理论力学考试知识点总结
理论力学知识点总结

十一、 考虑滑动摩擦时物体的平衡问题
考虑摩擦的系统平衡问题的特点
1. 平衡方程式中除主动、约束力外还出现了摩擦力,因而未知 数增多。
2. 除平衡方程外还可补充关于摩擦力的物理方程 Fs≤fsFN 。 3. 为避免解不等式,可以解临界情况,即补充方程Fmax = fsFN 。
常见的问题有
● 检验物体是否平衡; ● 临界平衡问题; ● 求平衡范围问题。
• 当拿到一道计算力对轴之矩的题目时,首先观察一下力F 与Z 轴的空间位置,一般有三种情况:
第一种情况:若力F与Z轴平行或相交,则MZ(F )=0; 第二种情况:若力F与Z轴垂直,可根据定义来计算,即通过力F作
一个平面垂直于Z轴,那么力F在该平面上的投影就是它自己, 即F=Fxy,Z轴与该平面的交点为O点,且O点到F=Fxy作用线 的距离d为已知,则MZ(F)=Mo(F)=Mo (Fxy)=±Fd。 第三种情况:若力F与Z轴既不相交、也不平行、也不垂直,此时 可把力F分解为三个分力Fx、Fy、Fz,再运用合力矩定理来 算,即:MZ(F)=MZ( Fx)+MZ( Fy)+MZ( Fz)。
下面给出具体的方法。
理论力学 期末复习知识点

第一章静力学公理与物体的受力分析§1.1 静力学公理✧公理1 二力平衡公理(条件)作用在刚体上的两个力,使刚体保持平衡的充分必要条件是:这两个力大小相等,方向相反,且在同一直线上。
✧公理2 加减平衡力系原理在已知力系上加上或减去任意的平衡力系,不改变原力系对刚体的作用。
(效应不变)✧公理3 力的平行四边形法则作用在物体上的同一点的两个力,可以合成为一个合力。
合力作用点也是该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。
✧公理4 作用和反作用定律作用力与反作用力总是同时存在,两力的大小相等、方向相反、沿着同一直线,分别作用在两个相互作用的物体上。
✧公理5 刚化原理变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变。
✓推论1 力的可传性作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。
✓推理2 三力平衡汇交定理作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三力的作用线通过汇交点。
§1.2 约束和约束力一、约束的概念•自由体:位移不受限制的物体。
•非自由体:位移受限制的物体。
•约束:对非自由体的某些位移起限制作用的周围物体。
二、约束反力(约束力)•约束力:约束对物体作用的力。
•在静力学中,约束力和物体受到的其它已知力(主动力)组成平衡力系,可用平衡条件求出未知的约束力。
三、工程常见约束•光滑平面约束•柔索约束•光滑铰链约束•固定铰链支座•止推轴承径向轴承•平面固定端约束§1.3 物体的受力分析和受力图受力分析:确定构件受了几个外力,每个力的作用位置和方向的分析过程。
•步骤:1.取研究对象(画分离体:按原方位画出简图)。
2.画主动力:主动力照搬。
3.画约束反力:根据约束性质确定。
第二章 平面汇交力系与平面力偶系§2–1 平面汇交力系平面汇交力系:各力的作用线都在同一平面内且汇交于一点的力系。
理论力学知识点

理论力学知识点理论力学是一门研究物体机械运动一般规律的科学,它为后续的材料力学、结构力学等课程奠定了基础。
以下是理论力学中的一些重要知识点。
一、静力学静力学主要研究物体在力系作用下的平衡问题。
(一)力的基本概念力是物体之间的相互作用,它具有大小、方向和作用点三个要素。
力的单位是牛顿(N)。
(二)力系的简化力系是指作用在物体上的一群力。
通过力的平移定理,可以将一个复杂的力系简化为一个合力和一个合力偶。
(三)受力分析对物体进行准确的受力分析是解决静力学问题的关键。
要明确研究对象,画出其受力图,注意区分内力和外力,主动力和约束力。
(四)平面力系的平衡条件平面任意力系的平衡条件是:力系中各力在两个坐标轴上投影的代数和分别为零,以及各力对平面内任一点之矩的代数和为零。
