4 第四章 向量组的线性相关性作业

合集下载

第四章 向量组的线性相关性总结

第四章 向量组的线性相关性总结

第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。

§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。

线性代数 第4章 向量空间 - 习题详解

线性代数 第4章 向量空间 - 习题详解

第4章 向量空间4.1 向量及其线性组合练习4.11. 设1231031,1,4010ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求12αα-及12332ααα+-.解 12101011111001011αα-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12332ααα+-10330303121432410100202⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-=+-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2. 设 1233()2()5()αααααα-++=+,求α. 其中1232104511,,1513101ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦解 由1233()2()5()αααααα-++=+得12362020611525122111(325)31051836669205244αααα⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+-=+-== ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥- ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭3. 将线性方程组12312312310232x x x x x x x x x ++=⎧⎪-+=⎨⎪+-=⎩写成向量形式及矩阵形式.解 向量形式:123111*********x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦矩阵形式:123111*********x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦4. 设123,,,αααβ是已知列向量,若122ααβ+=,记矩阵123[,,]A ααα=,求线性方程组Ax β=的一个解.解 由12320αααβ++=得方程组Ax β=的一个解为T [1,2,0]x =5. 问β是否可由向量组4321,,,αααα线性表示?其中(1)12341111121111,,,,1111111111βαααα⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(2)12342111201022,,,,0124231132βαααα-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦解 (1)令[]123411111111,,,11111111A αααα⎡⎤⎢⎥--⎢⎥==⎢⎥--⎢⎥--⎣⎦由[]111111005/41111201001/41111100101/41111100011/4r A β⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦得Ax β=有唯一解[]T15,1,1,14x =--,从而β可由向量组4321,,,αααα唯一线性表示: 23451114444βαααα=+--(2)令[]123411121022,,,12421132A αααα-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦由[]111221220102200110012420000011132300000r A β-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦得Ax β=无解,从而β不能由向量组4321,,,αααα线性表示.6. 已知12341111101121,,,,2324335185a b a ααααβ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(1),a b 取何值时,β不能由4321,,,αααα的线性表示?(2),a b 取何值时,β可由4321,,,αααα唯一线性表示式?并写出表示式. 解 令[]1234,,,A αααα=,考察方程组Ax β=是否有解.[]11111011212224335185A a b a β⎡⎤⎢⎥-⎢⎥=⎢⎥++⎢⎥+⎣⎦1111101121012102252r a b a ⎡⎤⎢⎥-⎢⎥−−→⎢⎥+⎢⎥-+⎣⎦1111101121001000010r a b a ⎡⎤⎢⎥-⎢⎥−−→⎢⎥+⎢⎥+⎣⎦(1)当0,1≠-=b a 时,方程组Ax β=无解,故β不能由4321,,,αααα的线性表示. (2)当1-≠a 时, 继续进行初等行变换[]A β2100011111101121101001001010010101000010rr b a a b a b b a a -⎡⎤⎢⎥⎡⎤+⎢⎥⎢⎥-++⎢⎥⎢⎥⎢⎥−−→−−→+⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥+⎢⎥⎣⎦⎢⎥⎣⎦得方程组Ax β=有唯一解:T21,,,0111b a b b x a a a ++⎡⎤=-⎢⎥+++⎣⎦故β可由4321,,,αααα的唯一线性表示. 表示式为:1234210111b a b ba a a ++=-++++++βαααα 7. 用标准坐标向量证明:如果对任意向量x 有0Ax =,则A 是零矩阵. 证 设12[,,,]n A ααα= 是m n ⨯矩阵. 特别地取(1,2,,)n i x e R i n =∈= ,则0(1,2,,)i i Ae i n α===即A O =.8. 设向量组12,ββ可由向量组123,,ααα线性表示如下:112321232,βαααβααα=+-=-+写出形如(4.5)的矩阵形式.解[][]1212321,,,1111ββααα⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦9. 设123123032204103124,,,,,210111321213αααβββ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦证明向量组{}123,,βββ可由向量组{}123,,ααα线性表示,但向量组{}123,,ααα不能由向量组{}123,,βββ线性表示. 证 令[]123,,A ααα=,[]123,,B βββ=由[]400111040222004135000000rA B ⎡⎤⎢⎥⎢⎥−−→⎢⎥-⎢⎥⎣⎦知向量组{}123,,βββ可由向量组{}123,,ααα线性表示. 由[]204032022012000210000000rBA ⎡⎤⎢⎥-⎢⎥−−→⎢⎥-⎢⎥⎣⎦知12,αα都不能由向量组{}123,,βββ线性表示,故向量组{}123,,ααα不能由向量组{}123,,βββ线性表示.10. 设12123011131,1,0,2,210111ααβββ-⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦证明向量组{}12,αα与向量组{}123,,βββ等价.方法1 令[][]12123,,,,A B ααβββ==. 由[]101110111300000rA B -⎡⎤⎢⎥−−→-⎢⎥⎢⎥⎣⎦知向量组{}123,,βββ可由向量组{}12,αα线性表示.[]1020.50.50110.50.500000rBA --⎡⎤⎢⎥−−→⎢⎥⎢⎥⎣⎦知向量组{}12,αα可由向量组{}123,,βββ线性表示.所以{}{}12123,,,ααβββ≅.方法2 令T1TT 12T T 23,A B βαβαβ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,则101011rA -⎡⎤−−→⎢⎥⎣⎦,101011000rB -⎡⎤⎢⎥−−→⎢⎥⎢⎥⎣⎦记T T12[1,0,1],[0,1,1]γγ=-=,根据行等价矩阵的行向量组等价,由上知{}{}{}{}121212312,,,,,,ααγγβββγγ≅≅所以{}{}12123,,,ααβββ≅.4.2 向量组的线性相关性练习4.21. 证明:含有零向量的向量组必线性相关. 证 不妨设向量组为{}123,,ααα,其中10α=,则1231000ααα++=根据定义{}123,,ααα线性相关.2. 证明:含两个向量的向量组线性相关的充要条件是它们的分量对应成比例. 问含三个向量的向量组线性相关的充要条件是不是它们对应的分量成比例?证 设112212[,,,],[,,,]T T n n a a a b b b αα== 且{}12,αα线性相关. 于是存在不全为零的数12,k k 使得11220k k αα+=,不妨设10k ≠,从而21221k k k ααα==,即 (1,2,,)i i a kb i n ==即1α与2α的对应分量成比例.反之,如果(1,2,,)i i a kb i n == ,则12k αα=,即1210k αα-=,故{}12,αα线性相关.由三个向量构成的向量组如果对应分量成比例,则显然线性相关. 但线性相关,它们的对应分量不一定成比例. 如123111,,123ααα⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦或1231121,2,3134ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3. 判别下列向量组的线性相关性: (1)[]12,5Tα=,[]21,3Tα=-(2)[][][]1231,2,3,0,2,5,1,0,2TTTααα=-=-=- (3)[][][]1232,4,1,1,0,1,2,0,1,1,1,3,0,0,1TTTααα==-=解(1) 令1221[,]53A αα-⎡⎤==⎢⎥⎣⎦,由110A =≠,知A 是可逆矩阵,故其列向量组{}12,αα线性无关.(2)类似(1),由 1012200352--=-,得{}123,,ααα线性相关. (3) 易知向量组()()()T T T 1,0,0,1,1,0,0,1,1321===βββ线性无关,而向量组{}123,,ααα是向量组{}123,,βββ的加长向量组,故{}123,,ααα也线性无关.4. 设[][][]1231,1,1,1,2,3,1,3,TTTt ααα===, (1) 问t 为何值时, 向量组321,,ααα线性相关? (2) 问t 为何值时, 向量组321,,ααα线性无关?解 令11112313A t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,计算得5A t =- (1)当5t =时,A 是不可逆矩阵,其列向量组321,,ααα线性相关. (2)当5t ≠时,A 是可逆矩阵,其列向量组321,,ααα线性无关. 5. 证明由阶梯矩阵的非零行构成的向量组一定线性无关. 证 不妨设阶梯矩阵12340000000000T T T T U αααα⊗****⎡⎤⎡⎤⎢⎥⎢⎥⊗**⎢⎥⎢⎥==⎢⎥⎢⎥⊗*⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中0⊗≠. 考察下面方程组112233123000000x x x x x x ααα⊗⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++=++=*⊗⎢⎥⎢⎥⎢⎥**⊗⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥***⎣⎦⎣⎦⎣⎦显然该方程组只有零解,故{}123,,ααα线性无关.4.3 向量组的秩练习4.31. 设[][][][]T T T T12341,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7====αααα求向量组1234,,,αααα的秩及其一个极大无关组, 并把其余向量用所求的极大无关组线性表示.解 1234[,,,]A =αααα12341012234501233456000045670000r --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦因此{}12,αα是{}1234,,,αααα的一个最大无关组,且2132ααα+-=,21432ααα+-=2. 设向量组2123,,2,31311a b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦的秩为2,求,a b .解 记12342123,,2,31311a b ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦αααα,由于{}1234rank ,,,2=αααα,所以{}341,,ααα线性相关,{}342,,ααα也线性相关.由[]3411212,,2330132111002ra a a a ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ααα 得2a =.由[]342122122,,23014113005rb b b ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ααα 得5b =.3. 证明极大无关组的定义4.5与定义4.6的等价性.证 (定义4.5⇒定义4.6) 设121,,,r βββ+ 是V 中任意1r +个向量. 由定义4.5(2)知121,,,r βββ+ 可由12,,,r ααα 线性表示,由定理4.9,121,,,r βββ+ 线性相关,即定义4.6(2)成立.(定义4.6⇒定义4.5)设β是V 中任意一个向量. 则12,,,,r αααβ 是1r +个向量,由定义4.6(2),12,,,,r αααβ 线性相关,又12,,,r ααα 线性无关,再由唯一表示定理,β可由12,,,r ααα 线性表示,即定义4.5(2)成立.4.4 矩阵的秩练习4.41. 求下面矩阵的秩(1)1121021120331101⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦,(2)123222123333123111a a a a a a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(其中123,,a a a 互不相等). 解 (1)由11211121021102112033002011010000r A ⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦得()3r A = (2)记123222123333123111a a a A a a a a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,由于范德蒙行列式1232221231110a a a a a a ≠,得()3r A = 2. (1)设A 是23⨯矩阵,且rank 2A =,写出A 的等价标准形; (2)设A 是32⨯矩阵,且rank 2A =,写出A 的等价标准形. 解 (1)[]20A E ≅,(2)20E A ⎡⎤≅⎢⎥⎣⎦3. 设22139528A -⎡⎤=⎢⎥-⎣⎦(1)求一个42⨯矩阵B 使得0AB =,且rank 2B =; (2)求一个42⨯矩阵C 使得AC E =,且rank 2C =. 解 (1)求解方程组0Ax =得两个线性无关的解12[1,5,8,0],[1,11,0,8]T T ββ==-令[]1211511,8008B ββ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦则rank 2,B AB O ==,B 即为所求.(2)解1Ax e =得一个解11[5,9,0,0]8Tβ=--,解2A x e =得一个解21[2,2,0,0]8Tβ= 令[]1252921,00800C ββ-⎡⎤⎢⎥-⎢⎥==⎢⎥⎢⎥⎣⎦则2rank 2,C AC E ==,C 即为所求.4. 设m n n m m m A B C ⨯⨯⨯=,若C 是可逆矩阵,则()()r A r B m ==.证 ()()()()m r C r A B r A m r A m===≤⇒= ()()()()m r C r AB r B m r B m ===≤⇒=5. 证明:()()()r A B r A r B +≤+. 方法1 设12[,,,]n A ααα= ,[]12,,,n B βββ= ,(),()r A s r B t ==不妨设{}12,,,t ααα 是A 的列向量组的极大无关组,{}12,,,s βββ 是B 的列向量组的极大无关组. 显然A B +的列向量可由{}11,,,,,t s ααββ 线性表示,于是()r A B +=()A B +的列秩{}11r ,,,,,()()t s s t r A r B ααββ≤≤+=+证明:)()()(B r A r B A r +≤+ 方法2 由],[],[B A B B A c−→−+得[,][,]r A B B r A B +=,从而(用到例题的结论))()(],[],[)(B r A r B A r B B A r B A r +≤=+≤+6. 用等价标准形定理证明:rank 1m n A ⨯=的充要条件是T A αβ=其中0,0m n R R αβ≠∈≠∈.证 设rank 1A =,由等价标准形定理,存在可逆矩阵,m m n n P R Q R ⨯⨯∈∈,使得1000A P Q ⎡⎤=⎢⎥⎣⎦[]101,0,,00P Q ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令α是P 的第一列,T β是Q 的第一行,显然0,0αβ≠≠,上式就是T A αβ=.反之,如果TA αβ=()0,0αβ≠≠,则1()()1()1r A r r A α≤≤=⇒=4.5 向量空间练习4.51. 