初三数学抛物线应用题

合集下载

初三抛物线的基础练习题

初三抛物线的基础练习题

初三抛物线的基础练习题一、填空题1. 一个抛物线的方程为y=2y^2+3y−4,其中横坐标为3时,纵坐标为_______。

2. 已知一个抛物线的顶点坐标为(2,-5),则该抛物线的方程为_______。

3. 抛物线y=−y^2+2y+3的对称轴方程为y=_______。

4. 已知抛物线y=−y^2+yy+3的对称轴方程为y=2,则抛物线的顶点坐标为_______。

5. 抛物线的焦点是(0,3),其对称轴方程为y=4,则该抛物线的方程为_______。

二、选择题1. 下列哪个二次函数的图像是一个抛物线?A. y=2y^2+3y+4B. y=2y+5C. y=y^3−4y^2+3y−2D. y=3√y2. 已知一个抛物线的焦点为(5,3),则该抛物线的对称轴方程为:A. y=5B. y=3C. y=−5D. y=−33. 已知一个抛物线的方程为y=−y^2+4y−3,求其顶点坐标。

A. (2,-1)B. (3,2)C. (-2,1)D. (-3,-2)4. 若一个抛物线的焦点为(-2,-6),则该抛物线的方程为:A. y=−2y^2−6y−2B. y=−2y^2+6y−2C. y=2y^2−6y+2D. y=2y^2−6y−25. 一个抛物线的焦点为(1,4),顶点坐标为(2,9),则该抛物线的方程为:A. y=2y^2−12y+15B. y=−2y^2+12y−15C. y=−2y^2+12y+15D. y=2y^2−12y−15三、解答题1. 求抛物线y=y^2+2y−3的焦点、对称轴方程和顶点坐标。

2. 若y=yy^2+yy+y的抛物线的焦点为(4,1),顶点坐标为(2,3),则该抛物线的方程为什么?求出y、y和y的值。

3. 求抛物线y=−y^2+4的焦点、对称轴方程和顶点坐标。

4. 已知一个抛物线的焦点为(3,2),过点(1,4),求该抛物线的方程。

5. 抛物线的焦点为(0,5),顶点坐标为(1,6),求该抛物线的方程和对称轴方程。

初三利润抛物线试题大全及解析

初三利润抛物线试题大全及解析

初三利润抛物线试题大全及解析
抛物线问题
如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,且.
(1)求抛物线的解析式;
(2)已知点,点为线段上一动点,延长交抛物线于点,连结.
①当四边形面积为9,求点的坐标;
②设,求的最大值.
试题答案
(1)y=x2﹣x﹣4;(2)①点H的坐标为(2,﹣4)或(,﹣);②m的最大值为.
利润问题
某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1
元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y 元.
(1)求y与x的函数关系式;
(2)每件文具的售价定为多少元时,月销售利润为2520元?
(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
试题答案
(1)y=-10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;
(2)每件文具的售价定为32元时,月销售利润恰为2520元.
(3)每件文具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.。

初三抛物线练习题

初三抛物线练习题

初三抛物线练习题1. 题目描述:某初三数学老师在课堂上给学生出了一道抛物线练习题,题目如下:已知二次函数 y = ax^2 + bx + c 的图像过点(1, 3),且对称轴为 x = 2,请你根据给出的信息完成以下任务。

任务一:求解二次函数的表达式。

任务二:求解 a、b、c 的值。

任务三:求解抛物线的焦点坐标。

2. 解题过程:根据题目给出的条件,我们需要求解出二次函数的表达式、a、b、c 的值以及抛物线的焦点坐标。

任务一:求解二次函数的表达式。

已知对称轴为 x = 2,可以得知顶点的横坐标为 2。

又由于抛物线过点(1, 3),可以带入顶点的横坐标和纵坐标,得到一个方程:3 = a * (1^2) + b * 1 + c化简后可得:a +b +c = 3 ----(1)现在我们还需要求解另外两个方程。

任务二:求解 a、b、c 的值。

由于已知对称轴为 x = 2,可以得知顶点的横坐标为 2。

根据顶点公式,顶点的横坐标为 -b / (2a)。

代入已知条件可得:2 = -b / (2a)化简可得:b = -4a ----(2)又由于顶点的横坐标为 2,根据顶点公式,顶点的纵坐标为 f(2) = a * (2^2) + b * 2 + c。