(五)摩擦摩擦力是阻碍物体相对运动或相对运动趋势的力。
要了解静摩擦力、滑动摩擦力和滚动摩擦力的特点及计算方法。
二、运动学运动学研究物体的运动而不考虑引起运动的原因。
(一)点的运动学描述点的运动有矢量法、直角坐标法、自然法等。
要掌握速度、加速度的计算方法。
(二)刚体的简单运动刚体的平动和定轴转动是常见的简单运动。
平动时,刚体上各点的运动轨迹、速度和加速度相同;定轴转动时,要了解角速度、角加速度以及转动刚体上各点的速度和加速度的计算。
(三)点的合成运动将一个点的运动分解为相对于不同参考系的运动,利用速度合成定理和加速度合成定理来求解。
(四)刚体的平面运动可以将刚体的平面运动分解为随基点的平动和绕基点的转动。
通过基点的选择,求解平面运动刚体上各点的速度和加速度。
三、动力学动力学研究物体的运动与作用在物体上的力之间的关系。
(一)牛顿运动定律牛顿第一定律揭示了惯性的本质;牛顿第二定律给出了力与加速度之间的定量关系;牛顿第三定律说明了力的相互作用性质。
(二)动量定理物体的动量在一段时间内的变化等于作用在物体上的冲量。
(三)动量矩定理对于绕定轴转动的刚体,动量矩定理可以用来分析其转动状态的变化。
理论力学单元知识点总结

理论力学单元知识点总结1. 受力分析力是物体间相互作用的结果,有多种类型的力,如重力、弹力、摩擦力、拉力等。
受力分析是力学研究的基础,通过对物体受到的不同力的分析,可以确定物体的受力情况,从而进一步研究物体的运动规律。
2. 牛顿定律牛顿定律是力学研究的基本原理,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律表明物体在不受外力作用时保持匀速直线运动或静止状态;牛顿第二定律表明物体的加速度与作用在它上面的净力成正比,反向与物体的质量成反比;牛顿第三定律表明任何两个物体之间的相互作用力大小相等、方向相反。
3. 运动学运动学是研究物体的运动轨迹、速度和加速度等参数的学科。
通过运动学的研究,可以获取物体在受力作用下的运动规律,包括匀速直线运动、变速直线运动、曲线运动等不同类型的运动规律。
4. 动力学动力学是研究物体受力作用下的运动规律的学科。
在受到外力作用时,物体的速度和加速度会发生变化,动力学通过对受力物体的运动状态和力的关系进行研究,揭示了物体在受力作用下的运动规律。
5. 势能和势能守恒势能是物体由于位置或状态而具有的能量,包括重力势能、弹性势能、化学势能等不同类型的势能。
势能守恒是指在不受非保守力(如摩擦力、拉力)作用时,系统的总机械能(动能和势能之和)保持不变。
势能的研究对于理解物体在受力作用下的运动规律具有重要意义。
6. 动能和动能守恒动能是物体由于速度而具有的能量,物体的动能与速度的平方成正比。
动能守恒是指在不受非保守力(如摩擦力、拉力)作用时,系统内的动能保持不变。
动能的研究对于理解物体在受力作用下的运动规律具有重要意义。
7. 力的合成与分解力的合成是指将多个力合成为一个合力的过程,力的分解是指将一个力分解为多个分力的过程。
通过力的合成与分解,可以对受力物体的受力情况进行分析,进一步研究物体的运动规律。
8. 圆周运动圆周运动是物体在圆周轨道上的运动规律,包括匀速圆周运动和变速圆周运动两种类型。
理论力学知识点总结

理论力学知识点总结理论力学是物理学中的一个重要分支,研究物体的运动规律和受力情况。
其基础在于牛顿力学,也称为经典力学。
本文将总结理论力学领域中的一些重要知识点,包括牛顿定律、动量、能量等概念。
1. 牛顿定律牛顿定律是理论力学的基石,共分为三个定律。
第一定律也称为惯性定律,描述了物体的运动状态。
它指出,任何物体都保持静止或匀速直线运动,除非有外力作用于它。
第二定律是物体的运动状态与作用在其上的力成正比的关系。
其公式为F = ma,其中F为物体所受力,m为物体的质量,a为物体的加速度。
第三定律是作用力和反作用力总是成对存在的。
这些定律对于解释物体的运动行为和相互作用提供了基础。