设{}31123123123(,,)|,,,0T V x x x x x x x R x x x R ==∈++=⊂ {}32123123123(,,)|,,,1T V x x x x x x x R x x x R ==∈++=⊂证明1V 是3R 的子空间, 2V 不是3R 的子空间. 证 1V 是齐次线性方程组的解集,2V 是非齐次线性方程组的解集,同例题的证明一样.2. 设343443434,,x x x x V x x x x R R x x ⎧⎫+⎡⎤⎪⎪⎢⎥-⎪⎪⎢⎥==∈⊂⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎣⎦⎩⎭证明V 是4R 的子空间,并求V 的维数及V 的一个基.证 把V 中向量改写为34314211111001x x x x x αα⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则12span(,)V αα=,又{}12,αα线性无关,所以{}12,αα是V 的一个基,dim 2V =.3. 设12342112,1,1,010541αααα----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦求123span(,,)ααα两个不同的基, 并分别求α在所求的基下的坐标.解 易知{}123rank ,,2ααα=,又{}13,αα线性无关,{}23,αα线性无关,所以{}13,αα与{}23,αα都是123span(,,)ααα的基.解方程组1123x x ααα+=得120.5,1x x ==-于是α在基{}13,αα下的坐标是[]0.5,1T-.解方程组1223x x ααα+=得121,1x x ==-于是α在基{}23,αα下的坐标是[]1,1T-.4. 设121211201011,,,01310131ααββ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦证明:1212span(,)span(,)ααββ=. 证 只需证{}{}1212,,ααββ≅由[]12121011013100000000rααββ-⎡⎤⎢⎥-⎢⎥−−→⎢⎥⎢⎥⎣⎦知{}12,ββ可由{}12,αα线性表示. 由[]1212100.50.501 1.50.500000000rββαα⎡⎤⎢⎥⎢⎥−−→⎢⎥⎢⎥⎣⎦知{}12,αα可由{}12,ββ线性表示.所以{}{}1212,,ααββ≅. 5. 已知3R 的两个基为1231111,0,0111ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 及 1231232,3,4143βββ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦求由基123,,ααα到基123,,βββ的过渡矩阵.解 由[]123123100234,,,,,010*********rαααβββ⎡⎤⎢⎥−−→-⎢⎥⎢⎥--⎣⎦得[][]123123234,,,,010101βββααα⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦由基123,,ααα到基123,,βββ的过渡矩阵为234010101P ⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦4.6 线性方程组解的结构练习4.61. 求齐次线性方程组1232340x x x x x x -+=⎧⎨-+=⎩ 两个不同的基础解系,并写出通解.解 记系数矩阵为A ,则10010111rA ⎡⎤−−→⎢⎥-⎣⎦同解方程为14234x x x x x =-⎧⎨=-⎩ 分别取3410,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得1201,11x x -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得基础解系为 120111,1001αα-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦分别取3411,01x x ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦得1201,10x x -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得基础解系为 120110,1101ββ-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦通解为112212,(,)x k k k k R αα=+∈或112212,(,)x k k k k R ββ=+∈2. 求一个齐次线性方程组,使它的基础解系为T T 12[0,1,2,3],[3,2,1,0]ξξ==解 设所求方程组为0=Ax ,由题设()12,0A ξξ=.记()12,B ξξ=,则0=AB 即0=T T A B ,这说明T A 的列都是方程组0=x B T 的解.解方程组0=x B T ,即2341232303230x x x x x x ++=⎧⎨++=⎩ 得基础解系为T )0,1,2,1(1-=α,T )1,0,3,2(2-=α令],[21αα=T A ,即⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=1032012121T T A αα所求方程组为0=Ax ,即⎩⎨⎧=+-=+-03202421321x x x x x x 3. 求下面非齐次方程组的一个解及对应的齐次方程组的基础解系1212341234522153223x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ 解 对增广矩阵初等行变换化最简阶梯形[]1100510108211210110135322300012rA b -⎡⎤⎡⎤⎢⎥⎢⎥=−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦等价方程组为132348132x x x x x =--⎧⎪=+⎨⎪=⎩ 令30x =得方程组的一个解*[8,13,0,2]T η=-对应的齐次方程组的等价方程组为132340x x x x x =-⎧⎪=⎨⎪=⎩ 令31x =得基础解系[1,1,1,0]T α=-4. 设142536A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求使得方程组Ax b =有解的所有向量b . 解 向量b 是A 的列向量的线性组合,即12121425,,36b k k k k R ⎡⎤⎡⎤⎢⎥⎢⎥=+∈⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦5. 设12,,,s ηηη 是非齐次方程组b Ax =的s 个解向量,令112212,,,,s s s k k k k k k R ηηηη=+++∈证明:(1)η是非齐次方程组Ax b =的解的充要条件是121s k k k +++= ; (2)η是齐次方程组0Ax =的解的充要条件是120s k k k +++= . 证 (1) 1122s s k k k ηηη+++ 是b Ax =的解⇔ ()1122s s A k k k b ηηη+++= ⇔ ()12s k k k b b +++= (≠b 0) ⇔ 121s k k k +++=(2) 1122s s k k k ηηη+++ 是0=Ax 的解⇔ ()11220s s A k k k ηηη+++= ⇔ ()120s k k k b +++= (≠b 0) ⇔ 120s k k k +++=6. 设4rank 3m A ⨯=, 321,,ηηη是非齐次方程组b Ax =的3个解向量, 并且T T )4,3,2,1( , )5,4,3,2(321=+=ηηη求方程组b Ax =的通解.解 由3)(4=⨯m A r 知,知0=Ax 的基础解系只含一个向量,取T )6,5,4,3()(2321=+-=ηηηξ则ξ是0=Ax 的基础解系. 从而非齐次方程组b Ax =的通解为1x k ηξ=+,(k R ∈) 7. 设矩阵[]1234,,,=A αααα, 其中432,,ααα线性无关,3212ααα-=, 向量4321ααααβ+++=. 求线性方程组βx A =的通解.解 由假设易知()3r A =,从而0=Ax 的基础解系只含一个向量. 由12312342200=-⇔-++=ααααααα得[1,2,1,0]T ξ=-为0=Ax 的基础解系.由1234+++=ααααβ得[1,1,1,1]T η=为βx A =的一个解. 于是βx A =的通解是,()x k k R ηξ=+∈习题四1. 设βααα,,,,21r 都是n 维向量,β可由r ααα,,,21 线性表示,但β不能由121,,,-r ααα 线性表示,证明:r α可由121,,,,r αααβ- 线性表示.证 因为β可由r ααα,,,21 线性表示,设r r r r k k k k ααααβ++++=--112211又因为β不能由121,,,-r ααα 线性表示,所以0≠r k ,因此11111-----=r rr r r r k k k k k ααβα 即r α可由121,,,,r αααβ- 线性表示.2. 设123123111221,,1,1,,114a a a a a a a αααβββ--⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦确定常数a , 使向量组321,,ααα可由向量组321,,βββ线性表示, 但向量组321,,βββ不能由向量组321,,ααα线性表示.解 记],,[321ααα=A ,],,[321βββ=B ,由于{}123,,βββ不能由{}123,,ααα线性表示,所以3)(<A r ,从而0)2()1(2=+--=a a A得1=a 或2-=a .当1=a 时,1321βααα===,故321,,ααα可由321,,βββ线性表示,但2β不能由321,,ααα线性表示. 所以1=a 符合题意.当2-=a 时,由[]122112006033000033rBA ---⎡⎤⎢⎥−−→--⎢⎥⎢⎥-⎣⎦知{}123,,ααα不能由{}123,,βββ线性表示,与题设矛盾. 综上,1=a .3. 设121,,,-m ααα (3≥m )线性相关, m ααα,,32 线性无关, 讨论:(1)1α能否由132,,-m ααα 线性表示; (2)m α能否由121,,,-m ααα 线性表示.方法1 (1)因为m ααα,,32 线性无关,故132,,-m ααα 线性无关. 又因为121,,,-m ααα 线性相关,由唯一表示定理,1α可由132,,-m ααα 唯一表示.(2)设m α能由121,,,-m ααα 线性表示112211--+++=m m m αλαλαλα由(1),1α又能由132,,-m ααα 线性表示,故m α也能由132,,,-m ααα 线性表示,从而m ααα,,32 线性相关,这与假设矛盾. 故m α不能由121,,,-m ααα 线性表示.方法2 由假设{}121,,,1m r m ααα-<- ,{}23,,,1m r m ααα=-(1) 由{}{}231231,,,,,m m m r r ααααααα-=≤ {}131,,11m r m ααα-≤+≤-得{}{}23123,,,,,1m m r r m ααααααα==-由唯一表示定理,1α能由132,,-m ααα 唯一表示.(2)由(1),{}121,,,,1m m r m αααα-=- ,而{}121,,,1m r m ααα-<- 故{}{}121121,,,,,,,m m m r r ααααααα--≠m α不能由121,,,-m ααα 线性表示.4. 设nn RA ⨯∈, n R ∈α(0≠α), 0=αk A , 01≠-αk A , 证明向量组{}21,,,,k A A Aαααα-线性无关.证 设0112210=++++--ααααk k A k A k A k k上式两边左乘1-k A得010=-αk A k ,由于01≠-αk A,得00k =,因此011221=+++--αααk k A k A k A k上式两边左乘2-k A ,类似可推出01=k . 进而再推出210k k k -=== .5. 设nn RA ⨯∈,n R ∈321,,ααα(01≠α), 如果11αα=A , 212ααα+=A , 323ααα+=A证明321,,ααα线性无关.证 由题设23121)(,)(,0)(ααααα=-=-=-E A E A E A设0332211=++αααk k k两边左乘E A -得02312=+ααk k再左乘E A -得013=αk由01≠α得03=k ,往上逐一代入210,0k k ==. 故321,,ααα线性无关.6. 设向量组12:,,,m S ααα 线性无关, 1β能由S 线性表示, 而2β不能由S 线性表示,证明:(1)向量组122,,,,m αααβ 线性无关.(2)对R k ∈∀, 向量组1221,,,,m k αααββ+ 线性无关.证 (1)由于12,,,m ααα 线性无关,而2β不能由12,,,m ααα 线性表示,故221,,,,βαααm 线性无关. 否则,由唯一表示定理,2β能由12,,,m ααα 唯一表示,与假设矛盾.(2)由(1)122rank[,,,,]1m m αααβ=+再由1β可由12,,,m ααα 线性表示,得1221122[,,,,][,,,,]cm m k αααββαααβ+−−→从而1221rank[,,,,]m k αααββ+= 122rank[,,,,]1m m αααβ=+1221,,,,m k αααββ+ 线性无关.7. 设12,,,,m αααβ nR ∈(0β≠)且0(1,2,,)T i i m βα== , 证明: (1) β不能由12,,,m ααα 线性表示;(2) 如果12,,,m ααα 线性无关, 则12,,,,m αααβ 也线性无关. 证 (1) 反证. 设β可由12,,,m ααα 线性表示1122m m k k k βααα=+++两边左乘Tβ得0Tββ=,这与0β≠矛盾.(2) 反证. 如果12,,,,m αααβ 线性相关,则由唯一表示定理,β由12,,,m ααα 唯一表示. 与(1)矛盾.8. 已知321,,ααα线性无关, 试问常数k m ,满足什么条件时, 向量组{}213213,,k m αααααα---线性无关?方法1设0)()()(313232121=-+-+-ααααααx m x k x整理得0)()()(332221113=-+-+-αααx m x x k x x x由于321,,ααα线性无关,故上式又等价于⎪⎩⎪⎨⎧=-=-=+-000322131x m x x kx x x ⇔ 12310110001x k x m x -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦312312,,αααααα---m k 线性无关的充要条件是上面方程组只有零解. 即1011010101kmk mk m --=-≠⇔≠- 方法2 记313232121,,ααβααβααβ-=-=-=m k . 写成矩阵形式[][]123123101,,,,1001k m βββααα-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦由例4.14,321,,βββ线性无关⇔101rank 10301k m -⎡⎤⎢⎥-=⎢⎥⎢⎥-⎣⎦⇔1≠mk9. 已知向量组m ααα,,,21 (2≥m )线性无关. 设111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m试讨论向量组m βββ,,,21 的线性相关性.证 把题设写成矩阵形式[][]1212,,,,,,m m C βββααα=其中100111011011m m⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦C 经计算12,1(1)0,m m C m +⎧=+-=⎨⎩若为奇数若为偶数同上一题完全类似,有两种方法. 结论是m βββ,,,21 线性无关⇔0C ≠⇔m 为奇数时 m βββ,,,21 线性相关⇔0C =⇔m 为偶数时10. 设,m n n p A B ⨯⨯是满足AB O =的两个非零矩阵,证明A 的列向量组线性相关, 且B 的行向量组线性相关.方法1 B 的列向量都是方程组0=Ax 的解,又B 为非零矩阵,说明0=Ax 存在非零解,所以n A r <)(,从而A 的列向量组线性相关.考虑0=TT A B ,又知TB 的列向量组即B 的行向量组线性相关.方法2 由例题,()()r A r B n +≤又()0,()0r A r B >>,所以(),()r A n r B n <<,于是A 的列向量组线性相关,且B 的行向量组线性相关.11. 证明:rank rank rank ⎡⎤=+⎢⎥⎣⎦A O AB O B .方法1 把,A B 用初等行变换化为阶梯矩阵,设12,00r rU U A B ⎡⎤⎡⎤−−→−−→⎢⎥⎢⎥⎣⎦⎣⎦其中12,U U 的行向量都是非零行向量. 则1122000000000000r r U U U U ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥−−→−−→⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦A O OB 显然上式右边也是阶梯形矩阵,从而1122rank rank rank rank U U U U ⎡⎤⎡⎤==+=+⎢⎥⎢⎥⎣⎦⎣⎦O A O A B O O B 的行数的行数方法2 设12rank ,rank r r ==A B ,A 有子式10r A ≠,B 有子式20r B ≠,因此⎡⎤⎢⎥⎣⎦A O OB 有子式1122000r r r r A A B B =≠,从而12rank r r ⎡⎤≥+⎢⎥⎣⎦A O O B又12rank rank rank r r ⎡⎤⎡⎤⎡⎤≤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A O A O OB O B 所以12rank rank rank r r ⎡⎤=+=+⎢⎥⎣⎦A O AB O B12. 