连铸各种振动装置的优缺点比较

合集下载

非正弦振动在板坯连铸机上的应用

非正弦振动在板坯连铸机上的应用

非正弦振动在板坯连铸机上的应用非正弦振动在板坯连铸机上具有重要的应用。

非正弦振动可以使板坯在连铸机上稳定流动,减少堆叠积累,避免工艺流程中出现压痕或其他损坏,提高整个连铸机生产效率。

一般来说,非正弦振动分为六种不同的模式,包括椭圆状振动、三角振动、正弦振动、转动振动、斜线振动和椰形振动。

在连铸机上,椭圆状振动是最常用的模式,因为它可以在一定程度上缓解垫铸坯和停止抛丸损坏的情况。

当板坯在连铸机上流动时,椭圆状振动可以保持板坯沿着原有方向流动,减少横向堆积,改善流动性能和抗压性能,从而提高板坯的质量和稳定性。

此外,非正弦振动还能够改善板坯的抗压性能,提高板坯的表面光洁度。

因为在连铸机上,垫铸坯会遇到来自辊榫的压力,而垫铸坯的厚度也会有所变化,这时候,使用微弱的非正弦振动,就可以缓解来自辊榫的压力,有效地抑制垫铸坯的薄厚度变化,使表面光洁度得到明显提升。

最后,非正弦振动还可以有效地缩短回归距离,提高回归时间并有效地减少板坯质量的变化。

因为在回归过程中,辊榫会对垫铸坯产生一定的压力,如果板坯的厚度在回归过程中有一定的变化,就会导致坯料在回归环节出现压痕,从而影响板坯的质量。

但是,利用微弱的非正弦振动,就可以缓解辊榫产生的压力,从而有效地减少坯料在回归环节出现压痕,并有效地提高回归时间和减少板坯质量的变化。

总之,非正弦振动在板坯连铸机上具有重要的应用,它可以使板坯稳定流动,减少堆叠积累,避免工艺流程中出现压痕或其他的损坏,改善板坯的抗压性能,缩短回归距离,提高回归时间和减少板坯质量的变化。

因此,可以说,非正弦振动在板坯连铸机的应用是必不可少的。

连铸结晶器振动工艺参数

连铸结晶器振动工艺参数

连铸结晶器振动工艺参数2023-11-20汇报人:CATALOGUE目录•结晶器振动工艺参数概述•振动频率•振幅•振动波形•结晶器与铸坯间的摩擦系数•实际生产中的结晶器振动工艺参数调整与优化01结晶器振动工艺参数概述CHAPTER减少摩擦和磨损改善润滑效果促进坯壳均匀生长030201结晶器振动的作用工艺参数对连铸坯质量的影响振动频率01振幅02振动波形03结晶器振动工艺参数的设定与调整CHAPTER振动频率02定义单位振动频率的定义与单位结晶组织裂纹和缺陷润滑和传热振动频率对铸坯表面质量的影响合适振动频率的选择与调整铸坯材质和规格实时监测和调整CHAPTER振幅03定义单位振幅的定义与单位结晶组织振幅过大可能导致铸坯内部气孔和夹杂物的形成,影响铸坯的质量。

气孔和夹杂裂纹振幅对铸坯内部组织的影响铸坯材质铸坯断面尺寸设备性能操作经验01020304合适振幅的选择与调整CHAPTER振动波形04正弦波、方波、三角波等常见波形介绍正弦波方波三角波表面质量不同的波形会对铸坯表面质量产生显著影响。

例如,正弦波能够显著减少铸坯表面裂纹的产生,而方波由于其强烈的振动冲击,可能会导致铸坯表面质量的下降。

内部结构波形也会影响铸坯的内部结构。

例如,三角波由于其稳定性和均匀性,能够促进铸坯形成均匀且稳定的组织结构。

不同波形对铸坯质量的影响选择原则调整策略合适波形的选择与调整05结晶器与铸坯间的摩擦系数CHAPTER通常采用试验测定法,通过模拟结晶器与铸坯的实际接触情况,测量出摩擦力与压力,并计算得到摩擦系数。