2. 动量动量是物体运动的重要物理量,定义为物体质量与速度的乘积。
动量为矢量量,方向与速度方向一致。
动量的变化率等于作用在物体上的力。
这一关系可以表示为F = dp/dt,其中F为物体的受力,p为物体的动量,t为时间。
动量在碰撞、运动和相互作用等情况下起着重要的作用,也是守恒定律的基础之一。
3. 动能和势能动能是物体运动时具有的能量形式,定义为物体质量与速度平方的乘积的一半。
动能可以表示为K = 1/2 mv^2,其中m为物体质量,v为物体速度。
动能与物体的质量和速度平方成正比,是运动状态的指示器。
势能是与物体位置有关的能量,通常体现为引力和弹性力。
势能是因物体在某一位置而具有的能量,可以转化为动能,也可以从动能转化为势能,满足能量守恒定律。
4. 转动理论力学不仅研究物体的直线运动,还涉及到了转动的问题。
刚体的转动是指刚体绕固定轴线旋转的运动。
转动的物理量包括角位移、角速度和角加速度。
角位移表示物体绕轴线旋转的角度,角速度是单位时间内角位移的变化率,角加速度是单位时间内角速度的变化率。
转动存在着转动惯量、角动量、角动量守恒和角动量定理等重要概念。
5. 平衡在理论力学中,平衡是指物体处于静止或匀速直线运动的状态。
平衡可以分为静平衡和动平衡。
理论力学综合知识点总结

理论力学综合知识点总结一、引言理论力学是物理学的一个重要分支,主要研究物体的运动规律。
其核心内容是牛顿运动定律和动力学原理。
在本次综合知识点总结中,我将结合牛顿的三大运动定律、动力学、动能和动量,以及刚体运动、非惯性系中的运动等内容,对理论力学的相关知识点进行深入探讨和总结。
二、牛顿的三大运动定律1.第一定律:当物体上没有外界作用力时,物体将保持静止或匀速直线运动。
这一定律反映了物体在外力作用下的惯性特征,是力学定律的基础。
2.第二定律:物体如受到合力作用,将产生加速度,其大小与合力成正比,与物体的质量成反比。
这一定律表明了力与加速度之间的定量关系,为计算物体在外力作用下的运动提供了定性、定量的方法。
3.第三定律:对于相互作用的两个物体,它们之间的相互作用力大小相等、方向相反。
这一定律揭示了物体间相互作用的双方性质,是力学定律的普适性原理。
三、动力学原理在经典力学中,牛顿的运动定律可以同时适用于单个物体和多体系统。
在多体系统中,每个物体受到外界作用力,这些作用力之间相互作用,对系统的整体运动产生影响。
动力学原理主要研究多体系统的受力分析和运动规律。
1.受力分析:在多体系统中,每个物体受到各种外界作用力,包括重力、弹性力、摩擦力等。
受力分析是研究这些外力的性质、方向和大小,从而揭示物体的运动规律。
2.牛顿第二定律在多体系统中的应用:根据牛顿第二定律,可以得到多体系统的运动方程,包括单独物体的运动方程和多体系统的运动方程,从而求解系统的运动规律。
3.动量定理和动量守恒定律:动量是物体运动状态的度量,根据动量定理,可以得到物体在外力作用下的动量变化规律。
同时,动量守恒定律指出,当物体间没有外力作用时,它们的总动量将保持不变,这对于多体系统的运动规律分析具有重要意义。
四、动能和动量1.动能:动能是物体由于运动而具有的能量。
根据物体的动能和动量之间的关系,可以得到物体在外力作用下的能量变化规律,从而对物体的运动状况进行分析。
理论力学知识点大总结
理论力学知识点大总结理论力学是研究物体运动规律以及物体如何受到力的影响的科学。
它是物理学的一个重要分支,对于了解自然界的运动规律有着重要的意义。
在这篇文章中,我们将对理论力学的各个知识点进行大总结,包括牛顿运动定律、动力学、角动量、能量守恒定律等内容。
牛顿运动定律牛顿运动定律是理论力学的基础,它由英国物理学家艾萨克·牛顿在17世纪提出,对于描述物体运动的规律有着重要的作用。
牛顿的三大运动定律如下:第一定律:一个物体如果没有受到外力的作用,它将保持静止或匀速直线运动的状态。
第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。
描述物体的加速度与所受力的关系。
第三定律:如果物体A受到物体B的作用力,物体B也会受到物体A相同大小、方向相反的作用力。
