一元二次方程基础练习(含答案)

合集下载

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分)1.下列方程中,常数项为零的是( )A.x2+x=1B.2x2-x-12=12;C.2(x2-1)=3(x-1)D.2(x2+1)=x+22.下列方程:①x2=0,② -2=0,③2+3x=(1+2x)(2+x),④3-=0,⑤-8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(x-)(x+)+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x2-4x-4=0B.x2-5=.5x2-2x+1=0 D.5x2-4x+6=04.方程x2=6x的根是( )A.x1=0,x2=-6B.x1=0,x2=.x=6 D.x=05.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( )A. ;B.;C. ;D.以上都不对6.若两个连续整数的积是56,则它们的和是( )A.11B.-15 D.±157.不解方程判断下列方程中无实数根的是( )A.-x2=2x-1B.4x2+4x+=0;C.D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共24分)9.方程化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=;(3)(x-a)2=1+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n 的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD二、9.x2+4x-4=0,410.11.因式分解法12.1或13.214.15.16.30%三、17.(1)3,;(2);(3)1,-118.m=-6,n=819.(1)Δ=2k2+8>0, ∴不论k为何值,方程总有两不相等实数根.(2)四、20.20%21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

初中一元二次方程专项练习题(含答案)

初中一元二次方程专项练习题(含答案)

初中一元二次方程专项练习题一、填空题1、若x1=-1是关于x的方程x2+mx-5=0的一个根,则此方程的另一个根x2=。

(答案:5)2、若a为方程x2+x-5=0的解,则a2+a+1=0的值为。

(答案:6)3、若x2+6x+9+√y−3=0,则x-y的值为。

(答案:-6)4、已知直角三角形的两条直角边的长恰好是方程x2-5x+6=0的两根,则此直角三角形的斜边长为。

(答案:√13)5、由关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为。

(答案:-1)6、已知三角形两边长分别为2和9,第三边的长为一元二次方程x2-14x+48=0的一根,则这个三角形的周长为。

(答案:19)的值等于零的x是。

(答案:6)7、使分式x2−5x−6x+18、若关于y的一元二次方程ky2-4y-3=3y+4有实根,则,且k≠0)k的取值范围是。

(答案:k≥-749、如果2x2+1与4x2-2x-5互为相反数,则x的值为。

)(答案:1或-2310、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1,则a= ,b= 。

(答案:1,-2)11、一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于 。

(答案:3)12、已知3-√2是方程x 2+mx+7=0的一个根,则m= ,另一根为 。

(答案:-6,3+√2)13、已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是 。

(答案:x 2-7x+12=0或x 2+7x+12=0)14、已知x 1,x 2是方程x 2-2x-1=0的两个根,则等于1x 1+1x 2 。

(答案:-2)15、设m 、n 是一元二次方程x 2+3x-7=0的两个根,则m 2+4m+n= 。

(答案:4)二、解答题21、解下列方程:(1)x 2-5x+1=0;(答案:5±√212) (2)3(x -2)2=x (x -2);(答案:2,3) (3)2x 2-2√2x -5=0;(答案:√2±2√32) (4)(y+2)2=(3y -1)2;(答案:-14,32) (5)x 2-7x -18=0;(答案:-2,9)(6)x 2-x -6=0;(答案:-2,3)(7)(3-x )2+x 2=5;(答案:1,2)(8)2x 2+12x -6=0;(答案:-3±2√3)22、已知关于x 的一元二次方程x 2+(2m -1)x+m 2=0有两个实数根和。

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。

3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习四◆基础知识作业1.利用求根公式解一元二次方程时,首先要把方程化为____________,确定__________的值,当__________时,把a ,b ,c 的值代入公式,x 1,2=_________________求得方程的解. 2、把方程4 —x 2 = 3x 化为ax 2 + bx + c = 0(a ≠0)形式为 ,则该方程的二次项系数、一次项系数和常数项分别为 。

3.方程3x 2-8=7x 化为一般形式是________,a =__________,b =__________,c =_________,方程的根x 1=_____,x 2=______.4、已知y=x 2-2x-3,当x= 时,y 的值是-3。