摩擦系数的定义与测量方法测量方法定义振动频率摩擦系数的大小直接影响到结晶器与铸坯之间的摩擦力,进而影响到振动频率的选择。

过高的摩擦系数要求更高的振动频率以克服摩擦力,确保铸坯的顺利下滑。

摩擦系数的变化会对振幅产生一定影响。

当摩擦系数增大时,为了保持铸坯在结晶器内的稳定性,可能需要适当增大振幅,以提供足够的振动力。

摩擦系数的不同可能导致振动波形的变化。

板坯连铸结晶器振动装置

板坯连铸结晶器振动装置

重工与起重技术 HEAVY INDUSTRIAL & HOISTING MACHINERY
图 3 四偏心轮振动机构 1.电动机 2.万向接头 3.中心减速机 4.分减速机 5.偏心轴 6、7.偏心轮 8.板式弹簧板 9.振动台框架
作,带动上框架上的结晶器进行振动,结晶器振动 时的平衡点可以微调。由于工作时油缸的实际振幅 很小,振动中平衡点的位置对系统固有频率影响较 小,因此可以认为油缸的振动特性直接反应结晶器 的振动特性。
4 结论
结晶器振动装置的运动精度对铸坯的表面质量 有很大影响。现有技术普遍采用四偏心或四连杆振 动机构,只能实现固定正弦曲线振动波形,无法满足 铸坯表面质量要求。为提高拉坯速度、提高铸坯表面 质量及产量,高频率、小振幅的非正弦振动得到广泛 应用。而液压振动式结晶器能够充分满足上述要求, 降低了设备备件的更换频率,缩短了设备维护停机 时间,延长设备正常运行周期,从而减少维护成本和 时间,提高生产效率及产品质量,并能实现振幅和频 率的在线调整,在生产不同的钢种和产品时,大大提 高了灵活性,是未来结晶器振动装置发展不可替代 的趋势。
2. 2 四偏心轮振动机构 四偏心轮振动机构做正弦振动。电机带动中心
减速机,通过万向轴带动左右两侧的分减速机,每个 减速机各自带动偏心轮,两偏心轮具有同向偏心点, 但偏心距不同。结晶器弧线运动是利用两条板式弹 簧,两端分别与振动台框架和振动头恰当位置连接 实现弧形振动,使振动台只能做弧线摆动,不发生前 后移动。由于结晶器振幅不大,两根偏心轴的水平安 装不会引起明显的误差,如图 3 所示。四偏心轮振 动机构使结晶器振动平稳,适合高频小振幅,降低生 产能耗,但其结构较复杂,无法在线调节振幅。 2. 3 液压振动机构
- 14 -
冲击力不大,而且在负滑脱阶段有利于脱模和促进

钢铁连铸中振动台的具体作用

钢铁连铸中振动台的具体作用

钢铁连铸中振动台的具体作用CSP连铸机结晶器振动台振动机构的原理及特性,针对振动台设计的不足,对振动台振动液压缸的位置传感器内置形式及扇形段锁紧夹安装布置进行了改造及优化,为连铸机振动台的设计、改造,取得了较好效果。

关键词:CSP连铸机;结晶器;振动台;维护 1 引言邯郸钢铁公司薄板坯连铸机是从德国西马克公司引进的,其结晶器振动台是由伺服控制液压驱动的短四连杆机构,采用伺服控制、液压驱动的方式获得了高频小振幅的振动特点,提高了振动台在连铸生产过程中的振动精度及运行可靠性。