设*A 是n 阶方阵A 的伴随矩阵()2≥n , 证明:,()()1,()10,()1n r A nr A r A n r A n *=⎧⎪==-⎨⎪<-⎩证 当n A r =)(时,0≠A ,由行列式的展开定理:E A A A =*,立即知A *是可逆矩阵,即()r A n *=.当1)(-<n A r 时,A 的所有1-n 阶子式都等于零,这时*A 是零矩阵,故0)(=*A r . 当1)(-=n A r 时,0=A ,由行列式的展开定理0==*E A A A由例题n A r A r ≤+*)()(()1r A *⇒≤再由1)(-=n A r 知A 有一个1-n 阶子式不等于零,故*A 至少有一个元素不为零,因此()0r A *>. 综上,1)(=*A r .13.设rank m n A m ⨯=, 证明存在矩阵m n B ⨯, 使m m n n m E B A =⨯⨯.方法1 由题设m A r n m =⨯)(和例题,对任意的mb R ∈,线性方程组Ax b =都有解. 特别地取b 为标准单位向量12,,,m m e e e R ∈ ,方程组m n i A x e ⨯=(1,2,,)i m =的解记为12,,,n m b b b R ∈ ,令()12,,,n m m B b b b ⨯=则m m n n m E B A =⨯⨯易知()n m r B m ⨯=证法 2 由题设m A r n m =⨯)((此时m n ≤),故只用列变换就可将A 化为标准形,即存在可矩阵n Q 使得()m AQ E O =把Q 分块,()1n mQ B Q ⨯=,则m m n n m E B A =⨯⨯易知()n m r B m ⨯=14. 证明Sylvester 不等式:r()r()r()m n n p n ⨯⨯+-≤A B A B方法1 设r AB r t B r s A r p n n m ===⨯⨯)(,)(,)(由等价标准形定理知有可逆矩阵Q P ,使⎥⎦⎤⎢⎣⎡=000sEPAQ 因此11120()()000sB E s B s PAB PAQ Q B B n s n s -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1()()()r AB r PAB r B ==112()()B t r B r Q B r B -⎡⎤===⎢⎥⎣⎦122()()()()()r B r B r AB r B r n s ≤+=+≤+-移项得r n t s ≤-+,即r()r()r()n +-≤A B AB15. 设rank m n n ⨯=P ,证明rank()rank =PA A . 证法1 记C PA =,则()()()r C r PA r A =≤再由习题13,存在矩阵M 使得MP E =. 在C PA =两边左乘M 得MC A =从而()()()r A r MC r C =≤综上,()()()r C r PA r A ==.证法2 设A 是m n ⨯阶矩阵,()r m =P ,由Sylvester 不等式()()()r A r P r A m =+-≤()()r PA r A ≤从而r()r()=PA A16. 设n 阶矩阵A 满足2A A =,证明()()r A r A E n +-= 证 由()-=A E A O 和例题r()r()n +-≤A E A又[]()r()r ()r r()n ==+-≤+-E A E A A E A综上r()r()n +-=A E A .17. 证明满秩分解定理: 设rank m n A r ⨯=, 则A 有如下分解:m r r n A H L ⨯⨯=其中rank rank H L r ==.方法1 由等价标准形定理,存在可逆矩阵m P 和n Q 使得[]1111000rr r r n m rEE A P Q P E O Q O ----⨯⨯⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦令[]11,r rE H P L E O Q O --⎡⎤==⎢⎥⎣⎦则n r r m L H A ⨯⨯=,且显然有r L r H r ==)()(.方法2 不妨设A 的列向量组的极大无关组为12,,,r ααα ,并记矩阵[]12,,,m r r H ααα⨯=则A 的所有列向量都可由12,,,r ααα 线性表示,即存在矩阵r n L ⨯使得n r r m L H A ⨯⨯=又()()()()m r r n m r r r A r H L r H r r H r ⨯⨯⨯==≤≤⇒=同理()r L r =.18. 证明:r()r()r()r()ABC AB BC B ≥+-. 证 设rank()n k B r ⨯=,B 的满秩分解为B MN =由Sylvester 不等式rank()rank[()()]rank()rank()r ABC AM NC AM NC =≥+- rank()rank()r rank()rank()rank()AMN MNC AB BC B ≥+-=+-19. 设12,V V 都是nR 的子空间, 令{}12121122|,V V V V ααααα+==+∈∈, {}1212|V V V V ααα=∈∈ 且证明12V V +与12V V 都是nR 的子空间. 举例说明{}1212|V V V V ααα=∈∈ 或不是nR 的子空间.证 易(略)20. 证明基的扩张定理定理4.14:设1,,m αα 是nR 的一个线性无关组, m n <, 则存在n m -个向量1,,m n a α+ , 使得11,,,,,m m n αααα+ 成为n R 的一个基.证 由于m n <,故12,,,m ααα 不是nR 的基,从而至少有一个向量1m +α不能由12,,,m ααα 线性表示. 则121,,,,m m +αααα 必线性无关(否则,由唯一表示定理得出矛盾).如果1m n +=,则证毕. 否则,如果1m n +<,同上知,存在向量2m +α使得1212,,,,,m m m ++ααααα 线性无关. 依此类推,得证. 21. 若矩阵()ij n n A a ⨯=满足1(1,2,,)nii ij j j ia a i n =≠>=∑则称A 是严格对角占优矩阵. 证明严格对角占优矩阵必是可逆矩阵.证 反证. 假设A 是不可逆矩阵, 则0Ax =有非零解, 记一个非零解为12(,,,)T n x x x x = . 再记1max 0k i i nx x ≤≤=>考察0Ax =的第k 个方程11220k k kn n a x a x a x +++=即1nkk k kj j j j ka x a x =≠=-∑两边取绝对值111nnnk kk kj j kkjkk kj j j j j kj kj kx a a x x aa a ===≠≠≠≤≤⇒≤∑∑∑这与假设矛盾. 因此A 是可逆矩阵. 22. 证明方程组TTA Ax A b =一定有解.证 只需证方程组系数矩阵的秩与增广矩阵的秩相等. 由例题()T T T T Tr()r()r ,r (,)r()r()⎡⎤=≤=≤=⎣⎦A A A A A A b A A b A A故()T T T r()r ,=A A A A A b从而方程组b A Ax A T T =一定有解.23. 设=Ax 0与=Bx 0都是n 元的齐次方程组, 证明下面三个命题等价: (1)=Ax 0与=Bx 0同解; (2)rank rank rank ⎡⎤==⎢⎥⎣⎦A AB B ; (3)A 的行向量组与B 的行向量组等价. 证 记(I )=Ax 0,(II )=Bx 0,(III )=⎧⎨=⎩Ax Bx 0(1)⇒(2) 由于(I )的解都是(II )的解,所以(I )的解也都是(III )的解. 又显然(III )的解都是(I )的解. 因此,(I )与(III )同解. 同样的道理,(II )与(III )也是同解的. 因此它们基础解系所含向量个数相等,即()()r r r n n n ⎛⎫-=-=- ⎪⎝⎭A AB B于是()()r r r ⎛⎫== ⎪⎝⎭A AB B(2)⇒(3) 命题(2)等价于()()()T T T T r r r ,==A B A B由定理4.3,TA 的列向组与TB 的列向量组等价. 即A 的行向量组与B 的行向量组等价.(3)⇒(1) 这是显然.24.设B A ,均是n 阶的方阵,证明)()(B r AB r =的充要条件是方程组0)(=x AB 与方程组0=Bx 同解.证 (⇒)显然0=Bx 的解必是0)(=x AB 的解. 又)()(B r AB r =,0=Bx 的基础解系也是0)(=x AB 的基础解系. 所以,方程组0)(=x AB 与方程组0=Bx 同解.(⇐)易25. 若n 阶矩阵[]121,,,,n n A αααα-= 的前1n -个列向量线性相关,后1n -个列向量线性无关,12n βααα=+++ ,证明:(1)方程组Ax β=必有无穷多解;(2)若T 12(,,,)n k k k 是Ax β=的任一解,则1n k =. 证 (1)由12n βααα=+++ , 知(1,1,,1)T x = 是Ax β=的一个解. 又()1r A n =-,故Ax β=有无穷多解.(2)121,,,n ααα- 线性相关,存在不全为零的数121,,,n l l l - 使1122110n n l l l ααα--++=说明()121,,,,0Tn l l l - 是0Ax =基础解系. Ax β=的通解为()()121(1,1,,1),,,,0,,,1T TT n k l l l -+=⨯⨯26. 设线性方程组(I)⎪⎩⎪⎨⎧=+++=+++m n mn m m n n bx a x a x a b x a x a x a 221111212111 (II)⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++100221122*********m m m nm n n m m y b y b y b y a y a y a y a y a y a证明:方程组(I )有解⇔方程组(II )无解.证 记方程组(I )为=Ax b ,则方程组(II )可写成T T 1⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭A y b 0易知TTT r r()1r()11⎛⎫=+=+ ⎪⎝⎭A A A b0 这样(II)无解⇔TT T TT T r r 1r()1r 11⎛⎫⎛⎫⎛⎫=+⇔+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A A A A b b b 0 ()T T r()r r()r ⎛⎫⇔=⇔=⇔ ⎪⎝⎭A A A A b b (I )有解27. 设线性方程组(I) ⎪⎩⎪⎨⎧=+++=+++m n mn m m n n bx a x a x a b x a x a x a 221111212111(II) ⎪⎩⎪⎨⎧=+++=+++022111221111m nm n n m m y a y a y a y a y a y a(III) 02211=+++m m y b y b y b证明:方程组(I )有解⇔方程组(II )的解都是方程组(III )的解.证 记n m ij a A ⨯=)(,T n x x x x ),,,(21 =,T m y y y y ),,,(21 =,T m b b b b ),,,(21 =则三个方程可写为(I) b Ax =,(II) 0=y A T ,(III) 0=y b T因此(I)有解⇔],[)(b A r A r =⇔⎥⎦⎤⎢⎣⎡=T T Tb A r A r )((由例5.2)⇔(II )的解都是(III )的解28. 设齐次方程组123423412422000x x x x x cx cx x cx x +++=⎧⎪++=⎨⎪++=⎩ 解空间的维数是2, 求其一个基础解系.解 由dim N()r()n =-A A 知,系数矩阵的秩r()422=-=A .221212101222010110100(1)(1)r c c A c c cc c c c --⎛⎫⎛⎫⎪ ⎪=−−→ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭由r()2=A ,得1c =. 原方程组的等价方程组为13234x x x x x =⎧⎨=--⎩ 取3410,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 得一个基础解系为T T 12(1,1,1,0),(0,1,0,1)=-=-αα29. 设四元齐次线性方程组(I) ⎩⎨⎧=-=+004221x x x x还知道另一齐次线性方程组(II)的通解为T T k k )1,2,2,1()0,1,1,0(21-+求方程组(I )与(II )的公共解.解法1 将方程组(II)的通解T T k k x )1,2,2,1()0,1,1,0(21-+=212122(,2,2,)T k k k k k k =-++代入组方程组(I)得到关于21,k k 的线性方程组2121212220020k k k k k k k k -++=⎧⇔+=⎨+-=⎩ 令k k =2,则k k -=1,故方程组(I)与方程组(II)的公共解为T T T k k k x )1,1,1,1()1,2,2,1()0,1,1,0(21-=-+=(R k ∈)解法2 易求方程组(I)的基础解系为T )0,1,0,0(1=α,T )1,0,1,1(2-=α其通解为3142x k k αα=+令两个方程组的通解相等T T k k x )1,2,2,1()0,1,1,0(21-+=T k )0,1,0,0(3=T k )1,0,1,1(4-+得关于4321,,,k k k k 的方程组⎪⎪⎩⎪⎪⎨⎧=-=-+=-+=+-0020********2142k k k k k k k k k k 解之得k k k k k k k k ===-=4321,,,因此两个方程组公共解为T T T k k k x )1,1,1,1()1,2,2,1()0,1,1,0(-=-+-=30. 设n n ij a A ⨯=)(, 0≠A , 证明:n r <时, 齐次方程组⎪⎩⎪⎨⎧=+++=+++0022111212111n rn r r n n x a x a x a x a x a x a 的一个基础解系为T jn j j j A A A ),,,(21 =ξ,(n r j ,,1 +=) 其中jk A 为A 的),(k j 元的代数余子式(n k j ,,2,1, =).证 由行列式展开定理02211=+++jn in j i j i A a A a A a (n r j r i ,,1;,,1 +==)所以j ξ(n r j ,,1 +=)是齐次方程组的解(共r n -个).由0≠A ⇒齐次方程组系数矩阵的秩为r ,所以齐次方程组基础解系所含向量个数为r n -. 再由0≠A n A r =⇒)(*⇒*A 的r n -个行向量的转置n r ξξ,,1 +线性无关.综上可知,n r ξξ,,1 +是齐次方程组的一个基础解系.31. 设rank m n A r ⨯=, *η是非齐次方程组b Ax =的一个特解, 12,,,n r ξξξ- 是其对应的齐次方程组0=Ax 的一个基础解系. 证明{}****12,,,,n r ηηαηαηα-+++是Ax b =解集V 的一个极大无关组, 从而rank 1V n r =-+.证 记{}****12,,,,n r T ηηαηαηα-=+++显然T 中的向量都是b Ax =的解,即T V ⊂.下面证明T 线性无关. 设0)()()(12211=++++++++---ηξηξηξηr n r n r n k k k k把上式整理为0)(1212211=+++++++++----ηξξξr n r n r n r n k k k k k k k上式两边左乘A 得0)(121=+++++--b k k k k r n r n由0≠b 得0121=+++++--r n r n k k k k往上代入得02211=+++--r n r n k k k ξξξ由r n -ξξξ,,,21 线性无关性得021====-r n k k k再往上代入又得01=+-r n k . 这说明T 是线性无关的向量组.下面再证明V 中的任一向量都可由T 线性表示. 由于V 中的任一向量都可写为r n r n k k k x --++++=ξξξη 2211即)()()()1(221121r n r n r n k k k k k k x ---+++++++----=ξηξηξηη这说明V 中的任一向量都可由T 线性表示. 综上,向量组T 是Ax b =解集V 的一个极大无关组,rank r()1S n =-+A .32. 已知T T T 111121,2221222,212,2(,,),(,,,),,(,,,)n n n n n n n b b b b b b b b b ===βββ是方程组1111221,222112222,221122,2200 0n n n nn n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的基础解系. 证明T T T 111121,2221222,212,2(,,),(,,,),,(,,,)n n n n n n n a a a a a a a a a ===ααα是方程组1111221,222112222,221122,22000n n n nn n n n n b x b x b x b x b x b x b x b x b x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的基础解系.证 记矩阵T 1T 2T n ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ααA α ,T 1T 2T n ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ββB β则方程组(I )和(II )可分别写为(I )=Ax 0 和 (II )=Bx 0(2n∈x R )因为12,,,n βββ 是方程组=Ax 0的基础解系,所以r ()2n n n =-=A ,从而12,,,n ααα 线性无关. 而且,12,,,n βββ 线性无关,r()n =B . 因此,方程组=Bx 0的基础解系所含解向量的个数为2r()n n -=B .由假设()T T 12,,,n =⇒=⇒=A βββO AB O BA O()T 12,,,n ⇒=⇒=BA O B αααO知12,,,n ααα 是方程组=Bx 0的n 个线性无关的解. 因此,12,,,n ααα 就是方程组=Bx 0的一个基础解系.。