5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=06.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A.x 1、2=24312122⨯-±B.x 1、2=24312122⨯-±-C.x 1、2=24312122⨯+± D.x 1、2=32434)12()12(2⨯⨯⨯---±--7.方程21x x =+的根是( )A .x =B . 12x =C .x =D .12x -±= 8.方程x 2+(23+)x +6=0的解是( )A.x 1=1,x 2=6B.x 1=-1,x 2=-6C.x 1=2,x 2=3D.x 1=-2,x 2=-3 9.下列各数中,是方程x 2-(1+5)x +5=0的解的有( )①1+5 ②1-5 ③1 ④-5 A.0个 B.1个 C.2个D.3个10. 运用公式法解下列方程:(1)5x 2+2x -1=0 (2)x 2+6x +9=7◆能力方法作业11.方程2430x x ++=的根是 12.方程20(0)ax bx a +=≠的根是13.2x 2-2x -5=0的二根为x 1=_________,x 2=_________. 14.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________.15.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______. 16.下列说法正确的是( )A .一元二次方程的一般形式是20ax bx c ++=B .一元二次方程20ax bx c ++=的根是2b x a-±=C .方程2x x =的解是x =1D .方程(3)(2)0x x x +-=的根有三个 17.方程42560x x -+=的根是( )A .6,1B .2,3C .D .1± 18.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1B.4x 2+4x+54=0; C. 20x -= D.(x+2)(x-3)==-519、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于 ( ) A 、1B 、-1C 、0D 、220.若代数式x 2+5x +6与-x +1的值相等,则x 的值为( ) A.x 1=-1,x 2=-5 B.x 1=-6,x 2=1 C.x 1=-2,x 2=-3D.x =-121.解下列关于x 的方程:(1)x 2+2x -2=0 (2).3x 2+4x -7=0(3)(x +3)(x -1)=5 (4)(x -2)2+42x =022.解关于x 的方程2222x ax b a -=-23.若方程(m -2)x m2-5m+8+(m+3)x+5=0是一元二次方程,求m 的值24.已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. 求证:不论k 为何值,方程总有两不相等实数根.◆能力拓展与探究25.下列方程中有实数根的是( )(A)x 2+2x +3=0. (B)x 2+1=0. (C)x 2+3x +1=0. (D)111x x x =--. 26.已知m ,n 是关于x 的方程(k +1)x 2-x +1=0的两个实数根,且满足k +1=(m +1)(n +1),则实数k 的值是 .27. 已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>mB. 43≥mC. 43>m 且2≠mD. 43≥m 且2≠m答案1.一般形式 二次项系数、一次项系数、常数项 b 2-4ac ≥0 aacb b 242-±-2、x 2 + 3x —4=0, 1、3、—4; 3.3x 2-7x -8=0 3 -7 -84、0、2 5.A 6.D 7.B 8.D 9.B 10. (1)解:a =5,b =2,c =-1∴Δ=b 2-4ac =4+4×5×1=24>0 ∴x 1·2=56110242±-=±- ∴x 1=561,5612--=+-x (2).解:整理,得:x 2+6x +2=0 ∴a =1,b =6,c =2∴Δ=b 2-4ac =36-4×1×2=28>0 ∴x 1·2=2286±-=-3±7 ∴x 1=-3+7,x 2=-3-7 11.x 1=-1,x 2=-3 12.x 1=0,x 2=-b 13.4422+ 4422- 14. 240b c -≥ 15.1816.D 17.C . 18.B 19、A 20.A21. (1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 22.X=a+1b1 23.m=324.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根. 25. C 26. -2 27. C练习五第1题. (2005 南京课改)写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1: .答案:答案不惟一,例如:20x =,20x x -=等第2题. (2005 江西课改)方程220x x -=的解是 . 答案:1220x x ==,第3题. (2005 成都课改)方程290x -=的解是 .答案:3x =±第4题. (2005 广东课改)方程2x =的解是 .答案:120x x ==,第5题. (2005 深圳课改)方程22x x =的解是( )A.2x =B.1x =,20x =C.12x =,20x =D.0x =答案:C第6题. (2005 安徽课改)方程(3)3x x x +=+的解是( )A.1x = B.1203x x ==-, C.1213x x ==, D.1213x x ==-, 答案:D第7题. (2005 漳州大纲)方程22x x =的解是1x = 、2x = . 答案:1202x x ==,第8题. (2005江西大纲)若方程20x m -=有整数根,则m 的值可以是 (只填一个).答案:如0149m =,,,,第9题. (2005济南大纲)若关于x 的方程210x kx ++=的一根为2,则另一根为 ,k 的值为 .答案:1522-,第10题. (2005 上海大纲)已知一元二次方程有一个根为1,那么这个方程可以是______________(只需写出一个方程).答案:20x x -=第11题. (2005 海南课改)方程042=-x 的根是( )A. 1222x x ==-,B. 4=xC. 2=xD. 2-=x 答案:A第12题. (2005 江西淮安大纲)方程24x x =的解是 .答案:0或4第13题. (2005 兰州大纲)已知m 是方程210x x --=的一个根,则代数2m m -的值等于( )A.-1 B.0 C.1 D.2答案:C练习六第1题. (2007甘肃兰州课改,4分)下列方程中是一元二次方程的是( ) A.210x +=B.21y x +=C.210x +=D.211x x+= 答案:C第2题. (2007甘肃白银3市非课改,4分)已知x =-1是方程012=++mx x 的一个根,则m = .答案:2第3题. (2007海南课改,3分)已知关于x 的方程0322=++m mx x 的一个根是1=x ,那么=m .答案:253±-第4题. (2007黑龙江哈尔滨课改,3分)下列说法中,正确的说法有( ) ①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③依次连接任意一个四边形各边中点所得的四边形是平行四边形; ④一元一次不等式2511x +<的正整数解有3个; ⑤在数据1,3,3,0,2中,众数是3,中位数是3. A .1个 B .2个 C .3个 D .4个答案:B第5题. (2007湖北武汉课改,3分)如果2是一元二次方程2x c =的一个根,那么常数c 是( )A.2 B.2-C.4D.4-答案:C第6题. (2007湖北襄樊非课改,3分)已知关于x 的方程322x a +=的解是1a -,则a 的值为( ) A .1 B .35C .15D .1-答案:A第7题. (2007湖南株洲课改,6分)已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.答案:由1x =是一元二次方程2400ax bx +-=的一个解,得:40a b +=3分又a b ≠,得:22()()20222()2a b a b a b a ba b a b -+-+===-- 6分第8题. (2007山西课改,2分)若关于x 的方程220x x k ++=的一个根是0,则另一个根是.答案:2-。