2 CSP连铸机结晶器振动台及其特点2.1 组成及振动机构的原理(1)振动台的组成。

CSP连铸机结晶器振动台由2套振动机构成,对称分布在结晶器两侧。

同时,还包括结晶器的对中锁紧装置及扇形段1的支撑锁紧装置。

薄板坯连铸机结晶器、扇形段需经常拆装维修,故四连杆振动装置安装在结晶器外侧,以便于吊装。

(2)振动机构的原理。

图1示出了结晶器振动结构的振动原理,每套振动机构由振动台连杆框架、连杆、液压缸组成。

其中,A、B、C、D为4个绞接点组成的平行短四连杆机构。

在浇注过程中,周期性振动是由2个液压缸驱动的短连杆机构,从而使结晶器振动台及其上面的结晶器按设定频率和振幅周期性振动,两侧液压缸的同步是靠计算机来控制的。

每个独立振动装置(左手侧和右手侧)包括液压缸,安装在同一个基础框架上,这些基础框架提供一个稳定的基础,不受热变形影响。

2.2 振动机构的特点(1)高频、小振幅。

(2)液压驱动比较平稳,冲击力较小。

(3)液压缸的动作是由先导型伺服阀实现的,因而可根据电气信号提供正弦规律和非正弦规律振动2种形式。

3 CSP连铸机结晶器振动台维护中存在的不足(1)振动台液压缸内置S/I位置传感器与电路接头工作时容易受频繁弯曲而出现故障,同时维护更换难度大。

(2)由于设计紧凑,扇形段锁紧夹更换时油管接头的拆装没有合适的位置,设计上又是硬管联结,对于臂长较短的人员无法更换。

连铸机结晶器振动装置动态性能分析

连铸机结晶器振动装置动态性能分析

连铸机结晶器振动装置动态性能分析124研究与探索Research and Exploration ·工艺流程与应用中国设备工程 2024.05 (上)动装置,新生坯壳与铜板黏结问题得以缓解,也能避免坯壳上应力过度集中或者过大,对预防铸坯表面的裂纹相对有效。

如结晶器呈向下运动状态,由于存在摩擦作用力,能同步给坯壳施加压力,自动修复结晶器向上时拉出的裂痕。

但需尤其注意,向下运动的速度必须超过拉坯速度,构成负滑脱。

结晶器铜板与运动坯壳之间有摩擦力,在此摩擦作用下可能导致坯壳上的裂纹,在后续浇注作业中,也需考虑摩擦力大小来调整浇注速率。

初生坯壳与结晶器铜板之间有液体渣膜,该部位虽同样存在一定的摩擦力,但依据其作用情况,属于黏滞摩擦,也就是说,摩擦力与相对运动速度之间为正向变化关系,而渣膜黏度与渣膜厚度之间为反比。

综合上述分析,如结晶器振动装置处于正滑脱条件,摩擦力会对坯壳产生较大的拉应力,如此应力超出了坯壳自身的可承受极限,在表面将出现或大或小的裂纹。

因此,实际的工作中相关人员需分析连铸机结晶器振动装置的动态特性,在此基础上减小上述摩擦力作用,保障铸坯表面质量。

结晶器非正弦振动尚未出现之前,大部分连铸机结晶器振动装置均为机械式结构,这类型装置在运行过程中由直流电动机驱动,使装置进入运行状态,借助万向联轴器,在两端转动2个涡轮减速机,但两端构成不同,一端配备有可调节轴套,涡轮减速机后可由万向联轴器辅助,与两个滚动轴承的偏心轴可靠连接,每个偏心轮部位配备有曲柄,该曲柄有滚动轴承,此轴承的振动连杆能起到支撑作用,增强振动台结构的整体稳定性,并同步引发或大或小的振动现象。

机械振动属于正弦曲线振动,振动期间的波形、振幅在任何情况下都无波动。

以某企业为例,其结晶器振动系统为机械驱动,具有一系列不足:振动力从两点逐步传给结晶器,整个传力更为复杂,不能遵循均匀性规定;在高频振动条件下,无法维持相对平稳的运行状态,无论处于高频还是低频状态,振动导向与实际的偏差都相对较大;结构复杂,传力流程多,后续的对中调整、维护工作量大且操作不易;控制效率低且可靠性不足,受外部因素干扰大,无法长时间保持稳定的振动波形条件;不能根据需求调整振动曲线,不具备在线设置振动波形功能。

连铸机的分类及特点

连铸机的分类及特点

(5)水平式连铸机
结晶器、二次冷却区、拉矫机、切割装置等设备布置在水平 位置上。中间包与结晶器是紧密相连的,相连处装有分离环。 拉坯时,结晶器不振动,而是通过拉坯机带动铸坯做拉—反 推—停不同组合的周期性运动来实现拉坯的。
(5)水平式连铸机
优点是高度低,投资省。设备维修、处理事故方便。钢水静 压力小,避免了鼓肚变形;不受弯曲矫直作用,有利于特殊钢 和高合金钢的浇注。
1.按铸坯断面形状分类 (1)方坯连铸机 :(50×50)~(450×450)mm; (2)圆坯连铸机:Φ40~Φ600mm; (3)板坯连铸机:最大为450×3100mm; (4)矩形坯连铸机:(50×108)~(400×630)mm; (5)异型连铸机:120×240mm(椭圆形);Φ450×Φ100mm (中空形);460×400×120mm、356×775×100mm(H形)。
连续铸钢生产
1.1 钢的浇注概述
1.1.4连铸机的分类
1按结晶器是否移动分类
(1)固定式结晶器(包括固定振动结晶器):所谓固定式结
晶器,是指结晶器“固定”不动,连铸坯与结晶器之间存在相对
运动。
1—立式 2—立弯式
3—直结晶器多点弯曲
4—直结晶器弧形
5—弧形
6—多半径弧形(椭圆形)
7—水平式
1.1 钢的浇注概述
缺点是受拉坯时惯性力限制,适合浇注200mm以下中小断面 方、圆坯。另外,结晶器的石墨板和分离环价格贵。
感谢聆听
4 按连铸机机构外形(机型)分类 (1)立式连铸机 (2)立弯式连铸机 (3)弧形连铸机 (4)椭圆形连铸机 (5)水平式连铸机
(1)立式连铸机
20世纪50年代至60年代的主要机型 主要特点是从中间包到切割装置等 主要设备均布置在垂直中心线上。