线性代数--向量组线性相关性

线性代数--向量组线性相关性

第四章 向量组的线性相关性§4.1 向量及其运算1.向量:个数构成的有序数组, 记作n n a a a ,,,21L ),,,(21n a a a L =α, 称为维行向量.n –– 称为向量i a α的第i 个分量R ∈i a –– 称α为实向量(下面主要讨论实向量) 零向量 )0,,0,0(L =θ;负向量 ),,,()(21n a a a −−−=−L α 2.线性运算:),,,(21n a a a L =α, ),,,(21n b b b L =β相等:若, 称),,2,1(n i b a i i L ==βα=.加法:=+βα),,,(2211n n b a b a b a +++L数乘:),,,(21n ka ka ka k L =α减法:=−βα=−+)(βα),,,(2211n n b a b a b a −−−L 3.算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) αββα+=+ (5) αα=1(2) )()(γβαγβα++=++ (6) αα)()(l k l k =(3) αθα=+ (7) βαβαk k k +=+)((4) θαα=−+)( (8) αααl k l k +=+)(4.列向量:个数构成的有序数组, 记作, n n a a a ,,,21L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a M 21α或者, 称为维列向量.T 21),,,(n a a a L =αn 零向量: 负向量: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000M θ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=−n a a a M 21)(α 5.内积:设实向量),,,(21n a a a L =α, ),,,(21n b b b L =β, 称 实数n n b a b a b a +++=L 2211],[βα为α与β的内积. 算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) ],[],[αββα=(2) ],[],[βαβαk k = (为常数)k (3) ],[],[],[γβγαγβα+=+(4) θα≠时, 0],[>αα;θα=时, 0],[=αα. (5)],[],[],[2ββααβα⋅≤证(5) R ∈∀t , 由0],[≥++βαβαt t 可得0],[],[2],[2≥++t t βββααα ⇒≤0Δ0],[],[4],[42≤⋅−ββααβα],[],[],[2ββααβα⋅≤⇒6.范数:设实向量α, 称实数],[ααα=为α的范数.性质:(1) θα≠时, 0>α;θα=时, 0=α.(2) αα⋅=k k )R (∈∀k(3) βαβα+≤+(4) βαβα−≤−证(3) ],[],[2],[],[2βββαααβαβαβα++=++=+()2222βαββαα+=++≤7.夹角:设实向量θα≠,θβ≠, 称 βαβαϕ],[arccos= )π0(≤≤ϕ为α与β之间的夹角. 正交:若0],[=βα, 称α与β正交, 记作βα⊥.(1) θα≠,θβ≠时, βα⊥2π=⇔ϕ; (2) θα=或θβ=时, βα⊥有意义, 而ϕ无意义.单位化:若θα≠, 称ααα10=为与α同方向的单位向量.§4.2 向量组的线性相关性1.线性组合:对n 维向量α及m αα,,1L , 若有数组使m k k ,,1L 得m m k k ααα++=L 11, 称α为m αα,,1L 的线性组合,或称α可由m αα,,1L 线性表示.例1 , , , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1112β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1133β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1354β 判断4β可否由321,,βββ线性表示?解 设3322114ββββk k k ++=,比较两端的对应分量可得, 求得一组解为.故 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−321111110311k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=135⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡120321k k k 3214120ββββ++=, 即4β可由321,,βββ线性表示.[注] 取另一组解时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡032321k k k 3214032ββββ++=. 2.线性相关:对n 维向量组m αα,,1L , 若有数组不全m k k ,,1L 为0, 使得 θαα=++m m k k L 11, 则称向量组m αα,,1L 线性相关;否则,称为线性无关.线性无关:对维向量组n m αα,,1L , 仅当数组全m k k ,,1L 为0时, 才有 θαα=++m m k k L 11, 称向量组m αα,,1L 线性无关;否则,称为线性相关.[注] 对于单个向量α:若θα=, 则α线性相关;若θα≠, 则α线性无关.例2 判断例1中向量组4321,,,ββββ的线性相关性. 解 设θββββ=+++44332211k k k k , 比较对应分量可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−0001111311053114321k k k k 即0=Ax .因为未知量的个数是4, 而4rank <A , 所以0=Ax 有非零解, 由定义知4321,,,ββββ线性相关.例3 已知向量组321,,ααα线性无关, 证明向量组211ααβ+=, 322ααβ+=, 133ααβ+= 线性无关.证 设 θβββ=++332211k k k , 则有θααα=+++++332221131)()()(k k k k k k 因为321,,ααα线性无关, 所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110011101321k k k 系数行列式 02110011101≠=, 该齐次方程组只有零解.故321,,βββ线性无关.例4 判断向量组 )0,,0,0,1(1L =e , )0,,0,1,0(2L =e , … ,)1,0,,0,0(L =n e 的线性相关性.解 设 θ=+++n n e k e k e k L 2211, 则有⇒=θ),,,(21n k k k L 只有0,,0,021===n k k k L 故线性无关.n e e e ,,,21L 例5 设向量组m ααα,,,21L 两两正交且非零, 证明该向量组线性无关.证 设 θααα=+++m m k k k L 2211, 两端与i α作内积可得 ],[],[],[],[11i i m m i i i i k k k αθαααααα=++++L L 当j i ≠时, 0],[=j i αα, 于是有⇒=0],[i i i k αα只有0=i k )(θα≠i Q上式对于m i ,,2,1L =都成立, 故m ααα,,,21L 线性无关.3.判定定理定理1 向量组)2(,,,21≥m m αααL 线性相关⇔其中至少有一个向量可由其余1−m 个向量线性表示.证 必要性.已知m ααα,,,21L 线性相关, 则存在m k k k ,,,21L 不全为零, 使得 θααα=+++m m k k k L 2211.不妨 设, 则有 01≠k m m k k k k ααα)()(12121−++−=L . 充分性.不妨设m m k k ααα++=L 221, 则有θααα=+++−m m k k L 221)1(因为不全为零, 所以m k k ,,,)1(2L −m ααα,,,21L 线性相关.定理2 若向量组m ααα,,,21L 线性无关, βααα,,,,21m L 线性相关, 则β可由m ααα,,,21L 线性表示, 且表示式唯一.证 因为βαα,,,1m L 线性相关, 所以存在数组不k k k m ,,,1L 全为零, 使得 θβαα=+++k k k m m L 11.若, 则 0=k θαα=++m m k k L 11, 从而有0,,01==m k k L 矛盾! 故, 从而有 0≠k m m kk k k ααβ)()(11−++−=L .下面证明表示式唯一:若 m m k k ααβ++=L 11, m m l l ααβ++=L 11 则有 θαα=−++−m m m l k l k )()(111L因为m ααα,,,21L 线性无关, 所以0,,011=−=−m m l k l k L ⇒m m l k l k ==,,11L 即β的表示式唯一.定理3 r αα,,1L 线性相关⇒)(,,,,,11r m m r r >+ααααL L线性相关.证 因为r αα,,1L 线性相关, 所以存在数组不全为r k k ,,1L 零, 使得 θαα=++r r k k L 11, 即θαααα=++++++m r r r k k 00111L L数组不全为零, 故0,,0,,,1L L r k k m r r αααα,,,,,11L L +线性相关.推论1 含零向量的向量组线性相关.推论2 向量组线性无关⇒任意的部分组线性无关.课后作业:习题四 1, 2, 3, 4, 5定理4 设m i a a a in i i i ,,2,1,),,,(21L L ==α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a L M M M L L 212222111211 (1) m ααα,,,21L 线性相关m A <⇔rank ;(2) m ααα,,,21L 线性无关m A =⇔rank .证 设 θααα=+++m m k k k L 2211比较等式两端向量的对应分量可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00021212221212111M M L M M M L L m mn n n m m k k k a a a a a a a a a 即 0T =x A .由定理3.5可得:m ααα,,,21L 线性相关0T =⇔x A 有非零解m A <⇔T rank m A <⇔rankn m 推论1 在定理4中, 当=时, 有(1) n ααα,,,21L 线性相关0det =⇔A ;(2) n ααα,,,21L 线性无关0det ≠⇔A .n m 推论2 在定理4中, 当<时, 有(1) m ααα,,,21L 线性相关A ⇔中所有的阶子式;m 0=m D (2) m ααα,,,21L 线性无关⇔A 中至少有一个阶子式m 0≠m D .推论3 在定理4中, 当时, 必有n m >m ααα,,,21L 线性相关.因为m n A <≤rank , 由定理4(1)即得.推论4 向量组:1T m i a a a ir i i i ,,2,1,),,,(21L L ==α向量组:2T m i a a a a in r i ir i i ,,2,1,),,,,,(1,1L L L ==+β若线性无关, 则线性无关.1T 2T 证 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m r m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=r m m m r r a a a a a a a a a L M M M L L 212222111211 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m n m B βββM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+++n m r m r m m n r r n r r a a a a a a a a a a a a L L M M M M L L L L 1,121,222111,1111 线性无关1T m A =⇒rank是A B 的子矩阵m A B =≥⇒rank rank⇒=⇒m B rank 2T 线性无关定理5 划分, 则有[]n m n m A βββαααL M 2121=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×(1) 中某个A ⇒≠0r D A 中“所在的”个行向量线性无关;r D r中“所在的”r 个列向量线性无关.A r D (2) 中所有中任意的r 个行向量线性相关; A A D r ⇒=0 中任意的个列向量线性相关.A r 证 只证“行的情形”:(1) 设位于的行, 作矩阵, 则有r D A r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 r i i r B αα,,rank 1L ⇒=线性无关.(2) 任取中个行, 设为行, 作矩阵,A r r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 则有r i i r B αα,,rank 1L ⇒<线性相关.[注] 称m ααα,,,21L 为的行向量组A 称n βββ,,,21L 为的列向量组A §4.3 向量组的秩与最大无关组1.向量组的秩:设向量组为T , 若(1) 在T 中有r 个向量r ααα,,,21L 线性无关;(2) 在T 中任意个向量线性相关.1+r (如果有个向量的话)1+r 称r ααα,,,21L 为向量组T 的一个最大线性无关组,称为向量组T 的秩, 记作 秩r r T =)(.[注](1) 向量组中的向量都是零向量时, 其秩为0.(2) 秩r T =)(时, T 中任意个线性无关的向量都是T 的r 一个最大无关组.例如, , , , 的秩为2. ⎥⎦⎤⎢⎣⎡=011α⎥⎦⎤⎢⎣⎡=102α⎥⎦⎤⎢⎣⎡=113α⎥⎦⎤⎢⎣⎡=224α 21,αα线性无关21,αα⇒是一个最大无关组31,αα线性无关31,αα⇒是一个最大无关组定理6 设, 则1rank ≥=×r A n m (1) 的行向量组(列向量组)的秩为;A r (2) 中某个中所在的r 个行向量(列向量)A A D r ⇒≠0r D 是的行向量组(列向量组)的最大无关组.A 证 只证“行的情形”:A r A ⇒=rank 中某个0≠r D , 而中所有 A 01=+r D 定理5中所在的r 个行向量线性无关A ⇒r D 中任意的A 1+r 个行向量线性相关由定义:的行向量组的秩为, 且中所在的r 个行向A r A r D 是的行向量组的最大无关组.A 例6 向量组T :, , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=2011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0232β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=1123β, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5324β求T 的一个最大无关组.解 构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231 求得⇒=2rank A 秩2)(=T矩阵中位于1,2行1,2列的二阶子式A 022031≠= 故21,ββ是T 的一个最大无关组.[注] T 为行向量组时, 可以按行构造矩阵.A 定理7n m n m B A ××,(1) 若, 则“的列”线性相关(线性无关)B A 行→A k c c ,,1L 的充要条件是“B 的列”线性相关(线性无关); k c c ,,1L (2) 若, 则“的行”线性相关(线性无关)B A 列→A k r r ,,1L 的充要条件是“B 的行”线性相关(线性无关). k r r ,,1L 证 (1) 划分[]n n m A αααL 21=×, []n n m B βββL 21=× 由可得 B A 行→[][]k k c c c c ββααL L 11行→ 故方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k αα 与方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k ββ 同解.于是有 k c c αα,,1L 线性相关011=+ 存在不全为0, 使得⇔k x x ,,1L +k c k c x x αL α 存在不全为0, 使得⇔k x x ,,1L 011=++k c k c x x ββL ⇔k c c ββ,,1L 线性相关同理可证(2).[注] 通常习惯于用初等行变换将矩阵化为阶梯形矩阵A B ,当阶梯形矩阵B 的秩为时, r B 的非零行中第一个非零元素所在的个列向量是线性无关的.r 例如:求例6中向量组T 的一个最大无关组.构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→936031202231行B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→000031202231行 ⇒==2rank rank B A 秩2)(=TB 的1,2列线性无关的1,2列线性无关A ⇒21,ββ⇒是T 的一个最大无关组 例7 向量组T :,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=31111α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=15312α,, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−=21233c α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=c 10624α 求向量组T 的一个最大无关组.解 对矩阵[]4321αααα=A 进行初等行变换可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−=c c A 2131015162312311⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−−−→67401246041202311c c 行 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−−→2900070041202311c c 行B c =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−→2000070041202311行 (1) :2≠c 4rank rank ==B AB 的1,2,3,4列线性无关的1,2,3,4列线性无关 A ⇒ 故4321,,,αααα是T 的一个最大无关组;(2) :2=c 3rank rank ==B AB 的1,2,3列线性无关的1,2,3列线性无关 A ⇒ 故321,,ααα是T 的一个最大无关组.[注] 当m ααα,,,21L 为行向量组时, 为列向量组. T T 2T 1,,,mαααL 若矩阵[]T T 2T 1m A αααL = 的列向量组的一个最大无关 组为, 则是行向量组T T ,,1r c c ααL r c c αα,,1L m ααα,,,21L 的 一个最大无关组.课后作业:习题四 7,8 (理解、记忆定理1~7)。

向量组的线性相关性

向量组的线性相关性

+
kmj am
=
(α1,α

2
αm
)
⎛ ⎜ ⎜ ⎜
k1 k2
j j
⎞ ⎟ ⎟ ⎟
⎜⎜⎝ kmj ⎟⎟⎠
⎛ k11 k12
从而(b1 ,b2 ,
,bL ) = (a1,a2,
am
)
⎜ ⎜ ⎜
k21
k22
⎜ ⎝ km1 km2
k1l ⎞
k2l
⎟ ⎟

⎟ kml ⎠
这里,矩阵 kmxl = (ki j ) 称这一线性表示的系数矩阵。
若干个同维数的列(行)向量所组成的集合叫向量组。矩阵 A = (aij )mxn 有 m 个 n 维行向量或 n 个 m 维列向量。反之,由有限个向量所组成的向量组可以构成
一个矩阵。m 个 n 维列向量所组成的向量组: a1,a2, am,构成一个 nxm 矩阵
A
=
(α1,α

2
αm)

m

n
维行向量所组成的向量组
方程 Anxm X = En 有解的充分必要条件是 R( A) = n .
6
本例用矩阵的语言可叙述为: 对矩阵 Amxn ,存在矩阵 Qnxm ,使 AQ = Em 的充分必要条件是 R( A) = m ; 对矩阵 Amxn ,存在矩阵 Pnxm ,使 PA = En 的充分必要条件是 R( A) = n ,显然, 当 m = n 时,P、Q 便是 A 的逆阵,故上述结论可看作是逆阵概念的推广。 三、小结 1、向量、向量组、线性组合及向量组等价的的概念。 2、向量线性表示的判定方法:定义及三个定理。 四、作业,P108、2、3、4、5。
0
0

第4章向量组的线性相关性

第4章向量组的线性相关性
四、向量组的等价
[定义]若向量组A与B能相互线性表示 则称这两个向量组等价。
➢矩阵等价与向量组等价的关系
若矩阵A与B 行等价 则这两个矩阵的行向量组等价 若矩阵A与B 列等价 则这两个矩阵的列向量组等价
➢向量组等价的判据 [定理4-2]推论:向量组 A a1, a2, , an 与向量组 B : b1,b2, ,bm 等价的充要条件是R(A)R(B)=R(A B) 。
分量全为实数的向量称为实向量, 例如 (1,2,3,,n)
分量全为复数的向量称为复向量。 例如 (1 2i,2 3i,,n (n 1)i)
第四章 向量组的线性相关性
2、向量的表示
n维向量写成一列,称为列向量(即列矩阵),
通常用 a, b,, 等表示,如:
a1
a
a2
an
n维向量写成一行,称为行向量(即行矩阵),
1 1 1 1
1 0 3 2
~ ~ B
1 2
2 1
1 4
0
3
r
0
1
2
1
r
0
1
2
1
0 0 0 0
0 0 0 0
2
3
0
1
0
0
0
0
0
0
0
0
R(A) R(B) 2
向量b能由向量组 a1, a2, a3 线性表示。
第四章 向量组的线性相关性
由B最简形可得线性方程组 (a1,a2,a3)x b即Ax b 解为
(a11 a12 a1n)
(a21 a22 a2n)
(am1 am2 amn)
第四章 向量组的线性相关性
2、向量组的线性组合

4 向量组的线性相关性

4 向量组的线性相关性

第四章 向量一 内容概要1 向量的概念:(1)定义;(2)与矩阵之间的关系;(3)向量的相等;2 向量的运算:(1)向量的和、差;(2)向量的数乘;(3)向量的线性运算;3 向量组的线性关系(1)线性组合:对于给定的向量组βααα,21s ,,, ;如果存在一组数s k k ,,1 使得:s s k k k αααβ+++= 2211则称向量s 21αααβ,,,是向量组 的一个线性组合,或称β可以由向量组:,21s ααα,,, 线性表示;(2)线性相关、线性无关的定义设,21s ααα,,, 是一组n 维向量(当然是同型),如果存在一组不全为0的数s k k ,,1 使得:02211=+++s s k k k ααα则称向量组,21s ααα,,, 线性相关 指出,这里一定要注意关键词:(1)它是不全为0的数s k k ,,1 ;(2)存在;至于这一组数具体是什么样的一组数无关紧要。

反之 则称向量组,21s ααα,,, 线性无关,即若要 02211=+++s s k k k ααα成立,必有021====s k k k ,则称向量组,21s ααα,,, 线性无关。

(3)向量组的线性相关性与方程组之间的关系向量组,21s ααα,,, 线性关系式02211=+++s s k k k ααα 具体表示出来实际上就是一个方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111s ms m m ss s s x a x a x a x a x a x a x a x a x a其中:()m j a a a Tmj j j j ,,2,1,,,21 ==,α因此,通俗的话来说,向量组s 21,ααα ,,线性相关的充要条件是:上述方程组有非0解。

