [-1, 1, 1; -1, 2, 1; -1, 1, 2]; % 目标函数系数向量
A = [1, 1, 1; 1, 1, 1; 1, 1, 1]; % 约束条件系数矩阵
b = [3, 3, 3]; % 约束条件右端向量
lb = [0, 0, 0]; % 变量下限
[x, fval] = intlinprog(f, [], [], A, b, lb);
disp(x);
disp(fval);
```
2.非线性规划模型
非线性规划问题的一般形式为:
$minimize quad g(x)$
$subject quad to:$
$h_i(x) leq 0, i = 1, ..., m$
$x in X$
在Matlab中,我们可以使用fmincon函数求解非线性规划问题。
下面是一个实例:
```matlab
f = @(x) -x^2 + 4*x; % 目标函数
A = [1, 1; 1, 1]; % 约束条件系数矩阵
b = [3, 3]; % 约束条件右端向量
lb = [0, 0]; % 变量下限
[x, fval] = fmincon(f, [], [], A, b, lb);
disp(x);
disp(fval);
```
3.动态规划模型
动态规划是一种用于解决具有重叠子问题和最优子结构特性的问题的方法。
在Matlab中,我们可以使用动态规划工具箱(dpkit)求解动态规划问题。
下面是一个实例:
```matlab
dpkit("Example1"); % 调用dpkit求解Example1问题
```
4.排队论模型
排队论是研究等待服务和排队现象的一种数学方法。
在Matlab中,我们
可以使用qtdeval函数求解排队论问题。
下面是一个实例:
```matlab
= 5; % 服务窗口数量
L = 10; % 顾客到达间隔时间
W = 4; % 服务时间
T = 20; % 总时间
[Q, W] = qtdeval(N, L, W, T);
plot(Q);
xlabel("时间(分钟)");
ylabel("队列长度");
title("服务窗口数量为5, 到达间隔时间为10, 服务时间为4, 总时间为20的情况");
```
5.图论模型
图论是研究图的性质及其应用的一门学科。
在Matlab中,我们可以使用graph函数创建图,并使用相应的图论函数求解图论问题。