代入已知条件可得:f(2) = a * 4 + b * 2 + c化简可得:4a + 2b + c = f(2) ----(3)将方程(2)和方程(3)带入方程(1)中,可得:a + (-4a) + c = 3化简可得:-3a + c = 3 ----(4)现在我们有三个方程(2)、(3)、(4),需要求解 a、b、c 的值。

通过方程(2)可以将 b 表示为 -4a。

将 b = -4a 代入方程(3)中,可以得到:4a + 2(-4a) + c = f(2)化简可得:-6a + c = f(2) ----(5)通过方程(4)和方程(5)可以得到一个方程组:-3a + c = 3-6a + c = f(2)解方程组可以得到 a 和 c 的值,进而求解出 b 的值。

中考数学抛物线压轴题

中考数学抛物线压轴题

在中考数学中,抛物线是一个常见的考点,经常以压轴题的形式出现。

以下是一个关于抛物线的中考压轴题的示例:题目:已知抛物线y=ax^2+bx+c(a,b,c是常数,a≠0)经过点(-1,-1),(0,1),当x=-2时,与其对应的函数值y>1。

1. 请你求出abc的值,并判断抛物线的开口方向。

2. 设直线y=kx+d(k≠0)经过点(1,-1),且与抛物线的对称轴平行。

请你求出该直线的解析式。

3. 设E(m,n)是抛物线y=ax^2+bx+c上的一个动点,且满足∠APE=90°,请你求出m的值。

解析:1. 根据题目条件,抛物线经过点(-1,-1),(0,1),可得到方程:$a-b+c=-1$ ①$c=1$ ②将x=-2,y>1代入解析式得:$4a-2b+1>1$化简得:$2a-b>0$ ③由①②③解得:$a>0$$b>0$$c=1$所以,abc=1。

由于a>0,抛物线开口向上。

2. 由题意知:直线y=kx+d经过点(1,-1),则有:k+d=-1 ④又因为直线与对称轴平行,所以其斜率等于对称轴的斜率,即:k=-b/2a=-1/2 ⑤由④⑤解得:d=-3/2所以,直线的解析式为:y=-x/2-3/2。