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。

配方法解一元二次方程基础练习30题含详细答案

配方法解一元二次方程基础练习30题含详细答案
配方得: ,
即 ,
故选D.
10.B
【解析】
试题分析: , , .故选B.
考点:解一元二次方程-配方法.
11.C
【分析】
常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.
【详解】
解:∵ ,
∴ ,即 ,
故选:C.
【点睛】
本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的步骤和完全平方公式是解题的关键.
【详解】
a=3,b=-2,c=-2,
b2-4ac=(-2)2-4×3×(-2)=28>0,
∴x= = ,
, .
【点睛】
本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.
19.(1) ;(2) 是方程的解.
【解析】
【详解】
A、由原方程,得 ,
等式的两边同时加上一次项系数2的一半的平方1,得 ;
故本选项正确;
B、由原方程,得 ,
等式的两边同时加上一次项系数−7的一半的平方,得, ,
故本选项正确;
C、由原方程,得 ,
等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;
故本选项错误;
D、由原方程,得3x2−4x=2,
12.用配方法解一元二次方程 ,配方正确的是().
A. B.
C. D.
13.用配方法解下列方程时,配方有错误的是()
A. 化为 B. 化为
C. 化为 D. 化为
14.用“配方法”解一元二次方程x2﹣16x+24=0,下列变形结果,正确的是( )
A.(x﹣4)2=8B.(x﹣4)2=40C.(x﹣8)2=8D.(x﹣8)2=40