描述物体之间的相互作用。
动力学动力学是研究物体运动规律的一门学科,它包括了物体的运动学和动力学两个方面。
运动学研究物体的运动状态,包括位置、速度、加速度等;而动力学则研究物体受到的力的影响,以及力与运动之间的关系。
动力学的关键概念包括合力、牛顿第二定律、惯性系、加速度等。
角动量角动量是研究物体围绕某个固定点进行转动的性质,它是力学中的一个重要概念。
角动量的大小与物体的质量、速度、旋转半径相关,它的方向由右手定则确定。
根据角动量守恒定律,系统的总角动量在没有外力作用下保持不变。
角动量在自然界的许多现象中都有着重要的作用,比如行星公转、自转、陀螺的转动等。
能量守恒定律能量守恒定律是理论力学中的重要定律之一,它表明在一个封闭系统中,系统的能量总和保持不变。
能量可以互相转化,但总能量保持不变。
能量守恒定律描述了在热力学、电磁学、核物理等领域中广泛存在的能量转化现象,对于解释自然现象具有重要的意义。
碰撞碰撞是理论力学中研究物体在相互作用下发生的瞬间现象,它是一个重要的研究对象。
根据碰撞的性质,可以将碰撞分为弹性碰撞和非弹性碰撞两种类型。
弹性碰撞中动能守恒,而非弹性碰撞中动能不守恒,部分能量转化为其他形式。
哈工大理论力学知识点总复习
波的散射与衍射
散射现象、衍射现象等概念及其描述方法。
波动与物质的相互作用
波动与物质相互作用的机制、影响等概念及 其描述方法。
05
材料力学
材料力学基础
材料力学概述
材料力学是研究材料在力作用 下的行为和性能的科学,主要 关注材料的强度、刚度和稳定 性。
材料分类与特性
根据材料的性质,可分为金属 、非金属、复合材料等,每种 材料具有不同的力学性能。
哈工大理论力学知识点总复习
目
CONTENCT
录
• 静力学 • 运动学 • 动力学 • 振动与波动 • 材料力学
01
静力学
静力学基础
总结词
理解力的概念、单位和性质,包括力的合成与分解、力的矩等。
详细描述
掌握力的定义、分类和表示方法,理解力的合成与分解的平行四 边形法则和三角形法则,理解力矩的概念、单位和性质,包括力 矩的合成与分解、力矩的平衡等。
静力学基础
总结词
理解平衡状态的概念和条件,掌握平衡方程的建立与求解。
详细描述
理解平衡状态的概念和条件,掌握平面力系的平衡方程的建立与求解,包括力的平衡和力矩的平衡。
静力学基础
总结词
理解摩擦力的概念、性质和计算方法 ,掌握自锁现象及其应用。
详细描述
理解摩擦力的概念、性质和计算方法 ,包括静摩擦力和滑动摩擦力,掌握 自锁现象的概念和条件,了解自锁现 象在工程中的应用。
04
振动与波动
振动基础
01
02
03
04
简谐振动
振幅、频率、相尼系数、能量耗散等概念及 其描述方法。
受迫振动
共振现象、幅频特性等概念及 其描述方法。
振动合成与分解
理论力学知识点总结
理论力学知识点总结理论力学是一门研究物体机械运动一般规律的学科,它是许多工程技术领域的基础。
以下是对理论力学一些重要知识点的总结。
一、静力学静力学主要研究物体在力系作用下的平衡问题。
1、力的基本概念力是物体之间的相互作用,具有大小、方向和作用点三个要素。
力的表示方法包括矢量表示和解析表示。
2、约束与约束力约束是限制物体运动的条件,约束力则是约束对物体的作用力。
常见的约束类型有柔索约束、光滑接触面约束、光滑圆柱铰链约束等,每种约束对应的约束力具有特定的方向和特点。
3、受力分析对物体进行受力分析是解决静力学问题的关键步骤。
要明确研究对象,画出其隔离体,逐个分析作用在物体上的力,包括主动力和约束力,并画出受力图。
4、力系的简化力系可以通过平移和合成等方法进行简化,得到一个合力或合力偶。
力的平移定理指出,力可以平移到另一点,但必须附加一个力偶。
5、平面力系的平衡方程平面任意力系的平衡方程有三个:∑Fx = 0,∑Fy = 0,∑Mo(F) =0。
对于平面汇交力系和平面力偶系,平衡方程分别有所简化。
6、空间力系的平衡方程空间力系的平衡方程数量增多,需要考虑三个方向的力平衡和三个方向的力矩平衡。
二、运动学运动学研究物体的运动而不考虑引起运动的力。