3. 根据题意知:E(m,n)在抛物线上,则有:$n=am^2+bm+c$ ⑥由于∠APE=90°,所以AE与PE垂直。

根据两直线垂直的条件:斜率之积等于-1。

即:$(m-1)/(n+1)=-1$ ⑦由⑥⑦解得:m=0或m=-2综上所述,m的值为0或-2。

应用题抛物线的性质

应用题抛物线的性质

应用题抛物线的性质抛物线是数学中经常出现的一种曲线形状,具有许多有趣的性质和应用。

本文将探讨抛物线的性质,并介绍一些实际中常见的应用。

一、抛物线的定义与性质抛物线是平面上的一条曲线,其定义可以用平面几何的语言来描述,也可以用二次函数的方程来表示。

一般来说,抛物线是由一个定点(焦点)和一条定直线(准线)确定的。

抛物线的性质如下:1. 对称性:抛物线具有对称轴的对称性。

对称轴是通过抛物线的焦点和准线垂直平分的直线。

任意一点到对称轴的距离相等。

2. 焦点与准线的关系:焦点到准线的距离等于焦距的两倍。

焦点和准线之间的距离被称为焦距。

3. 顶点坐标:抛物线的顶点为对称轴与抛物线的交点,也是抛物线的最高(或最低)点。

顶点的坐标可以通过方程求解得到。

二、抛物线的应用1. 抛物线的建筑设计:抛物线在建筑设计中有着广泛的应用。

比如,在设计圆顶建筑如圆顶体育馆或穹顶教学楼时,常常使用抛物线形状,因为抛物线形状能够均匀分散压力,提高建筑的稳定性。

2. 抛物线的发射轨迹:物体受到重力的作用下,竖直向上抛出时,其轨迹是一个抛物线。

这一性质在火箭发射、炮弹发射等领域有着广泛的应用。

利用抛物线轨迹,可以计算出物体的落点、最远射程等信息。

3. 抛物线的碰撞轨迹:在台球游戏中,当一个球以一定的速度和角度撞向另一个球时,其碰撞轨迹可以用抛物线来描述。

利用抛物线的性质,可以预测球的行进路线,帮助玩家制定击球策略。

4. 抛物线的光学:在凹面镜和抛物面反射器中,采用的镜面形状正是抛物线。

因为抛物面反射器能够使平行光线聚焦到一个点上,具有集光效果。

5. 抛物线的电磁波聚焦:抛物面拟似的天线,在通信和雷达领域中广泛使用。

抛物面天线能够将电磁波聚焦到一个点上,提高信号接收效果。

总结:抛物线是一种常见的曲线形状,在几何学、物理学、工程学和日常生活中都有着广泛的应用。

它的对称性、焦点与准线的关系以及顶点坐标等性质使得该曲线在各个领域发挥着重要的作用。

2022-2023学年九年级数学中考复习《抛物线与x轴交点问题》解答题专题训练(附答案)

2022-2023学年九年级数学中考复习《抛物线与x轴交点问题》解答题专题训练(附答案)