连铸机分类及其优缺点PPT

连铸机分类及其优缺点PPT
连铸机分类及优缺点
机设12-2班 王帅
连铸机的发展史
• 1,1933年S.容汉斯奠定连铸在工业上的应 用基础。 • 2,1950年容汉斯与曼内斯曼公司合作,建 成世界上第一台连铸机。 • 3,1963-1964曼内斯曼公司相继建成了方 坯和板坯弧形连铸机,对连铸的推广起了 很大作用
连铸机分类
连铸机可以按多种形式来分类。若按结构 外形可把连铸机分为立式连铸机,立弯式 连铸机,带直线段弧形连铸机,弧形连铸 机,多半径椭圆形连铸机和水平连铸机。 随着连铸技术的发展,又开展了轮式连铸 机,特别是薄板坯连铸机的研究。
• 若按连铸机在共用一个钢水包下所能浇 铸的铸坯流数来区分,则可分为单流、 双流或多流连铸机。
小知识:立弯式与弧形连铸机的区别
• 立弯式连铸机是连铸技术发展的 过渡机型。立弯式连铸机是在立 式连铸机的基础上发展起来的, 其上部与立式连铸机完全相同, 不同的是待铸坯全部凝固后,用 顶弯装置将铸坯顶弯90°,在水 平方向切割出坯。它主要适用于 小断面铸坯的浇注。
• 弧形连铸机又称全弧形连铸机,弧形连 铸机的结晶器呈弧形,二冷装置在四分 之一的圆弧内,在结晶器内形成弧形铸 坯,沿着弧形辊道向下运动过程中接受 喷水冷却,直至完全凝固,全凝后铸坯 到水平切点处进入矫直机,然后切割成 定尺。
弧形连铸机的优点
• 由于它布置在四分之一圆弧范围内,因 此它的高度比立弯连铸机要低,这一特 点使它的设备重量较轻,投较低,设 备的安装和维护方便。
• 弧形连铸机是世界各国应用最多
的一种机型。弧形连铸机的结晶 器、二次冷却段夹棍、拉坯矫直 机等设备均布置在同一半径的1/4 圆周弧线上;连铸在1/4圆周弧线 内完全凝固,经水平切线处被一 点矫直,而后切成定尺,从水平 方向出坯。