一元二次方程 练习及答案

一.解方程:1、4x2﹣3x﹣2=0(用公式法解)2、x2+2x﹣224=0(用配方法解)3、2y2+4y=y+24、x2﹣2x+2=0.解:(1)∵a=4,b=﹣3,c=﹣2,∴△=9+32=41>0,∴x1=,x2=;(2)(x+1)2=225,∴x+1=±15 ∴x1=14,x2=﹣16;(3)2y2+3y﹣2=0,∴(2y﹣1)(y+2)=0,∴2y﹣1=0,y+2=0,∴y1=,y2=﹣2;(4)a=1,b=﹣2,c=2,∴△=20﹣8=12>0,∴x==±,∴x1=+,x2=﹣;二.选择题1.下列关于x的方程中,是一元二次方程的为()A.ax2+bx+c=0B.x2﹣=1C.2x+3y﹣5=0D.x2﹣1=0故选:D.2.若关于x的方程kx2﹣x﹣=0有实数根,则实数k的取值范围是()A.k=0B.k≥﹣且k≠0C.k≥﹣D.k>﹣故选:C.3.已知x1、x2是关于x的一元二次方程x2+2ax+b=0的两个实数根,且x1+x2=3,x1x2=1,则a、b的值分别是()A.﹣3,1B.3,1C.﹣,﹣1D.﹣,1解:∵x1、x2是关于x的一元二次方程x2+2ax+b=0的两个实数根,∴x1+x2=﹣2a,x1x2=b,又∵x1+x2=3,x1x2=1,∴a=﹣,b=1.故选:D.4.等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8B.9C.8或9D.12故选:B.5.a是方程x2+x﹣1=0的一个根,则代数式a3+2a2+2018的值是()A.2018B.2019C.2020D.20216.关于x的一元二次方程ax2+bx=2(a,b是常数,且a≠0)()A.若a>0,则方程可能有两个相等的实数根B.若a>0,则方程可能没有实数根C.若a<0,则方程可能有两个相等的实数根D.若a<0,则方程没有实数根故选:C.7.已知x1,x2是关于x的元二次方程x2﹣(5m﹣6)x+m2=0的两个不相等的实根,且满足x1+x2=m2,则m的值是()A.2B.3C.2或3D.﹣2或﹣3解:∵x1,x2是关于x的元二次方程x2﹣(5m﹣6)x+m2=0的两个不相等的实根,∴x1+x2=5m﹣6,△=[﹣(5m﹣6)]2﹣4m2>0,解得m<或m>2,∵x1+x2=m2,∴5m﹣6=m2,解得m=2(舍)或m=3,故选:B.8.已知实数m、n满足x2﹣7x+2=0,则+的值()A.B.C.或2D.或2解:当m=n时,+=1+1=2;当m≠n时,∵实数m、n满足x2﹣7x+2=0,∴m+n=7,mn=2,∴+====.故选:D.9.如果ax2=(3x﹣)2+m,那么a,m的值分别为()A.3,0B.9,C.9,D.,9故选:B.10.设x1为一元二次方程x2﹣2x=较小的根,则()A.0<x1<1B.﹣1<x1<0C.﹣2<x1<﹣1D.﹣5<x1<﹣4解:x2﹣2x=,8x2﹣16x﹣5=0,x==,∵x1为一元二次方程x2﹣2x=较小的根,∴x1==1﹣,∵5<<6,∴﹣1<x1<0.11.以x=为根对的一元二次方程可能是()A.x2﹣3x﹣c=0B.x2+3x﹣c=0C.x2﹣3x+c=0D.x2+3x+c=0解:A.x2﹣3x﹣c=0的根为x=,符合题意;B.x2+3x﹣c=0的根为x=,不符合题意;C.x2﹣3x+c=0的根为x=,不符合题意;D.x2+3x+c=0的根为x=,不符合题意;故选:A.12.已知P=2m﹣3,Q=m2﹣1(m为任意实数),则P、Q的大小关系为()A.P>Q B.P≤Q C.P<Q D.不能确定故选:C.13.关于x的方程m2x2﹣8mx+12=0至少有一个正整数解,且m是整数,则满足条件的m的值的个数是()A.5个B.4个C.3个D.2个解:m2x2﹣8mx+12=0,△=(﹣8m)2﹣4m2×12=16m2,∴x==,∴x1=,x2=,∵关于x的方程m2x2﹣8mx+12=0至少有一个正整数解,且m是整数,∴>0,>0,∴m=1或2或3或6,则满足条件的m的值的个数是4个,故选:B.14.若关于x的一元二次方程ax2=b(ab>0)的两个根分别是m﹣1和2m+4,则的值为()A.4B.3C.2D.1解:由题意可知:ax2=b有两个根,由直接开方法可知:m﹣1与2m+4互为相反数,∴m﹣1+2m+4=0,∴m=﹣1,∴m﹣1=﹣2,2m+4=2,∴x2==4,故选:A.15.若x1+x2=3,x12+x22=5,则以x1,x2为根的一元二次方程是()A.x2﹣3x+2=0B.x2+3x﹣2=0C.x2+3x+2=0D.x2﹣3x﹣2=0故选:A.16.若方程x2+(2a﹣1)x+a2=0与方程2x2﹣(4a+1)x+2a﹣1=0中至多有一个方程有实数根,则a的取值范围是( )A .a >B .a <﹣C .﹣≤a ≤D .a <﹣或a >解:在方程2x 2﹣(4a +1)+2a ﹣1=0有实数根中,△=[﹣(4a +1)]2﹣4×2×(2a ﹣1)=(4a ﹣1)2+8,∵(4a ﹣1)2≥0,∴(4a ﹣1)2+8>0,∴△>0,∴无论a 为何值,方程2x 2﹣(4a +1)x +2a ﹣1=0总有两个不相等的实数根.又∵方程x 2+(2a ﹣1)x +a 2=0与方程2x 2﹣(4a +1)x +2a ﹣1=0中至多有一个方程有实数根, ∴方程x 2+(2a ﹣1)x +a 2=0没有实数根,∴△=(2a ﹣1)2﹣4a 2<0,∴a >. 故选:A .17.若方程(x ﹣m )(x ﹣a )=0(m ≠0)的根是x 1=x 2=m ,则下列结论正确的是( )A .a =m 且a 是该方程的根B .a =0且a 是该方程的根C .a =m 但a 不是该方程的根D .a =0但a 不是该方程的根 故选:A .18.已知m ,n 是关于x 的方程x 2+(2b +3)x +b 2=0的两个实数根,且满足+1=n1,则b 的值为( ) A .3 B .3或﹣1 C .2 D .0或2 解:∵m ,n 是关于x 的方程x 2+(2b +3)x +b 2=0的两个实数根,∴m +n =﹣(2b +3),mn =b 2,∵+1=,∴+=﹣1,∴=﹣1,∴=﹣1,解得:b =3或﹣1,当b =3时,方程为x 2+9x +9=0,此方程有解;当b =﹣1时,方程为x 2+x +1=0,△=12﹣4×1×1=﹣3<0,此时方程无解,所以b =3,故选:A .19.已知m 是方程x 2﹣2019x +1=0的一个根,则代数式m 2﹣2018m ++2的值是( )A .2018B .2019C .2020D .2021解:∵m 是方程x 2﹣2019x +1=0的一个根,∴m 2﹣2019m +1=0,∴m 2=2019m ﹣1,∴m 2﹣2018m ++2=2019m ﹣2018m ﹣1++2=m ++1=+1=+1=2020.故选:C .20.某农机厂四月份生产零件50万个,六月份生产零件182万个.