2022-2023学年九年级数学中考复习《抛物线与x轴交点问题》解答题专题训练(附答案)1.已知抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B左侧),顶点为D.(1)请直接写出A、B两点坐标,抛物线的对称轴;(2)若点M(t,y1),N(t+3,y2),P(1,y3)都在抛物线上,且始终满足y1>y2>y3,请结合图象,求出t的取值范围.2.如图,抛物线y=ax2+2x+c.与x轴交于A,B两点,与y轴交于C(0,3),直线y=﹣x﹣1经过点A且与抛物线交于另一点D.(1)求抛物线的解析式;(2)若P是位于直线AD上方的抛物线上的一个动点,连接P A,PD,求△P AD的面积的最大值.3.如图,平面直角坐标系中,矩形ABCD的顶点为A(2,4),B(2,2),C(5,2),D (5,4),抛物线y=ax2+bx交x轴正半轴于点E.(1)若抛物线经过A,C两点,求抛物线的解析式.(2)若a=﹣1;①抛物线交直线CD于点M,当△OME面积为5时,求b的值;②当抛物线与矩形ABCD的边有交点时,直接写出b的取值范围.4.在平面直角坐标系xOy中,已知,抛物线y=mx2+4mx﹣5m.(1)求抛物线与x轴两交点间的距离;(2)当m>0时,过A(0,2)点作直线l平行于x轴,与抛物线交于C、D两点(点C 在点D左侧),C、D横坐标分别为x1、x2,且x2﹣x1=8,求抛物线的解析式.5.对于抛物线y=x2﹣2x﹣3.(1)它与x轴交点的坐标为,与y轴交点的坐标为,顶点坐标为;(2)在坐标系中利用描点法画出此抛物线;x……y……(3)当﹣2<x<2时,直接写出y的取值范围.6.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.7.在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3与x轴交于点A(3,0),与y轴交于点B.(1)求抛物线的解析式及顶点坐标;(2)在如图所示的平面直角坐标系中画出抛物线y=ax2﹣2ax﹣3;(3)若抛物线y=ax2﹣2ax﹣3在直线AB下方的部分与抛物线y'=﹣x2+2x+m只有一个交点,请直接写出m的取值范围.8.如图,已知抛物线C1:y=a(x+4)2﹣6与x轴相交于A、B两点(点A在点B的左侧),且点B的坐标为(2,0);(1)由图象可知,抛物线C1的开口向,当x<﹣4时,y随x的增大而;(2)求a的值;(3)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2在x轴上平移,平移后的抛物线记为C3,当抛物线C3与抛物线C1只有一个交点时,求抛物线C3的解析式,以及交点坐标.9.如图,抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),与x轴负半轴交于点C,点D是抛物线上的动点.(1)求抛物线的解析式;(2)过点D作DE⊥AB于点E,连接BF,当点D在第一象限且S△BEF=2S△AEF时,求点D的坐标.10.已知二次函数y=ax2+bx+3的图象与x轴、y轴分别交于点A、B、C,且OB=OC,点A坐标为(﹣1,0).(1)求出该二次函数表达式,并求出顶点坐标.(2)将该函数图象沿x轴翻折,如图①,(Ⅰ)请直接写出翻折后的图象对应的函数表达式;(Ⅱ)翻折前后的函数图象在一起构成轴对称图形,请写出对称轴.(3)将两图象在x轴上方的部分去掉,如图②,当直线y=﹣x+k与两抛物线所剩部分有4个交点时,请求出k的取值范围.11.当x=﹣1时,抛物线y=ax2+bx+c取得最大值4,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.(1)直接写出抛物线的解析式;(2)若点M(m,y1),N(m+2,y2)都在该抛物线上,试比较y1与y2的大小;(3)对于二次函数图象上的两点P(x l,y1),Q(x2,y2),当t﹣1≤x1≤t+2,x2≥2时均满足y1≥y2,请结合函数图象,直接写出t的取值范围.12.如图,抛物线y=ax2+bx+c与x轴交于点A,B,与y轴交于点C,一次函数y=﹣x+3的图象经过点B,C,与抛物线对称轴交于点D,且S△ABD=4,点P是抛物线y=ax2+bx+c 上的动点.(1)求抛物线的函数解析式.(2)当点P在直线BC上方时,求点P到直线BC的距离的最大值.13.如图,抛物线的顶点A是直线OD上一个动点,该抛物线与直线OD 的另一个交点为C,与y轴的交点为B,点D的坐标是(2,2).(1)求点B的纵坐标的最小值,并写出此时点A的坐标.(2)在(1)的条件下,若该抛物线与x轴的两个交点分别为E和F,请直接写出线段EF的长度.14.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)求抛物线的解析式;(2)若动点P在第四象限内的抛物线上,过动点P作x轴的垂线交直线AC于点D,交x轴于点E,垂足为E,求线段PD的长,当线段PD最长时,求出点P的坐标.15.设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.16.如图,抛物线y=ax2+bx+c与x轴交于点B(﹣2,0)、C(4,0)两点,与y轴交于点A(0,2).(1)求出此抛物线和直线AC的解析式;(2)在直线AC上方的抛物线上有一动点M,求点M的横坐标x为何值时四边形ABCM 的面积最大?最大值是多少?并写出此时点M的坐标.17.已知抛物线L1的顶点为(1,),且经过点(0,3),L1关于x轴对称的抛物线为L2.(1)求抛物线L1的表达式;(2)点E在x轴上方的抛物线L1上,过点E作EF∥x轴,与抛物线L1交于点F(点E 在点F的左侧),那么在抛物线L2上是否存在点M、点N,使得四边形EFMN是矩形,且其长与宽的长度之比为3:1?