连铸结晶器振动工艺参数

连铸结晶器振动工艺参数

异常情况的预警与处理
预警标准
设定异常参数的阈值,当实时监测数据超过阈值时, 发出预警信号。
预警方式
通过声、光、短信等方式提醒操作人员关注异常情况 。
处理措施
根据异常类型,采取相应的处理措施,如调整振动参 数、清洗结晶器等。
工艺参数的调整与优化建议
调整原则
根据实时监测数据和异常情况,及时调整结晶器的振动参数,确 保连铸过程的稳定性和产品质量。
初始阶段
早期的连铸机采用人工敲击的方式使结晶器振动,这种方 式效率低下且不稳定。
机械式振动阶段
随着机械技术的发展,人们开始采用机械传动装置来实现 结晶器的振动,出现了多种形式的机械式振动装置。
液压式振动阶段
液压技术的引入使得结晶器的振动更加平稳可控,液压式 振动装置逐渐成为主流。
智能化振动阶段
随着计算机技术和传感器技术的发展,结晶器的振动控制 逐渐实现智能化,能够根据实际生产情况自动调整振动参 数,提高铸坯质量和产量。
04
连铸结晶器振动工艺参数的优 化
基于实验的参数优化
实验设计
通过实验方法,对连铸结晶器振 动工艺参数进行优化,需要设计 合理的实验方案,包括选择合适 的实验参数、确定实验范围和实
验步骤等。
数据采集与分析
在实验过程中,需要采集各种数 据,如振动频率、振幅、波形等 ,并对数据进行处理和分析,以 确定各参数对结晶器振动效果的
总结词
随着连铸技术的不断发展,新型振动装置的开发与应 用成为研究重点。新型振动装置应具备更高的稳定性 和可靠性,能够实现更加灵活的振动模式和精确的工 艺参数控制。
详细描述
目前,新型振动装置的开发主要集中在智能化、模块 化和集成化等方面。例如,采用智能传感器和控制系 统,实现对结晶器振动状态的实时监测和自动调整; 采用模块化设计,方便对结晶器进行快速更换和维修 ;采用紧凑型设计,减小设备体积和重量,提高设备 的可靠性和稳定性。这些新型振动装置的开发将为连 铸结晶器振动工艺参数的研究提供更加先进和可靠的 实验平台。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二连铸车间三台连铸机振动装置差异和优缺点摘要:结晶器振动装置是连铸机的重要设备之一,其主要作用是防止钢水与铜管内壁的粘结,改善铸坯的表面质量,当粘结发生时,则通过振动强制脱模,消除粘结;振动装置即是带动结晶器产生脱模所需的机械振动,本文通过对首钢水钢二炼钢厂的三台连铸机振动装置差异及优缺点的分析比较,充分了解各台铸机振动装置性能,做到心中有数,以便在以后的生产中趋利避害,对生产起到一定的指导和参考作用。

关键词:结晶器振动装置正弦振动非正弦振动四连杆镭目非正弦大扭矩直驱电机目录摘要 (2)1、二连铸3台连铸机振动装置概况 (4)1.1 1#连铸机振动装置概况 (4)1.1.1 技术参数 (4)1.1.2 振动装置结构 (4)1.1.3 振动装置工作原理 (4)1.2 2#连铸机振动装置概况 (5)1.2.1 技术参数 (5)1.2.2 振动装置结构 (5)1.2.3 振动装置工作原理 (6)1.3 3#连铸机振动装置概况 (6)1.3.1 技术参数 (6)1.3.2 振动装置结构................ , .. (7)1.3.3 振动装置工作原理 (7)2、3台连铸机振动装置的差异及优缺点比较 (8)2.1 振动波形 (8)2.2 振动特点 (8)2.2.1 1#机振动特点 (8)2.2.2 2#机振动特点 (10)2.2.3 3#机振动特点 (11)3、 .............................. 结论133.1 3台连铸机振动装置的差异 (13)3.2 3台连铸机振动装置的优缺点 (13)1、二连铸3台连铸机振动装置概况1.1 1#连铸机振动装置概况:1.1.1技术参数:振动曲线:正弦电机:YTSP160M-4-B3功率:11KW转速:1440r/mi n频率:64-300cpm (圈/每分钟)振幅:士3mm 士4mm减速机:锥包络蜗轮减速机速比:7.75⑴1.1.2振动装置结构:1#连铸机振动装置为四连杆机构,振动机构为内弧布置,主要由交流电动机、减速机、偏心轮、连杆、振动臂、导向臂和振动台几大部分组成,这种装置的最大优点是将传动装置移到二冷室之外,振动机构为板簧四连杆,振动台不直接受连杆传动,而是把振动臂一端延长,形成传动臂,显然机构得到了进一步简化,电动机减速器的工作环境条件得到了大幅度改善。

1.1.3振动装置工作原理:1#连铸机振动装置采用变频器进行交流变频调速产生正弦振动,再用偏心机构将圆周运动转换成上下振动,带动连杆机构驱动振动台,通过调节偏心机构的偏心距调整振幅,就像汽车调档一样,不过此偏心机构只有两个振幅档可以调,分别为士3mm和士4mm且只能在铸机停浇后才能进行调节1.2 2#连铸机振动装置概况:1.2.1技术参数:振幅:0-10mm在线可调⑴振动频率:0-300cpm在线可调;振动波形:正弦或非正弦曲线;振动的横向偏差:<± 0.1mm122振动装置结构1、电动缸:振动台的动力源部分;2、摇臂:结晶器与电动缸的连接部分;3、拉簧/压簧:位于电动缸侧,用来平衡结晶器重力;4、板簧:位于结晶器的下方,用来导向防偏摆;偏斜率:0-40%可调振动的纵向偏差:w士0.1mm振幅偏差:全行程偏差w 士0.15mmlain[厂:.斛韩10LZ5J13创电功is下越2910600'.I遍百环IPa —2#连铸机振动装置机构如下图所示:(图1)------5、振动台框架:振动台的主体部分;6、电动缸上下支座:固定电动缸;7、稀油站:高位油箱(油位计)、低位油箱(油位计、温度计、压力计、主油泵、备用泵、加热器)、电动缸回油管、回油主管道。