设该厂平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )2=182B .50+50(1+x )+50(1+x )2=182C.50(1+x)+50(1+x)2=182D.50+50(1+x)=182 故选:A.21.2018年一季度,华为某地销售公司营收入比2017年同期增长22%,2019年第一季度营收入比2018年同期增长30%,设2018年和2019年第一季度营收入的平均增长率为x,则可列方程()A.2x=22%+30%B.(1+x)2=1+22%+30%C.1+2x=(1+22%)(1+30%)D.(1+x)2=(1+22%)(1+30%)故选:D.22.化肥厂1月份某种化肥的产量为20万吨,通过技术革新,产量逐月上升,第一季度共生产这种化肥95万吨,求2、3月份平均每月增产的百分率是多少?若设2、3月份平均每月增产的百分率为x,根据题意列方程为()A.20(1+x)=95B.20(1+x)2=95C.20(1+x)+20(1+x)2=95D.20+20(1+x)+20(1+x)2=95故选:D.23.宾馆有50间房供游客居住,当每间房每天定价为180元时宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房,如果有游客居住宾馆需对居住的每间房每天支出20元的费用.当房价定为x元时宾馆当天的利润为10890元,则有()A.(180+x﹣20)(50﹣)=10890B.x(50﹣)﹣50×20=10890C.(x﹣20)(50﹣)=10890D.(x+180)(50﹣)﹣50×20=10890故选:C.24.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数平方等于﹣1.若我们规定一个新数i,使其满足i2=﹣1(即x2=﹣1方程有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=(﹣1)•i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可以得到i4n+1=i4n•i=(i4)n•i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么i+i2+i3+i4+…+i2018+i2019的值为()A.0B.﹣1C.i D.1解:i+i2+i3+i4+…+i2018+i2019=(i+i2+i3+i4)+…+i2012(i+i2+i3+i4)+…+i4×504+1+i4×504+2+i4×504+3=(i ﹣1﹣i+1)+…+i2012(i﹣1+i+1)+i﹣1﹣i=﹣1.故选:B.25.若关于x的方程(a+1)x2+(2a﹣3)x+a﹣2=0有两个不相等的实根,且关于x的方程的解为整数,则满足条件的所有整数a的和是()A.﹣2B.﹣1C.1D.2解:∵关于x的方程(a+1)x2+(2a﹣3)x+a﹣2=0有两个不相等的实根,∴a+1≠0且△=(2a﹣3)2﹣4(a+1)×(a﹣2)>0,解得a<且a≠﹣1.把关于x的方程去分母得ax﹣1﹣x=3,解得x=,∵x≠﹣1,∴≠﹣1,解得a≠﹣3,∵x=为整数,∴a﹣1=±1,±2,±4,∴a=0,2,﹣1,3,5,﹣3,而a<且a≠﹣1且a≠﹣3,∴a的值为0,2,∴满足条件的所有整数a的和是2.故选:D.三.解答题1.已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.解:(1)∵一元二次方程x2﹣4x+k=0有两个不相等的实数根,∴△>0,即16﹣4k>0,∴k<4;(2)当k=3时,解x2﹣4x+3=0,得x1=3,x2=1,当x=3时,m=﹣; 当x=1时,m=0,∴m的值为﹣或0.2.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣9)+=﹣.3.已知关于x的方程mx2﹣(3m+2)x+2m+2=0(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的方程mx2﹣(3m+2)x+2m+2=0的两个不等实数根均为正整数,且m为整数,求m 的值.解:(1)①当m=0时,方程为﹣2x+2=0,x=1,此一元一次方程有实根,②当m≠0时,方程为一元二次方程mx2﹣(3m+2)x+2m+2=0,∵a=m,b=﹣(3m+2),c=2m+2,∴△=b2﹣4ac=[﹣(3m+2)]2﹣4m×(2m+2)=m2+4m+4=(m+2)2,∵(m+2)2≥0,∴无论m取任何实数时,方程恒有实数根;(2)根据(1)可得:x1===2+,x2==1,∵x为整数,m为整数,∴m=1,﹣1,2,﹣2,∴x1=4,0,3,1,∵x1≠x2,且x为正整数,∴m=1或m=2.4.关于x的一元二次方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根x1、x2.(1)求k的取值范围;(2)求证:x1<0,x2<0;(3)若x1x2﹣|x1|﹣|x2|=6,求k的值.【解答】(1)解:∵关于x的一元二次方程x2﹣(2k﹣3)x+k2+1=0有两个不相等的实数根,∴△=[﹣(2k﹣3)]2﹣4(k2+1)>0,解得:k<.(2)证明:∵k<,∴x1+x2=2k﹣3<﹣,x1x2=k2+1>0,∴x1<0,x2<0;(3)解:∵x1x2﹣|x1|﹣|x2|=6,∴x1x2+(x1+x2)=6,即k2+1+2k﹣3=6,∴(k+4)(k﹣2)=0,解得:k1=﹣4,k2=2(不合题意,舍去),∴k的值为﹣4.5.已知关于x的一元二次方程x2﹣4x+2k﹣1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1﹣x2=2,求k的值.解:(1)∵关于x的一元二次方程x2﹣4x+2k﹣1=0有两个不相等的实数根x1,x2.∴△=(﹣4)2﹣4(2k﹣1)>0,解得:k<.(2)∵x1、x2是方程x2﹣4x+2k﹣1=0的解,∴x1+x2=4,x1x2=2k﹣1.∵x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=22,∴42﹣4(2k﹣1)=22,即16﹣8k=0,解得:k=2.又∵k<,∴k的值为2.6.关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2,是否存在实数k,使得|x1|﹣|x2|=?若存在,试求出k的值;若不存在,说明理由.解:(1)∵原一元二次方程有两个不相等的实数根,∴△=(2k﹣1)2﹣4(k2﹣2k+3)>0,得:4k﹣11>0,∴;(2)由一元二次方程的求根公式得:x1=,x2=,∵,∴,∴x1>0,又∵x1•x2=k2﹣2k+3=(k﹣1)2+2>0,∴x2>0,当时,有,即﹣==,∴4k﹣11=3,∴,∴存在实数,使得.。