这是判断一个向量组s ααα,,, 21是否线性相关最常用的方法。

(2)向量有解的关系线性表示与方程组,,,可被向量组βαααβ=AX n 21 设()()j Tm n b b b A αβααα,,,,,,,,2121 ==的意义同上,则方程组β=AX 可表示成:βααα=+++n n x x x 2211,或⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 因此向量线性表示,,,可被向量组n 21αααβ 的充要条件是方程组β=AX 有解。

第四章线性方程组与向量组的线性相关性

➢ 注:定理1.1、定理1.2及推论1.1自行阅读
§1 消元法与线性方程组的相容性
➢ 由定理2可知
➢ 定理3 设n元齐次线性方程组 Ax=0,
⑴ R(A)=n 方程组Ax=0有惟一解, 即方程组Ax=0只有零解
A为方阵时,A≠0 ⑵ R(A)<n 方程组Ax=0有无穷多组解,
即方程组Ax=0有非零解 A为方阵时,A=0 ➢ 注:定理1.3及推论1.2自行阅读。
2r2r1 5r2r3
1 0
0 1
1 1
1 0
3 1
0 5 5 0 5
0 0 0 0 0
§1 消元法与线性方程组的相容性
➢ 原方程组可化为
x1 x3 x4 3
x2 x3
1
x3与x4可任意取值, 称为自由未知量
令x3k1,x4k2(k1,k2为任意 ),得 方常 程 组 的数 解
x1 3 k1 k2
向量组可相互线性表示,则称这两个向量组等价。
➢ 性质1若向量组1, 2,…,s可由向量组1, 2,…, t 线性表示,向量组1, 2,…,t 可由向量组1, 2, …,p线性表示,则向量组1, 2,…,s可由向量组 1, 2,…,p线性表示。(传递性)
§2 向量组的线性相关性
➢ 性质2
⑴向量组1, 2,…,s与向量组1, 2,…,s等价; ⑵若向量组1, 2,…,s与向量组1, 2,…,t 等价, 则向量组1, 2,…,t 与向量组1, 2,…,s等价; ⑶若向量组1, 2,…,s与向量组1, 2,…,t 等价, 向量组1, 2,…,t 与向量组1, 2,…,p等价, 则 向量组1, 2,…,s与向量组1, 2,…,p等价。
➢ 例1 用消元法解线性方程组
x1 2x2 3x3 x4 1 3x1 x2 4x3 3x4 8 2x1 x2 x3 2x4 7