123振动装置工作原理:2#振动装置为镭目非正弦振动机构,镭目结晶器非正弦振动系统利用了目前成熟先进的计算机技术与大功率数字伺服电动缸,其组合应用是数字技术应用发展的必然结果。

系统由微计算机计算产生结晶器振动的波形曲线(正弦或非正弦的),按要求将控制量同步送到各电机驱动器,由驱动器去驱动装在振动框架上的大功率数字电动缸,通过控制大功率数字电动缸的运行,使结晶器作相应的运动,按照工艺要求通过对RAM优化函数各个变量取值,结合拉速精确地控制结晶器上下振动,使振动波形保持精确的频率、振幅、负滑脱时间、正滑脱时间、及波形偏斜率等,最终得到满足工艺需求的结晶器振动轨迹。

镭目结晶器非正弦振动系统可克服由于结晶器偏振共振对拉速的限制,提高铸机拉速,大大降低由振动装置引起的漏钢事故,同时还可提高铸坯的质量。

1.3 3#连铸机振动装置概况:1.3.1技术参数:浇铸半径:R=10米振幅:0-10mm可调大小振动方式:正弦或非正弦振动形式:半板簧钢板振动频率:0-400cpm可在线调节大小大扭矩电动机:GZ61630-16WE62-J2E-b Z46电机功率:16.2KW 380VAC 偏斜率:0-40%可调⑴1.3.2振动装置结构:3#机振动装置通过对振动臂的优化,将板簧应用到振动系统中,同时用一台直驱电机代替原有电机及齿轮减速箱,设备运行非常可靠,维护简单,振动平稳,输出扭矩大,抗冲击力强,有较大的承载能力,维护简单方便,与1#机相比,振动框架和连杆基本没多大差异。

1.3.3 振动装置工作原理:3#机同1#机一样,振动装置也为短臂四连杆机构,但是,它引进大扭矩直驱同步电机,采用全新的振动驱动技术,先进的数学模型,实现正弦和各种非正弦曲线的在线、无缝;平滑切换,采用先进的控制算法,控制曲线更加平滑,在确保负滑脱的同时能够在高拉情况下有效降低振动次数,针对不同钢种可以产生相应的振动曲线;像1#机那样的传统的变频器无法实现非正弦模型和先进的工艺算法,这是因为:a、变频器控制只能控制速度,并且是开环控制,无法实现精确的位置定位b、普通的CPU程序运行速度慢,执行时间大于10ms无法保证动态控制精度要求。

c、普通CPU不支持高级语言,无法实现复杂的数学模型而全新的大扭矩直驱同步电机利用先进的数字计算控制程序和函数关系,结合增量编码器和绝对值编码器的优点:增量式编码器:高精度,每圈可产生1048576个脉冲;绝对编值码器:位置值永久保存,无需机械寻参SSI串行同步传输数据,速度快,抗干扰能力强内置参数芯片:EEPRO芯片存储运行参数,电机数据和编码器数据减少维修时间,避免错误产生。

2、3台连铸机振动装置的差异及优缺点比较2.1振动波形:1#机振动方式为正弦振动,2#机为镭目非正弦振动、3#机为直驱电机非正弦振动。

2.2振动特征:2.2.1 1#机振动特征:1#机是正弦振动,这种振动方式的基本出发点是:结晶器在整个运动过程中岁没有稳定的速度阶段(同步运动阶段),但仍有一小段负滑动,因此具有脱模作用;由于速度是按正弦规律变化的,加速度必按余弦规律变化,所以过渡比较平稳,没有大的冲击;又由于加速度较小,可以提高振动频率,减轻铸坯表面振痕的深度;另外,正弦振动可以通过偏心轴或曲柄来实现,它具有加工制造容易,操作维护更换简单的特点,同时,简化了驱动装置的布置,将驱动装置移动到二冷室以外,便于维护和改善装置工作环境,可以完成交流电机的变频控制,1#连铸机其振动装置特点如下:高仿弧精度振动,高稳定性;可实现小振幅高频率,从而可提高拉速,小振幅可改善铸坯表面质量;设备维护简便,使用寿命长;米用偏心轮调整振幅;采用变频器控制,实现正弦振动。