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、xx 4)1(2=+3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=166、2(2x -1)-x (1-2x )=07、x 2=648、5x 2-52=09、8(3-x )2–72=010、3x(x+2)=5(x+2)11、(1-3y )2+2(3y -1)=012、x 2+2x +3=013、x 2+6x -5=014、x 2-4x+3=015、x 2-2x -1=016、2x 2+3x+1=017、3x 2+2x -1=018、5x 2-3x+2=019、7x 2-4x -3=020、-x 2-x+12=021、x 2-6x+9=022、22(32)(23)x x -=-23、x 2-2x-4=024、x 2-3=4x25、3x 2+8x -3=0(配方法)26、(3x +2)(x +3)=x +1427、(x+1)(x+8)=-1228、2(x -3)2=x 2-929、-3x 2+22x -24=030、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=032、3(x-5)2=x(5-x)33、(x +2)2=8x34、(x -2)2=(2x +3)235、2720x x +=36、24410t t -+=37、()()24330x x x -+-=38、2631350x x -+=39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2)2=(2x-3)242=-x x 3(1)33x x x +=+x 2()()0165852=+---x x 二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=2524)23(2=+x三、利用配方法解下列方程25220x x -+=012632=--x x 01072=+-x x 四、利用公式法解下列方程-3x 2+22x -24=02x (x -3)=x -3.3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1)2-3(x +1)+2=022(21)9(3)x x +=-2230x x --=21302x x ++=4)2)(1(13)1(+-=-+x x x x 2)2)(113(=--x x x (x +1)-5x =0.3x (x -3)=2(x -1)(x +1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6m,CD=4m,AD=2m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少?思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为。