线性代数课后习题答案04

第四章 向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3⨯1+2⨯0-3, 3⨯1+2⨯1-4, 3⨯0+2⨯1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61T T T --+==(1, 2, 3, 4)T . 3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ⎪⎪⎪⎭⎫⎝⎛-=312123111012421301402230) ,(B A ⎪⎪⎪⎭⎫ ⎝⎛-------971820751610402230421301~r⎪⎪⎪⎭⎫⎝⎛------531400251552000751610421301 ~r⎪⎪⎪⎭⎫ ⎝⎛-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示. 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R (B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示; (2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1, a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=000110121220770121101413121~~r r A ,所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1, a , -1)T , a 3=(1, -1, a )T . 解 以所给向量为列向量的矩阵记为A . 由)1)(1(111111||+-=--=a a a aa a A知, 当a =-1、0、1时, R (A )<3, 此时向量组线性相关.8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1, a 2线性表示的表示式.解 因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0, 由此得 2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=, 设211λλλ+-=c , 则 b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. 解 不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10. 举例说明下列各命题是错误的:(1)若向量组a 1, a 2, ⋅ ⋅ ⋅, a m 是线性相关的, 则a 1可由a 2, ⋅ ⋅ ⋅, a m 线性表示.解 设a 1=e 1=(1, 0, 0, ⋅ ⋅ ⋅, 0), a 2=a 3= ⋅ ⋅ ⋅ =a m =0, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, 但a 1不能由a 2, ⋅ ⋅ ⋅, a m 线性表示. (2)若有不全为0的数λ1, λ2, ⋅ ⋅ ⋅, λm 使λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0成立, 则a 1, a 2, ⋅ ⋅ ⋅, a m 线性相关, b 1, b 2, ⋅ ⋅ ⋅, b m 亦线性相关. 解 有不全为零的数λ1, λ2, ⋅ ⋅ ⋅, λm 使λ1a 1+ ⋅ ⋅ ⋅ +λm a m +λ1b 1+ ⋅ ⋅ ⋅ +λm b m =0,原式可化为λ1(a 1+b 1)+ ⋅ ⋅ ⋅ +λm (a m +b m )=0.取a1=e1=-b1,a2=e2=-b2,⋅⋅⋅,a m=e m=-b m,其中e1,e2,⋅⋅⋅,e m为单位坐标向量,则上式成立,而a1,a2,⋅⋅⋅,a m和b1,b2,⋅⋅⋅,b m均线性无关.(3)若只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0才能成立,则a1,a2,⋅⋅⋅,a m线性无关, b1,b2,⋅⋅⋅,b m亦线性无关.解由于只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式由λ1a1+⋅⋅⋅+λm a m+λ1b1+⋅⋅⋅+λm b m=0成立,所以只有当λ1,λ2,⋅⋅⋅,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)+⋅⋅⋅+λm(a m+b m)=0成立.因此a1+b1,a2+b2,⋅⋅⋅,a m+b m线性无关.取a1=a2=⋅⋅⋅=a m=0,取b1,⋅⋅⋅,b m为线性无关组,则它们满足以上条件,但a1,a2,⋅⋅⋅,a m线性相关.(4)若a1,a2,⋅⋅⋅,a m线性相关, b1,b2,⋅⋅⋅,b m亦线性相关,则有不全为0的数,λ1,λ2,⋅⋅⋅,λm使λ1a1+⋅⋅⋅+λm a m=0,λ1b1+⋅⋅⋅+λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0⇒λ1=-2λ2,λ1b1+λ2b2 =0⇒λ1=-(3/4)λ2,⇒λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1,证明向量组b1,b2,b3, b4线性相关.证明由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ⋅ ⋅ ⋅, b r =a 1+a 2+ ⋅ ⋅ ⋅ +a r , 且向量组a 1, a 2, ⋅ ⋅ ⋅ , a r 线性无关, 证明向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关. 证明 已知的r 个等式可以写成⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ⋅ ⋅ ⋅ , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解 由⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000000010291032001900820291844210141002291) , ,(~~321r r a a a ,知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7). 解 由⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛------⎪⎪⎪⎭⎫⎝⎛------=00000059014110180590590141763451312141) , ,(~~321r r a a a , 知R (a 1T , a 2T , a 3T )=R (a 1, a 2, a 3)=2. 因为向量a 1T 与a 2T 的分量不成比例, 故a 1T , a 2T 线性无关, 所以a 1T , a 2T 是一个最大无关组.14. 利用初等行变换求下列矩阵的列向量组的一个最大无关组: (1)⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125;解 因为⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312513121433~r r r r r r ---⎪⎪⎪⎭⎫ ⎝⎛531053103210431731253423~rr r r --⎪⎪⎪⎭⎫ ⎝⎛00003100321043173125, 所以第1、2、3列构成一个最大无关组.(2)⎪⎪⎪⎭⎫⎝⎛---14011313021512012211. 解 因为⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221113142~r r r r --⎪⎪⎪⎭⎫ ⎝⎛------22201512015120122112343~r r r r +↔⎪⎪⎪⎭⎫ ⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.15. 设向量组(a , 3, 1)T , (2, b , 3)T , (1, 2, 1)T , (2, 3, 1)T的秩为2, 求a , b .解 设a 1=(a , 3, 1)T , a 2=(2, b , 3)T , a 3=(1, 2, 1)T , a 4=(2, 3, 1)T . 因为⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=5200111031116110111031113111332221) , , ,(~~2143b a a b a b a r r a a a a ,而R (a 1, a 2, a 3, a 4)=2, 所以a =2, b =5.16. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 已知n 维单位坐标向量e 1, e 2,⋅ ⋅ ⋅, e n 能由它们线性表示, 证明a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.证法一 记A =(a 1, a 2, ⋅ ⋅ ⋅, a n ), E =(e 1, e 2,⋅ ⋅ ⋅, e n ). 由已知条件知, 存在矩阵K , 使E =AK .两边取行列式, 得|E |=|A ||K |.可见|A |≠0, 所以R (A )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.证法二 因为e 1, e 2,⋅ ⋅ ⋅, e n 能由a 1, a 2, ⋅ ⋅ ⋅, a n 线性表示, 所以R (e 1, e 2,⋅ ⋅ ⋅, e n )≤R (a 1, a 2, ⋅ ⋅ ⋅, a n ),而R (e 1, e 2,⋅ ⋅ ⋅, e n )=n , R (a 1, a 2, ⋅ ⋅ ⋅, a n )≤n , 所以R (a 1, a 2, ⋅ ⋅ ⋅, a n )=n , 从而a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关.17. 设a 1, a 2, ⋅ ⋅ ⋅, a n 是一组n 维向量, 证明它们线性无关的充分必要条件是: 任一n 维向量都可由它们线性表示.证明 必要性: 设a 为任一n 维向量. 因为a 1, a 2, ⋅ ⋅ ⋅, a n 线性无关,而a1,a2,⋅⋅⋅,a n,a是n+1个n维向量,是线性相关的,所以a能由a1,a2,⋅⋅⋅,a n线性表示,且表示式是唯一的.充分性:已知任一n维向量都可由a1,a2,⋅⋅⋅,a n线性表示,故单位坐标向量组e1,e2,⋅⋅⋅,e n能由a1,a2,⋅⋅⋅,a n线性表示,于是有n=R(e1,e2,⋅⋅⋅,e n)≤R(a1,a2,⋅⋅⋅,a n)≤n,即R(a1,a2,⋅⋅⋅,a n)=n,所以a1,a2,⋅⋅⋅,a n线性无关.18.设向量组a1,a2,⋅⋅⋅,a m线性相关,且a1≠0,证明存在某个向量a k (2≤k≤m),使a k能由a1,a2,⋅⋅⋅,a k-1线性表示.证明因为a1,a2,⋅⋅⋅,a m线性相关,所以存在不全为零的数λ1,λ2,⋅⋅⋅,λm,使λ1a1+λ2a2+⋅⋅⋅+λm a m=0,而且λ2,λ3,⋅⋅⋅,λm不全为零.这是因为,如若不然,则λ1a1=0,由a1≠0知λ1=0,矛盾.因此存在k(2≤k≤m),使λk≠0,λk+1=λk+2=⋅⋅⋅=λm=0,于是λ1a1+λ2a2+⋅⋅⋅+λk a k=0,a k=-(1/λk)(λ1a1+λ2a2+⋅⋅⋅+λk-1a k-1),即a k能由a1,a2,⋅⋅⋅,a k-1线性表示.19.设向量组B:b1,⋅⋅⋅,b r能由向量组A:a1,⋅⋅⋅,a s线性表示为(b1,⋅⋅⋅,b r)=(a1,⋅⋅⋅,a s)K,其中K为s⨯r矩阵,且A组线性无关.证明B 组线性无关的充分必要条件是矩阵K的秩R(K)=r.证明令B=(b1,⋅⋅⋅,b r),A=(a1,⋅⋅⋅,a s),则有B=AK.必要性: 设向量组B 线性无关.由向量组B 线性无关及矩阵秩的性质, 有 r =R (B )=R (AK )≤min{R (A ), R (K )}≤R (K ), 及 R (K )≤min{r , s }≤r . 因此R (K )=r .充分性: 因为R (K )=r , 所以存在可逆矩阵C , 使⎪⎭⎫⎝⎛=O E KC r 为K 的标准形. 于是(b 1, ⋅ ⋅ ⋅, b r )C =( a 1, ⋅ ⋅ ⋅, a s )KC =(a 1, ⋅ ⋅ ⋅, a r ).因为C 可逆, 所以R (b 1, ⋅ ⋅ ⋅, b r )=R (a 1, ⋅ ⋅ ⋅, a r )=r , 从而b 1, ⋅ ⋅ ⋅, b r 线性无关.20. 设⎪⎩⎪⎨⎧+⋅⋅⋅+++=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅++=+⋅⋅⋅++=-1321312321 n n nn ααααβαααβαααβ, 证明向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价. 证明 将已知关系写成⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅0111101111011110) , , ,() , , ,(2121n n αααβββ, 将上式记为B =AK . 因为0)1()1(0111101*********||1≠--=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-n K n , 所以K 可逆, 故有A =BK -1. 由B =AK 和A =BK -1可知向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 可相互线性表示. 因此向量组α1, α2, ⋅ ⋅ ⋅, αn 与向量组β1, β2, ⋅ ⋅ ⋅, βn 等价.21. 已知3阶矩阵A 与3维列向量x 满足A 3x =3A x -A 2x , 且向量组x , A x , A 2x 线性无关.(1)记P =(x , A x , A 2x ), 求3阶矩阵B , 使AP =PB ;解 因为AP =A (x , A x , A 2x )=(A x , A 2x , A 3x )=(A x , A 2x , 3A x -A 2x )⎪⎪⎭⎫ ⎝⎛-=110301000) , ,(2x x x A A , 所以⎪⎪⎭⎫ ⎝⎛-=110301000B . (2)求|A |.解 由A 3x =3A x -A 2x , 得A (3x -A x -A 2x )=0. 因为x , A x , A 2x 线性无关, 故3x -A x -A 2x ≠0, 即方程A x =0有非零解, 所以R (A )<3, |A |=0. 22. 求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x ; 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=00004/14/3100401 2683154221081~r A , 于是得⎩⎨⎧+=-=43231)4/1()4/3(4x x x x x . 取(x 3, x 4)T =(4, 0)T , 得(x 1, x 2)T =(-16, 3)T ;取(x 3, x 4)T =(0, 4)T , 得(x 1, x 2)T =(0, 1)T .因此方程组的基础解系为ξ1=(-16, 3, 4, 0)T , ξ2=(0, 1, 0, 4)T .(2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x . 解 对系数矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=000019/719/141019/119/201 367824531232~r A , 于是得⎩⎨⎧+-=+-=432431)19/7()19/14()19/1()19/2(x x x x x x . 取(x 3, x 4)T =(19, 0)T , 得(x 1, x 2)T =(-2, 14)T ;取(x 3, x 4)T =(0, 19)T , 得(x 1, x 2)T =(1, 7)T .因此方程组的基础解系为ξ1=(-2, 14, 19, 0)T , ξ2=(1, 7, 0, 19)T .(3)nx 1 +(n -1)x 2+ ⋅ ⋅ ⋅ +2x n -1+x n =0.解 原方程组即为x n =-nx 1-(n -1)x 2- ⋅ ⋅ ⋅ -2x n -1.取x 1=1, x 2=x 3= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-n ;取x 2=1, x 1=x 3=x 4= ⋅ ⋅ ⋅ =x n -1=0, 得x n =-(n -1)=-n +1;⋅ ⋅ ⋅ ;取x n -1=1, x 1=x 2= ⋅ ⋅ ⋅ =x n -2=0, 得x n =-2.因此方程组的基础解系为ξ1=(1, 0, 0, ⋅ ⋅ ⋅, 0, -n )T ,ξ2=(0, 1, 0, ⋅ ⋅ ⋅, 0, -n +1)T ,⋅ ⋅ ⋅,ξn -1=(0, 0, 0, ⋅ ⋅ ⋅, 1, -2)T .23. 设⎪⎭⎫ ⎝⎛--=82593122A , 求一个4⨯2矩阵B , 使AB =0, 且 R (B )=2.解 显然B 的两个列向量应是方程组AB =0的两个线性无关的解. 因为⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--=8/118/5108/18/101 82593122~rA , 所以与方程组AB =0同解方程组为⎩⎨⎧+=-=432431)8/11()8/5()8/1()8/1(x x x x x x . 取(x 3, x 4)T =(8, 0)T , 得(x 1, x 2)T =(1, 5)T ;取(x 3, x 4)T =(0, 8)T , 得(x 1, x 2)T =(-1, 11)T .方程组AB =0的基础解系为ξ1=(1, 5, 8, 0)T , ξ2=(-1, 11, 0, 8)T .因此所求矩阵为⎪⎪⎪⎭⎫ ⎝⎛-=800811511B .24. 求一个齐次线性方程组, 使它的基础解系为ξ1=(0, 1, 2, 3)T , ξ2=(3, 2, 1, 0)T .解 显然原方程组的通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x , 即⎪⎩⎪⎨⎧=+=+==14213212213223k x k k x k k x k x , (k 1, k 2∈R ), 消去k 1, k 2得⎩⎨⎧=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.25. 