1、点的运动学描述点的运动可以使用矢量法、直角坐标法和自然法。
在自然法中,引入了弧坐标、切向加速度和法向加速度的概念。
2、刚体的基本运动刚体的基本运动包括平动和定轴转动。
平动时,刚体上各点的运动轨迹相同、速度和加速度相同;定轴转动时,刚体上各点的角速度和角加速度相同。
3、点的合成运动点的合成运动是指一个动点相对于两个不同参考系的运动。
通过选取合适的动点、动系和定系,运用速度合成定理和加速度合成定理来求解问题。
4、刚体的平面运动刚体平面运动可以分解为随基点的平动和绕基点的转动。
平面运动刚体上各点的速度可以用基点法、速度投影定理和瞬心法求解,加速度则可以用基点法求解。
三、动力学动力学研究物体的运动与作用力之间的关系。
理论力学复习提纲
《理论力学》复习大纲一、静力学l. 静力学的基本概念静力学的研究对象。
平衡、刚体和力的概念,静力学公理,非自由体,约束,约束的基本类型。
二力构件。
约束反力。
物体的受力分析。
受力图。
三力平衡定理。
2.共点力系共点力系合成的几何法和平衡的几何条件。
力在轴上的投影,合力投影定理。
力沿坐标轴的分解,共点力系合成的解析法和平衡的解析条件,平衡方程及应用。
3. 力偶系力偶和力偶矩。
力偶的等效变换和等效条件。
力偶矩矢。
力偶系的合成和平衡条件,平衡方程及应用。
4. 平面随意力系力对点的矩。
刚体上力的平移。
平面随意力系向作用面内任一点的简化,力系的主矢和主矩。
第 1 页/共 5 页力系简化的各种结果。
合力矩定理。
平面随意力系的平衡条件,平衡方程的各种形式及平衡方程的应用。
静不定问题的概念。
物体系的平衡。
外力和内力。
5.摩擦摩擦现象。
滑动摩擦定律。
摩擦系数和摩擦角,自锁现象。
有摩擦物体和物体系的平衡。
平衡的临界状态和平衡范围。
滚阻的概念。
滚阻力偶。
滚阻和滑动摩擦同时存在时平衡问题的分析。
6. 空间随意力系力对轴的矩,力对点的矩及其矢积表示式,力对点的矩与力对于通过该点任一轴的矩之间的关系。
力对坐标轴的矩的解析表达式,空间随意力系向一点简化,力系的主矢和主矩。
空间随意力系简化的各种结果,空间随意力系的平衡条件和平衡方程。
空间随意力系平衡方程的应用。
二、运动学l.点的运动运动学研究对象,运动和静止的相对性,参考坐标系。
决定点的运动的基本主意:天然法、直角坐标法和矢量法。
运动方程和轨迹方程。
点的速度和加速度的矢量形式,点的速度和加速度在固定直角坐标轴上的投影。
天然轴系,点的速度和加速度在天然轴系上的投影,切向加速度和法向加速度。
2. 刚体的基本运动刚体的平动及其特征,刚体的定轴转动及运动特征,转动方程,角速度和角加速度,转动刚体内各点的速度和加速度。
角速度和角加速度矢。
刚体内各点的速度和加速度的矢积表达式。
3.点的合成运动运动的合成和分解,动参考系和静参考系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
×××分厂×××安全生产工作履职清单及行动计划表--0202)89673
1
《理论力学》考试知识点
静力学
第一章静力学基础
1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。
2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。
3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算
方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。
4、对简单的物体系统,熟练掌握取分离体并画出受力图。
第二章力系的简化
1、掌握力偶和力偶矩矢的概念以及力偶的性质。
2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。
3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法
和简化结果。