研究表明,负滑脱时间是影响铸坯表面质量,振痕深度的只要因素,采用较短的负滑动时间将使铸坯的表面振痕变浅,有利于获得较高的表面质量,在正弦振动中,负滑脱时间tn表述式为:1tn=60/ n fcos -(1000Vc/ n fh)(1-1)其中:tn —负滑动时间(s)Vc —拉坯速度(m/mi n)f —振动频率:(r/mi n )h —振幅(mr)由(1-1 )式可以看出,负滑动时间将随着振动频率的减小和振幅的增大而增大,正弦振动的特性完全取决于振动的振幅和频率,即正弦振动只有两个相互独立的振动参数,变量少,其波形的调节能力小,难以完全满足高速连铸的工艺要求,特别是对那些容易粘结的钢种;2.2.2 2#机振动特征:2#连铸机振动方式是非正弦振动,非正弦振动具有上升时间比下降时间长的特点,即具有较长的正滑动时间,结晶器振动速度Vm拉坯速度Vc之间的速度差较小(向上最大速度与Vc之差),增加了保护渣的消耗量,液态摩擦较小,液态保护渣润滑范围向结晶器的出口扩展,从而可以减小坯壳中的拉应力,负滑动时间短,有利于减轻铸坯表面振痕深度,所以对于实现高速拉坯,非正弦式振动的效果十分理想。

其中,2#机振动装置结晶器振动的上行速度Vp小(降低结晶器与坯壳之间的摩擦),上行时间tp大(增加保护渣的消耗量Q改善润滑效果),较大的下行速度Vn和必要的负滑脱时间tn (保证拉裂坯壳必要的“愈合”时间及强制脱模),以及较小的系统加速度a (降低系统受到的冲击保持系统稳定,提高系统的寿命和可靠性)。

波形偏斜率P=(上升时间-下降时间)/周期。

下图是非正弦偏斜率P=0.2的振动波形(图2)牡〕俪俪删删呷5000 5100 5200 E300 501 )正滑动时间tp较长,使保护渣的消耗量增加,改善润滑效果。

减少结晶器对坯壳的摩擦阻力,减小坯壳的拉应力,从而可减少拉裂、拉漏。

2)在正滑动时间里,结晶器向上振动的最大速度与拉坯速度之差减少,从而减少结晶器对坯壳的摩擦阻力F,再度减少拉裂、拉漏3)在负滑动时间里,结晶器向下振动的最大速度与拉坯速度之差较大,有利于对拉裂坯壳的愈合,并有利于对粘结的坯壳进行强制脱模。

4)负滑动时间短,有效的减轻铸坯表面振痕深度,减小坯壳应力集中,减少拉裂、拉漏,提高铸坯表面质量。

223 3# 机振动特征:3#连铸机也是非正弦振动,采用同步大扭矩电机直接驱动振动框架,电机内部如下图(图3)所示three phase supply电机特点如下:转子永久励磁;高动态响应;大扭矩输出,即使低速断也可保证扭矩恒定;3#机运动控制系统采用运动控制器+驱动控制器结构,可集成在PLC控制系统中。

可在线选择多种工艺曲线,可实现正弦与非正弦的实时切换,可实时根据拉速调整振频。

下图为采用精度为0.002mm的位移传感器实测的振动端振动曲线。

下图为采用精度为0.002mm的位移传感器实测的振动端曲线(图4)主要工艺参数:功率:380VAC 16.2KW输出扭矩:300N.M振动频率:随工艺参数变化振幅:满足各种工艺要求第3章:结论3.1 3台连铸机振动装置的差异:1#机、3#机振动机构为短臂四连杆机构,但是1#机是通过变频器驱动普通电机驱动,再经过偏心机构产生正弦振动,而3#通过数学程序控制大扭矩直驱电机产生非正弦振动,在1#机基础上省略掉了齿轮减速机。

相关文档
最新文档