设四元齐次线性方程组I : ⎩⎨⎧=-=+004221x x x x , II : ⎩⎨⎧=+-=+-00432321x x x x x x . 求: (1)方程I 与II 的基础解系; (2) I 与II 的公共解.解 (1)由方程I 得⎩⎨⎧=-=4241x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 0)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, 1)T .因此方程I 的基础解系为ξ1=(0, 0, 1, 0)T , ξ2=(-1, 1, 0, 1)T .由方程II 得⎩⎨⎧-=-=43241x x x x x . 取(x 3, x 4)T =(1, 0)T , 得(x 1, x 2)T =(0, 1)T ;取(x 3, x 4)T =(0, 1)T , 得(x 1, x 2)T =(-1, -1)T .因此方程II 的基础解系为ξ1=(0, 1, 1, 0)T , ξ2=(-1, -1, 0, 1)T .(2) I 与II 的公共解就是方程III : ⎪⎩⎪⎨⎧=+-=+-=-=+00004323214221x x x x x x x x x x 的解. 因为方程组III 的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000210010101001 1110011110100011~r A , 所以与方程组III 同解的方程组为⎪⎩⎪⎨⎧==-=4342412x x x x x x . 取x 4=1, 得(x 1, x 2, x 3)T =(-1, 1, 2)T , 方程组III 的基础解系为 ξ=(-1, 1, 2, 1)T .因此I 与II 的公共解为x =c (-1, 1, 2, 1)T , c ∈R .26. 设n 阶矩阵A 满足A 2=A , E 为n 阶单位矩阵, 证明R (A )+R (A -E )=n .证明 因为A (A -E )=A 2-A =A -A =0, 所以R (A )+R (A -E )≤n . 又R (A -E )=R (E -A ), 可知R (A )+R (A -E )=R (A )+R (E -A )≥R (A +E -A )=R (E )=n ,由此R (A )+R (A -E )=n .27. 设A 为n 阶矩阵(n ≥2), A *为A 的伴随阵, 证明⎪⎩⎪⎨⎧-≤-===2)( 01)( 1)( *)(n A R n A R n A R n A R 当当当. 证明 当R (A )=n 时, |A |≠0, 故有|AA *|=||A |E |=|A |≠0, |A *|≠0,所以R (A *)=n .当R (A )=n -1时, |A |=0, 故有AA *=|A |E =0,即A *的列向量都是方程组A x =0的解. 因为R (A )=n -1, 所以方程组A x =0的基础解系中只含一个解向量, 即基础解系的秩为1. 因此R (A *)=1. 当R (A )≤n -2时, A 中每个元素的代数余子式都为0, 故A *=O , 从而R (A *)=0.28. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x ; 解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=2100013011080101 322351211250011~r B . 与所给方程组同解的方程为⎪⎩⎪⎨⎧=+=--=213 843231x x x x x . 当x 3=0时, 得所给方程组的一个解η=(-8, 13, 0, 2)T .与对应的齐次方程组同解的方程为⎪⎩⎪⎨⎧==-=043231x x x x x . 当x 3=1时, 得对应的齐次方程组的基础解系ξ=(-1, 1, 1, 0)T .(2)⎪⎩⎪⎨⎧-=+++-=-++=-+-6242163511325432143214321x x x x x x x x x x x x .解 对增广矩阵进行初等行变换, 有⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-----=0000022/17/11012/17/901 6124211635113251~r B . 与所给方程组同解的方程为⎩⎨⎧--=++-=2)2/1((1/7)1)2/1()7/9(432431x x x x x x . 当x 3=x 4=0时, 得所给方程组的一个解η=(1, -2, 0, 0)T .与对应的齐次方程组同解的方程为⎩⎨⎧-=+-=432431)2/1((1/7))2/1()7/9(x x x x x x . 分别取(x 3, x 4)T =(1, 0)T , (0, 1)T , 得对应的齐次方程组的基础解系ξ1=(-9, 1, 7, 0)T . ξ2=(1, -1, 0, 2)T .29. 设四元非齐次线性方程组的系数矩阵的秩为3, 已知η1, η2, η3是它的三个解向量. 且η1=(2, 3, 4, 5)T , η2+η3=(1, 2, 3, 4)T ,求该方程组的通解.解 由于方程组中未知数的个数是4, 系数矩阵的秩为3, 所以对应的齐次线性方程组的基础解系含有一个向量, 且由于η1, η2, η3均为方程组的解, 由非齐次线性方程组解的结构性质得2η1-(η2+η3)=(η1-η2)+(η1-η3)= (3, 4, 5, 6)T为其基础解系向量, 故此方程组的通解:x =k (3, 4, 5, 6)T +(2, 3, 4, 5)T , (k ∈R ).30. 设有向量组A : a 1=(α, 2, 10)T , a 2=(-2, 1, 5)T , a 3=(-1, 1, 4)T , 及b =(1, β, -1)T , 问α, β为何值时(1)向量b 不能由向量组A 线性表示;(2)向量b 能由向量组A 线性表示, 且表示式唯一;(3)向量b 能由向量组A 线性表示, 且表示式不唯一, 并求一般表示式.解 ⎪⎪⎭⎫ ⎝⎛---=11054211121) , , ,(123βαb a a a ⎪⎪⎭⎫ ⎝⎛-+++---βαβαα34001110121 ~r . (1)当α=-4, β≠0时, R (A )≠R (A , b ), 此时向量b 不能由向量组A 线性表示.(2)当α≠-4时, R (A )=R (A , b )=3, 此时向量组a 1, a 2, a 3线性无关, 而向量组a 1, a 2, a 3, b 线性相关, 故向量b 能由向量组A 线性表示, 且表示式唯一.(3)当α=-4, β=0时, R (A )=R (A , b )=2, 此时向量b 能由向量组A 线性表示, 且表示式不唯一.当α=-4, β=0时,⎪⎪⎭⎫ ⎝⎛----=1105402111421) , , ,(123b a a a ⎪⎪⎭⎫ ⎝⎛--000013101201 ~r , 方程组(a 3, a 2, a 1)x =b 的解为⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛c c c c x x x 1312011132321, c ∈R . 因此 b =(2c +1)a 3+(-3c -1)a 2+c a 1,即 b = c a 1+(-3c -1)a 2+(2c +1)a 3, c ∈R .31. 设a =(a 1, a 2, a 3)T , b =(b 1, b 2, b 3)T , c =(c 1, c 2, c 3)T , 证明三直线 l 1: a 1x +b 1y +c 1=0,l 2: a 2x +b 2y +c 2=0, (a i 2+b i 2≠0, i =1, 2, 3)l 3: a 3x +b 3y +c 3=0,相交于一点的充分必要条件为: 向量组a , b 线性无关, 且向量组a , b , c 线性相关.证明 三直线相交于一点的充分必要条件为方程组⎪⎩⎪⎨⎧=++=++=++000333222111c y b x a c y b x a c y b x a , 即⎪⎩⎪⎨⎧-=+-=+-=+333222111c y b x a c y b x a c y b x a 有唯一解. 上述方程组可写为x a +y b =-c . 因此三直线相交于一点的充分必要条件为c 能由a , b 唯一线性表示, 而c 能由a , b 唯一线性表示的充分必要条件为向量组a , b 线性无关, 且向量组a , b , c 线性相关. 32. 设矩阵A =(a 1, a 2, a 3, a 4), 其中a 2, a 3, a 4线性无关, a 1=2a 2- a 3. 向量b =a 1+a 2+a 3+a 4, 求方程A x =b 的通解.解 由b =a 1+a 2+a 3+a 4知η=(1, 1, 1, 1)T 是方程A x =b 的一个解. 由a 1=2a 2- a 3得a 1-2a 2+a 3=0, 知ξ=(1, -2, 1, 0)T 是A x =0的一个解. 由a 2, a 3, a 4线性无关知R (A )=3, 故方程A x =b 所对应的齐次方程A x =0的基础解系中含一个解向量. 因此ξ=(1, -2, 1, 0)T 是方程A x =0的基础解系.方程A x =b 的通解为x =c (1, -2, 1, 0)T +(1, 1, 1, 1)T , c ∈R .33. 设η*是非齐次线性方程组A x =b 的一个解, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r ,是对应的齐次线性方程组的一个基础解系, 证明:(1)η*, ξ1, ξ2, ⋅ ⋅ ⋅, ξn -r 线性无关;(2)η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r线性无关.证明(1)反证法, 假设η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关.因为ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,而η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性相关,所以η*可由ξ1,ξ2,⋅⋅⋅,ξn-r 线性表示,且表示式是唯一的,这说明η*也是齐次线性方程组的解,矛盾.(2)显然向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r与向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r可以相互表示,故这两个向量组等价,而由(1)知向量组η*,ξ1,ξ2,⋅⋅⋅,ξn-r线性无关,所以向量组η*,η*+ξ1,η*+ξ2,⋅⋅⋅,η*+ξn-r也线性无关.34.设η1,η2,⋅⋅⋅,ηs是非齐次线性方程组A x=b的s个解,k1,k2,⋅⋅⋅,k s 为实数,满足k1+k2+⋅⋅⋅+k s=1. 证明x=k1η1+k2η2+⋅⋅⋅+k sηs也是它的解.证明因为η1,η2,⋅⋅⋅,ηs都是方程组A x=b的解,所以Aηi=b (i=1, 2,⋅⋅⋅,s),从而A(k1η1+k2η2+⋅⋅⋅+k sηs)=k1Aη1+k2Aη2+⋅⋅⋅+k s Aηs=(k1+k2+⋅⋅⋅+k s)b=b.因此x=k1η1+k2η2+⋅⋅⋅+k sηs也是方程的解.35.设非齐次线性方程组A x=b的系数矩阵的秩为r,η1,η2,⋅⋅⋅,ηn-r+1是它的n-r+1个线性无关的解.试证它的任一解可表示为x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1, (其中k1+k2+⋅⋅⋅+k n-r+1=1).证明因为η1,η2,⋅⋅⋅,ηn-r+1均为A x=b的解,所以ξ1=η2-η1,ξ2=η3-η1,⋅⋅⋅,ξn-r=η n-r+1-η1均为A x=b的解.用反证法证:ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.设它们线性相关,则存在不全为零的数λ1,λ2,⋅⋅⋅,λn-r,使得λ1ξ1+λ2ξ2+⋅⋅⋅+λ n-rξ n-r=0,即λ1(η2-η1)+λ2(η3-η1)+⋅⋅⋅+λ n-r(ηn-r+1-η1)=0,亦即-(λ1+λ2+⋅⋅⋅+λn-r)η1+λ1η2+λ2η3+⋅⋅⋅+λ n-rηn-r+1=0,由η1,η2,⋅⋅⋅,ηn-r+1线性无关知-(λ1+λ2+⋅⋅⋅+λn-r)=λ1=λ2=⋅⋅⋅=λn-r=0,矛盾.因此ξ1,ξ2,⋅⋅⋅,ξn-r线性无关.ξ1,ξ2,⋅⋅⋅,ξn-r为A x=b的一个基础解系.设x为A x=b的任意解,则x-η1为A x=0的解,故x-η1可由ξ1,ξ2,⋅⋅⋅,ξn-r线性表出,设x-η1=k2ξ1+k3ξ2+⋅⋅⋅+k n-r+1ξn-r=k2(η2-η1)+k3(η3-η1)+⋅⋅⋅+k n-r+1(ηn-r+1-η1),x=η1(1-k2-k3⋅⋅⋅-k n-r+1)+k2η2+k3η3+⋅⋅⋅+k n-r+1ηn-r+1.令k1=1-k2-k3⋅⋅⋅-k n-r+1,则k1+k2+k3⋅⋅⋅-k n-r+1=1,于是x=k1η1+k2η2+⋅⋅⋅+k n-r+1ηn-r+1.36.设V1={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=0},V2={x=(x1,x2,⋅ ⋅ ⋅,x n)T| x1,⋅ ⋅ ⋅,x n∈R满足x1+x2+⋅ ⋅ ⋅ +x n=1},问V1,V2是不是向量空间?为什么?解V1是向量空间,因为任取α=(a1,a2,⋅ ⋅ ⋅,a n)T∈V1,β=(b1,b2,⋅ ⋅ ⋅,b n)T∈V1,λ∈∈R,有a1+a2+⋅ ⋅ ⋅ +a n=0,b1+b2+⋅ ⋅ ⋅ +b n=0,从而(a1+b1)+(a2+b2)+⋅ ⋅ ⋅ +(a n+b n)=(a 1+a 2+ ⋅ ⋅ ⋅ +a n )+(b 1+b 2+ ⋅ ⋅ ⋅ +b n )=0,λa 1+λa 2+ ⋅ ⋅ ⋅ +λa n =λ(a 1+a 2+ ⋅ ⋅ ⋅ +a n )=0,所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n )T ∈V 1,λα=(λa 1, λa 2, ⋅ ⋅ ⋅, λa n )T ∈V 1.V 2不是向量空间, 因为任取α=(a 1, a 2, ⋅ ⋅ ⋅, a n )T ∈V 1, β=(b 1, b 2, ⋅ ⋅ ⋅, b n )T ∈V 1,有 a 1+a 2+ ⋅ ⋅ ⋅ +a n =1,b 1+b 2+ ⋅ ⋅ ⋅ +b n =1,从而 (a 1+b 1)+(a 2+b 2)+ ⋅ ⋅ ⋅ +(a n +b n )=(a 1+a 2+ ⋅ ⋅ ⋅ +a n )+(b 1+b 2+ ⋅ ⋅ ⋅ +b n )=2,所以 α+β=(a 1+b 1, a 2+b 2, ⋅ ⋅ ⋅, a n +b n )T ∉V 1.37. 试证: 由a 1=(0, 1, 1)T , a 2=(1, 0, 1)T , a 3=(1, 1, 0)T 所生成的向量空间就是R 3.证明 设A =(a 1, a 2, a 3), 由02011101110||≠-==A , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3是三维空间R 3的一组基, 因此由a 1, a 2, a 3所生成的向量空间就是R 3.38. 由a 1=(1, 1, 0, 0)T , a 2=(1, 0, 1, 1)T 所生成的向量空间记作V 1,由b 1=(2, -1, 3, 3)T , b 2=(0, 1, -1, -1)T 所生成的向量空间记作V 2, 试证V 1=V 2. 证明 设A =(a 1, a 2), B =(b 1, b 2). 显然R (A )=R (B )=2, 又由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=0000000013100211 1310131011010211) ,(~r B A , 知R (A , B )=2, 所以R (A )=R (B )=R (A , B ), 从而向量组a 1, a 2与向量组b 1, b 2等价. 因为向量组a 1, a 2与向量组b 1, b 2等价, 所以这两个向量组所生成的向量空间相同, 即V 1=V 2.39. 验证a 1=(1, -1, 0)T , a 2=(2, 1, 3)T , a 3=(3, 1, 2)T 为R 3的一个基, 并把v 1=(5, 0, 7)T , v 2=(-9, -8, -13)T 用这个基线性表示. 解 设A =(a 1, a 2, a 3). 由06230111321|) , ,(|321≠-=-=a a a , 知R (A )=3, 故a 1, a 2, a 3线性无关, 所以a 1, a 2, a 3为R 3的一个基. 设x 1a 1+x 2a 2+x 3a 3=v 1, 则⎪⎩⎪⎨⎧=+=++-=++723053232321321x x x x x x x x , 解之得x 1=2, x 2=3, x 3=-1, 故线性表示为v 1=2a 1+3a 2-a 3. 设x 1a 1+x 2a 2+x 3a 3=v 2, 则⎪⎩⎪⎨⎧-=+-=++--=++1323893232321321x x x x x x x x , 解之得x 1=3, x 2=-3, x 3=-2, 故线性表示为v 2=3a 1-3a 2-2a 3.40. 已知R 3的两个基为 a 1=(1, 1, 1)T , a 2=(1, 0, -1)T , a 3=(1, 0, 1)T , b 1=(1, 2, 1)T , b 2=(2, 3, 4)T , b 3=(3, 4, 3)T . 求由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵P . 解 设e 1, e 2, e 3是三维单位坐标向量组, 则⎪⎪⎭⎫ ⎝⎛-=111001111) , ,() , ,(321321e e e a a a , 1321321111001111) , ,() , ,(-⎪⎪⎭⎫ ⎝⎛-=a a a e e e , 于是 ⎪⎪⎭⎫ ⎝⎛=341432321) , ,() , ,(321321e e e b b b ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-341432321111001111) , ,(1321a a a , 由基a 1, a 2, a 3到基b 1, b 2, b 3的过渡矩阵为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-1010104323414323211110011111P .。