一元二次方程测试题(含答案)

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。

3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。

6.已知322-+y y 的值为2,则1242++y y的值为 。

7.若方程()112=∙+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b ca =+,则此方程必有一根为 。

9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。

10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。

12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。

13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。

15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。

16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。

17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。

一元二次方程达标训练(含答案)

22.1一元二次方程 达标训练一、基础·巩固·达标1.下列关于x 的方程中,一元二次方程的个数有( ) ①03222=-x x ②121-=-x xx ③kx 2-3x +1=0 ④x 2-x 2(x 2+1)-3=0 ⑤(k +3)x 2-3kx +2k -1=0 A.0 B.1C.2D.3 2.方程(x -1)(x +3)=12化为ax 2+bx +c =0形式后,a 、b 、c 的值为()A.1,-2,-15B.1,-2,-15C.1,2,-15D.-1,2,-153.若方程(m 2-1)x 2+x +m =0是关于x 的一元二次方程,则m 的取值范围是( )A.m ≠0B.m ≠1C.m ≠1或m ≠-1D.m ≠1且m ≠-14.若方程(m -1)x 2+m x =1是关于x 的一元二次方程,则m 的取值范围是( ) A.m ≠1 B.m ≥0 C.m ≥0且m ≠1 D.m 为任意实数5.关于x 的方程(m 2-4)x 2-(m -2)x -1=0,当m 是一元二次方程;当m 是一元一次方程.6.关于x 的方程ax 2-2m -3=x (2-x )是一元二次方程,则a 的取值范围是 .7.若x =1是一元二次方程ax 2=bx +2的一个根,则a -b 的值为 .8.如果一个一元二次方程的各项系数及常数项之和为0,那么这个方程必有一个根是 .9.把下列方程先化成一元二次方程的一般形式,再写出二次项系数、一次项系数及常数项.(1)8x 2-3=5x ; (2)4-7x 2-11x =0;(3)3y (y +1)=7(y +2)-5; (4)(t +t )(t -t )+(t -2)2=7-5t ;(5)(5x -1)2=4(x -3)二、综合·应用·创新10.根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)两连续偶数的积是120,求这两个数;(2)某大学为改善校园环境,计划在一块长80 m,宽60 m的矩形场地的中央建一个矩形网球场,网球场占地面积为3 500 m2,四周为宽度相等的人行道,求人行道的宽度.11.关于x的一元二次方程(a-1)x2+x+a2-1=0的一根为0,求a的值.12.依据下列条件,分别编写两个关于x的一元二次方程.(1)方程有一个根是-1,一次项系数是-5;(2)有一个根是2,二次项系数为1.三、回顾·热身·展望13.如果a的值使x2+4x+a =(x+2)2-1成立,那么a的值为()A.5B.4C.3D.214.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于()A. -1B.0C.1D.2参考答案一、基础·巩固·达标1.下列关于x 的方程中,一元二次方程的个数有( ) ①03222=-x x ②121-=-x xx ③kx 2-3x +1=0 ④x 2-x 2(x 2+1)-3=0 ⑤(k +3)x 2-3kx +2k -1=0A.0B.1C.2D.3 提示:一元二次方程需同时满足以下三个条件:①等号的两边都是整式;②含有一个未知数;③未知数的最高次数是2.不满足其中的任何一条的方程都不是一元二次方程 .经过化简可得一元二次方程的一般形式为ax 2+bx+c=0(a≠0),其中a≠0是一元二次方程的一般形式的一个重要组成部分.根据上述知识可判断只有①是一元二次方程. 答案: B2.方程(x -1)(x +3)=12化为ax 2+bx +c =0形式后,a 、b 、c 的值为()A.1,-2,-15B.1,-2,-15C.1,2,-15D.-1,2,-15 提示:方程(x -1)(x+3)=12的一般形式为x 2+2x -15=0,因此a 、b 、c 的值为1,2,-15.答案: C3.若方程(m 2-1)x 2+x +m =0是关于x 的一元二次方程,则m 的取值范围是( )A.m ≠0B.m ≠1C.m ≠1或m ≠-1D.m ≠1且m ≠-1提示:如果明确指出方程(m 2-1)x 2+x+m=0是关于x 的一元二次方程,那就隐含了m 2-1≠0这个条件,因此m≠1且m≠ -1.答案: D4.若方程(m -1)x 2+m x =1是关于x 的一元二次方程,则m 的取值范围是( ) A.m ≠1 B.m ≥0 C.m ≥0且m ≠1 D.m 为任意实数 提示:着眼两点:①二次项系数;②二次根式中的被开方数m ,于是有:m 的取值范围m≥0且m≠1.答案: C 5.关于x 的方程(m 2-4)x 2-(m -2)x -1=0,当m 是一元二次方程;当m 是一元一次方程.提示:关于x 的方程(m 2-4)x 2-(m -2)x -1=0已经化为了一般形式,要使它是一元二次方程只需满足m2-4≠0即可,因此当m≠±2时是一元二次方程.要使它是一元一次方程需满足m2-4=0 且m-2≠0,即m=-2.答案:≠±2=-26.关于x的方程ax2-2m-3=x(2-x)是一元二次方程,则a的取值范围是.提示:先将关于x的方程ax2-2m-3=x(2-x)化为一般形式(a+1)x2-2x-2m-3=0,因为它是一元二次方程需满足a+1≠0,因此a≠-1.答案:a≠-17.若x=1是一元二次方程ax2=bx+2的一个根,则a-b的值为.提示:将x=1代入原方程,有a=b+2,移项,得a-b=2.答案:28.如果一个一元二次方程的各项系数及常数项之和为0,那么这个方程必有一个根是.提示:当x=1时,a+b+c=0;当x=-1时,a-b+c=0.应注意对问题的逆向思维.设这个一元二次方程为ax2+bx+c=0(a≠0).由题意,得a+b+c=0.因为当x=1时,a+b+c=0,所以此方程必有一个根为1.答案:19.把下列方程先化成一元二次方程的一般形式,再写出二次项系数、一次项系数及常数项.(1)8x2-3=5x;(2)4-7x2-11x=0;(3)3y(y+1)=7(y+2)-5;(4)(t+t)(t-t)+(t-2)2=7-5t;(5)(5x-1)2=4(x-3).提示:先通过去括号、移项、合并同类项等将一元二次方程化为ax2+bx+c=0(a≠0)的形式,由一般形式即可确定二次项系数、一次项系数及常数项.解:(1)一般形式为8x2-5x-3=0,其中二次项系数为8,一次项系数为-5,常数项为-3.(2)一般形式为7x2+11x-4=0,其中二次项系数为7,一次项系数为11,常数项为-4. (3)一般形式为3y2-4y-9=0,其中二次项系数为3,一次项系数为-4,常数项为-9. (4)一般形式为2t2-3=0,其中二次项系数为2,一次项系数为0,常数项为-3.(5)一般形式为21x2+14x-35=0,其中二次项系数为21,一次项系数为14,常数项为-35.二、综合·应用·创新10.根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)两连续偶数的积是120,求这两个数;(2)某大学为改善校园环境,计划在一块长80 m,宽60 m的矩形场地的中央建一个矩形网球场,网球场占地面积为3 500 m2,四周为宽度相等的人行道,求人行道的宽度.提示:(1)连续的偶数是顺次大2的数,设较小的偶数为x,则较大的偶数是(x+2),根据两连续偶数的积是120可列出方程.(2)设人行道的宽为x,则网球场的长为(80-2x)m,宽为(60-2x)m,根据网球场的面积为3 500 m2可列出方程.解:(1)设较小的偶数为x,则较大的偶数是(x+2),根据题意,得x(x+2)=120,一般形式为x2+2x-120=0.(2)设人行道的宽为x,则网球场的长为(80-2x)m,宽为(60-2x)m,根据题意,得(80-2x)(60-2x)=3 500,一般形式为x2-70x+325=0.11.关于x的一元二次方程(a-1)x2+x+a2-1=0的一根为0,求a的值.提示:依据方程根的概念,将x=0代入原方程得a2-1=0,所以a2=1,根据平方根的意义可得a=±1,又因原方程是一元二次方程,所以题中存在隐含条件a -1≠0,即a≠1,因此a=-1.答案:a=-112.依据下列条件,分别编写两个关于x的一元二次方程.(1)方程有一个根是-1,一次项系数是-5;(2)有一个根是2,二次项系数为1.提示:(1)可以先构造一个算式的模型,如:(-1)2-5×(-1)-6=0,将-1替换成x,则x2-5x-6=0必有一根为-1;(2)类似的构造并给出算式(2)2-2=0,并将2替换成x,则有x2-2=0即为所求.答案:注意本题答案不唯一.(1)x2-5x-6=0;(2)x2-2=0.三、回顾·热身·展望13.如果a的值使x2+4x+a =(x+2)2-1成立,那么a的值为()A.5B.4C.3D.2提示:将原方程先整理为x2+4x+a=x2+4x+3,比较两边的系数,得a=3.答案: C14.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于()A. -1B.0C.1D.2提示:由方程根的概念可得m2-m-1=0,故m2-m=1.答案:C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共10页) 一元二次方程基础练习 一.选择题(共10小题) 1.如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为( ) A.±3 B.3 C.﹣3 D.都不对 2.方程3x2﹣4=﹣2x的二次项系数、一次项系数、常数项分别为( ) A.3,﹣4,﹣2 B.3,2,﹣4 C.3,﹣2,﹣4 D.2,﹣2,0

3.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为( ) A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或4 4.方程(x﹣1)2=2的根是( ) A.﹣1,3 B.1,﹣3 C., D., 5.一元二次方程x2﹣6x﹣5=0配方可变形为( ) A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4 6.方程x2﹣x﹣6=0的解是( ) A.x1=﹣3,x2=2 B.x1=3,x2=﹣2 C.无解 D.x1=﹣6,x2=1 7.若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5 8.一元二次方程x2﹣4x=12的根是( ) A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=6 9.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( ) A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315 10.某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程( ) A.50(1+x)2=175 B.50+50(1+x)2=175 C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=175

二.填空题(共6小题) 11.一元二次方程x2﹣3x﹣2=0的解是______. 12.若方程x2﹣7x+12=0的两根恰好是一个直角三角形两条直角边的长,则这个直角三角形的斜边长是______. 13.若一元二次方程x2+4x+c=0有两个不相等的实数根,则c的值可以是______(写出一个即可).