4、掌握合力投影定理和合力矩定理。
5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。
第三章力系的平衡条件
1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单
个物体和简单物体系的平衡问题。
2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平
面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体和物体系的平衡
问题。
3、了解静定和静不定问题的概念。
4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。
第四章摩擦
1、 掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。
2、 了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。
运动学
第五章 点的运动
1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。
2、熟练掌握如何计算点的速度、加速度及其有关问题。
第六章 刚体的基本运动
×××分厂×××安全生产工作履职清单及行动计划表--0202)89673
2
1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌
握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表
达式。
2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。
第七章 点的复合运动
1、掌握运动合成和分解的基本概念和方法。
2、理解哥氏加速度的原理。
3、熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理的应用。
4、掌握牵连运动为定轴转动时加速度合成定理和应用。
第八章 刚体的平面运动
1、理解平面运动的特征、刚体平面运动的简化以及平面运动方程。
2、掌握用合成运动的方法分析平面运动。
3、熟练掌握计算平面图形内各点的速度的方法(基点法、速度投影法、瞬心法)及其计算加
速度的方法(基点法)。
动力学
第十一章动量定理和动量矩定理
1、熟练掌握如何计算刚体的动量、动量矩和力的冲量。
2、掌握质点和质点系对固定点的动量矩定理、刚体定轴转动微分方程、相对于质心的动量矩
定理、刚体平面运动微分方程、质点系的动量定理、质心运动定理、动量和动量矩守恒条件、
质心运动守恒条件。
3、掌握利用相关定理求解质点和刚体的动力学有关问题。
第十二章动能定理
1、熟练掌握如何计算刚体的动能(平动、定轴转动和平面运动刚体的动能)、势能和力系的
功(重力、弹性力的功、力偶的功)。
2、掌握动力学普遍定理及相应的守恒定理,能选择和综合应用这些定理求解刚体动力学问题。
第十三章达朗伯原理
1、掌握计算惯性力的方法。
2、熟练掌握刚体平动以及对称刚体作定轴转动和平面运动时惯性力系的简化结果。
3、熟练掌握利用达朗伯原理求解动力学问题。
第十四章虚位移原理
1、理解约束方程及其分类、自由度、广义坐标等基本概念。
×××分厂×××安全生产工作履职清单及行动计划表--0202)89673
3
2、熟练掌握应用虚位移原理简单物体系的平衡问题。
3、理解广义力的概念和广义坐标形式的虚位移原理
第十五章拉格朗日方程
1、了解动力学普遍方程和
2、理解第二类拉格朗日方程并学会初步应用。
第十六章碰撞
1、理解碰撞的概念,基本假设和分析的原理,了解碰撞时的动力学普遍定理。
2、了解分析简单碰撞问题的方法。
参考书目:《理论力学》,机械工业出版社,王月梅著
内心强大比什么都重要,你要照顾好自己,承认自己的平凡,但是努力向好的方向发展,可以平静面对生
活,安然的听从自己内心的感受,不受其他影响,你可以迷茫,请不要虚度。