第4章 向量组的线性相关性


用小写的粗黑体字母来表示向量 。
返回
上一页 下一页
数a1,a2,…,an称为这个向量的分量。ai称为这个 向量的第i个分量或坐标。分量都是实数的向量
称为实向量;分量是复数的向量称为复向量。
n维行向量可以看成1×n矩阵,n维列向量也常 看成n×1矩阵。
设k和l为两个任意的常数, 量,其中
为任意的n维向
称为齐次线性方程组的
基础解系 . 定理4 齐次线性方程组若有非零解,则它一定有基
础解系,且基础解系所含解向量的个数等于n-r,其
中r是系数矩阵的秩。 推论(齐次线性方程组解的结构定理) 齐次线
性方程组若有非零解,则它的通解就是基础解
系的线性组合。
返回
上一页 下一页
例1 解齐次线性方程组 解 齐次线性方程组的系数矩阵为
如果向量空间V没有基,就说V的维数为0,0维向 量空间只含一个零向量。
返回
上一页 下一页
如果把向量空间V看作向量组,那么V的基就是它 的极大线性无关组,V的维数就是它的秩。当V由n维 向量组成时,它的维数不会超过n。
定义13 设 对于任一向量
是r维向量空间V的一个基,则
,有且仅有一组数
,使
有序数组 坐标,记为
向量组的极大线性无关组具有的性质: 性质1 一向量组的极大线性无关组与向量组本身等价。 性质2 一向量组的任意两个极大线性无关组都等价。
性质3 一向量组的极大线性无关组都含有相同个数的 向量。
返回
上一页 下一页
定义7 向量组的极大线性无关组所含向量的个数称 为这个向量组的秩。
如果向量组
能由向量组
线
不全为零的数k1,k2,…,ks,使
反之,如果只有在k1=k2=…=ks=0时上式才成立,就

线性代数第四章向量组的线性相关性.


x1a1 x2a2
xm am a1 , a2 ,
b l1a1 l2a2
lmam
结论: 向量b 能由 向量组 A 线性表示
a1m l1 a 2 m l2 b anm lm
线性方程组 Ax = b 有解
因为R(A) = R(A, b) = 2, 所以向量 b 能由 a1, a2, a3 线性表示.
1 1 ( A, b ) 2 2
1 1 2 1 1 4 3 0
1 1 0 r 0 ~ 3 0 1 0
0 3 2 1 2 1 0 0 0 0 0 0

矩阵 C 的行向量组能由矩阵 B 的行向量组线性表示,A为 这一线性表示的系数矩阵.(A 在左边) 矩阵 C 的列向量组能由矩阵 A 的列向量组线性表示,B为

这一线性表示的系数矩阵.(B 在右边)
A~ B
c
A 经过有限次初等列变换变成 B
口诀:左行右列.
存在有限个初等矩阵P1, P2, …, Pl ,使 AP1 P2 …, Pl = B 存在 m 阶可逆矩阵 P,使得 AP = B
定义:若干个同维数的列向量(行向量)所组成的集合称为
向量组.
当R(A) < n 时,齐次线性方程组 Ax = 0 的全体解组成的向 量组含有无穷多个向量.
a11 A34 a21 a 31 a12 a22 a32 a13 a23 a33
有限向量组
b a14 a24 a1 , a 2 , a 3 , a4 b b a34
T 1 T 2 T 3

结论:含有限个向量的有序向量组与矩阵一一对应.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档