14.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两根,则+=______.

15.已知一元二次方程x2+3x﹣4=0的两根为x1、x2,则x12+x1x2+x22=______. 16.用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为______.

三.解答题(共7小题) 第2页(共10页)

17.解方程:2x2﹣7x+3=0 18.阅读下面的材料,回答问题: 解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4. 当y=1时,x2=1,∴x=±1; 当y=4时,x2=4,∴x=±2; ∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2. 请你按照上述解题思想解方程(x2+x)2﹣4(x2+x)﹣12=0. 19.欣欣服装店经销某种品牌的童装,进价为50元/件,原来售价为110元/件,每天可以出售40件,经市场调查发现每降价1元,一天可以多售出2件. (1)若想每天出售50件,应降价多少元? (2)如果每天的利润要比原来多600元,并使库存尽快地减少,问每件应降价多少元?(利润=销售总价﹣进货价总价) 20.先阅读后解题 若m2+2m+n2﹣6n+10=0,求m和n的值. 解:m2+2m+1+n2﹣6n+9=0 即(m+1)2+(n﹣3)2=0 ∵(m+1)2≥0,(n﹣3)2≥0 ∴(m+1)2=0,(n﹣3)2=0 ∴m+1=0,n﹣3=0 ∴m=﹣1,n=3 利用以上解法,解下列问题: 已知 x2+5y2﹣4xy+2y+1=0,求x和y的值. 21.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同. (1)求该种商品每次降价的百分率; (2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件? 22.已知:如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发沿AB方向向点B匀速移动,速度为1cm/s,点Q由点B出发沿BC方向向点C匀速移动,速度为2cm/s, 如果动点P,Q同时从A,B两点出发,几秒钟后,△PBQ的面积为8cm2.

23.某商场销售一种名牌衬衣,每天可售出20件,每件盈利40元,为扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降低措施,经调查发现,如果每件衬衣每降4元,商场平均每天可多售出8件,若商场平均每天要盈利1200元,每件衬衣应降价多少元? 第3页(共10页)

2016年09月24日一元二次方程基础练习 参考答案与试题解析 一.选择题(共10小题) 1.(2016•德州校级自主招生)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为( ) A.±3 B.3 C.﹣3 D.都不对 【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件: (1)未知数的最高次数是2; (2)二次项系数不为0; (3)是整式方程; (4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.

【解答】解:由一元二次方程的定义可知, 解得m=﹣3. 故选C. 【点评】要特别注意二次项系数m﹣3≠0这一条件,当m﹣3=0时,上面的方程就是一元一次方程了.

2.(2016春•嵊州市校级期中)方程3x2﹣4=﹣2x的二次项系数、一次项系数、常数项分别为( ) A.3,﹣4,﹣2 B.3,2,﹣4 C.3,﹣2,﹣4 D.2,﹣2,0 【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2

叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项. 【解答】解:方程3x2﹣4=﹣2x可变形为方程3x2+2x﹣4=0, 二次项系数是3、一次项系数是2、常数项是﹣4, 故选:B. 【点评】此题主要考查了一元二次方程的一般形式,关键是首先把所给的方程化为ax2+bx+c=0的形式,再找二次项系数、一次项系数、常数项.

3.(2016•攀枝花)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为( ) A.﹣1或4 B.﹣1或﹣4 C.1或﹣4 D.1或4 【分析】把x=﹣2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.

【解答】解:根据题意,将x=﹣2代入方程x2+ax﹣a2=0,得: 4﹣3a﹣a2=0,即a2+3a﹣4=0, 左边因式分解得:(a﹣1)(a+4)=0, 第4页(共10页)

∴a﹣1=0,或a+4=0, 解得:a=1或﹣4, 故选:C. 【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.

4.(2015•诏安县校级模拟)方程(x﹣1)2=2的根是( ) A.﹣1,3 B.1,﹣3 C., D., 【分析】根据平方根的定义首先开方,求得x﹣1的值,进而求得x的值 【解答】解:x﹣1=± ∴x=1±. 故选C. 【点评】运用直接开平方法解一元二次方程,就是根据平方根的定义把一元二次方程转化为一元一次方程求解.

5.(2016•新疆)一元二次方程x2﹣6x﹣5=0配方可变形为( ) A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4 【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式. 【解答】解:x2﹣6x﹣5=0, x2﹣6x=5, x2﹣6x+9=5+9, (x﹣3)2=14, 故选:A. 【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.

6.(2015秋•綦江区期末)方程x2﹣x﹣6=0的解是( ) A.x1=﹣3,x2=2 B.x1=3,x2=﹣2 C.无解 D.x1=﹣6,x2=1 【分析】利用公式法即可求解. 【解答】解:a=1,b=﹣1,c=﹣6 △=1+24=25>0

∴x= 解得x1=3,x2=﹣2;故选B. 【点评】本题主要考查了一元二次方程的求根公式,对于公式正确记忆是解题关键.

7.(2016•桂林)若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5 【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论. 【解答】解:∵关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,

相关文档
最新文档