若存在,求出点F的坐标;若不存在,请说明理由.18.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣3,0),抛物线的对称轴是直线x=﹣1,连接BC、AC.(1)用含a的代数式求S△ABC;(2)若S△ABC=6,求抛物线的函数表达式;(3)在(2)的条件下,当m﹣1≤x≤1时,y的最小值是﹣2,求m的值.19.已知抛物线y=ax2﹣mx+2m﹣3经过点A(2,﹣4).(1)求a的值;(2)若抛物线与y轴的公共点为(0,﹣1),抛物线与x轴是否有公共点,若有,求出公共点的坐标;若没有,请说明理由;(3)当2≤x≤4时,设二次函数y=ax2﹣mx+2m﹣3的最大值为M,最小值为N,若=,求m的值.20.设二次函数y=(x﹣a)(x﹣a+2),其中a为实数.(1)若二次函数的图象经过点P(2,﹣1),求二次函数的表达式;(2)把二次函数的图象向上平移k个单位,使图象与x轴无交点,求k的取值范围;(3)若二次函数的图象经过点A(m,t),点B(n,t),设|m﹣n|=d(d≥2),求t的最小值.参考答案1.解:(1)由y=ax2﹣2ax﹣3a得到:y=a(x﹣3)(x+1),故A(﹣1,0),B(3,0).由y=ax2﹣2ax﹣3a得到:y=a(x﹣1)2﹣4a,故抛物线的对称轴是直线x=1;(2)由(1)知,抛物线的对称轴是直线x=1,所以点P(1,y3)是抛物线y=ax2﹣2ax ﹣3a的顶点坐标,∵始终满足y1>y2>y3,∴该抛物线的开口方向向上.当点M(t,y1),N(t+3,y2)都在对称轴左侧时,t+3<1,则t<﹣2.当点M(t,y1),N(t+3,y2)分别位于对称轴两侧时,1﹣t>t+3﹣1,则t<﹣.当t=﹣2时,t+3=1,此时y2=y3,与已知矛盾,故t≠﹣2.综上所述,t的取值范围是t<﹣且t≠﹣2.2.解:(1)∵直线y=﹣x﹣1经过点A,∴令y=0,则0=﹣x﹣1,∴x=﹣1,∴A(﹣1,0),将A(﹣1,0),C(0,3)代入y=ax2+2x+c得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)﹣x2+2x+3=﹣x﹣1,解得:x1=﹣1,x2=4,∴D(4,﹣5),过点P作PE∥y轴,交AD于E,设P(t,﹣t2+2t+3),则E(t,﹣t﹣1),∴PE=(﹣t2+2t+3)﹣(﹣t﹣1)=﹣t2+3t+4,∴△P AD的面积=•PE•(4+1)=(﹣t2+3t+4)=﹣(t﹣)2+,当t=时,△P AD的面积最大,且最大值是.3.解:(1)把A(2,4),C(5,2)代入抛物线y=ax2+bx中得:,解得:,∴抛物线的解析式为:y=﹣x2+x;(2)若a=﹣1时,抛物线的解析式为:y=﹣x2+bx,①当x=5时,y=﹣25+5b,∴M(5,﹣25+5b),当y=0时,﹣x2+bx=0,x1=0(舍),x2=b,∴E(b,0),∴S△OME=•OE•y M=b(﹣25+5b)=5,解得:b1=或b2=(不符合题意,舍);②∵y=﹣x2+bx=﹣(x﹣)2+,∴抛物线的顶点坐标为(,),令=x,则抛物线的顶点所在的图象的解析式为:y=x2,当抛物线经过点B时满足题意,将点B的坐标(2,2)代入y=﹣x2+bx得:2=﹣4+2b,∴b=3,当抛物线经过点D时满足题意,将点D的坐标(5,4)代入y=﹣x2+bx得:4=﹣25+5b,∴b=,∴3≤b≤.4.解:(1)令y=0得:mx2+4mx﹣5m=0,∴m(x2+4x﹣5)=0,∵m为二次函数二次项系数,∴m≠0,∴x2+4x﹣5=0,∴x1=﹣5,x2=1,∴与x轴交点坐标为(﹣5,0)和(1,0),∴与x轴两交点间的距离为1﹣(﹣5)=6;(2)∵直线l过点(0,2)且平行于x轴,∴直线l的解析式为y=2,∴y=mx2+4mx﹣5m中令y=2得:∴2=mx2+4mx﹣5m,∴mx2+4mx﹣5m﹣2=0,∴x1+x2=﹣4,x1x2=﹣5﹣,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16+20+,∵x2﹣x1=8,∴(x1﹣x2)2=64,∴16+20+=64,36+=64,=28,∴m=,∴y=x2+x﹣.5.解:(1)将y=0代入y=x2﹣2x﹣3得x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴抛物线与x轴交点坐标为(﹣1,0),(3,0),将x=0代入y=x2﹣2x﹣3得y=﹣3,∴抛物线与y轴交点坐标为(0,﹣3),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线顶点坐标为(1,﹣4),故答案为:(﹣1,0),(3,0);(0,﹣3);(1,﹣4).(2)∵抛物线顶点坐标为(1,﹣4),∴抛物线对称轴为直线x=1,∵抛物线经过(0,﹣3),∴抛物线经过(2,3),列表如下:x…﹣10 1 2 3…y…0 ﹣3 ﹣4 ﹣3…图象如下:(3)将x=﹣2代入y=x2﹣2x﹣3得y=4+4﹣3=5,∵抛物线开口向上,抛物线顶点坐标为(1,﹣4)且经过(2,﹣3),∴当﹣2<x<2时,﹣4≤y<5.6.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.7.解:(1)将点A(3,0)代入y=ax2﹣2ax﹣3中,得9a﹣6a﹣3=0,解得a=1.∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)画出函数y=x2﹣2x﹣3的图象如图1所示:(3)∵y'=﹣x2+2x+m=﹣(x﹣1)2+m+1,∴该抛物线的对称轴为直线x=1,开口向下,与y轴的交点的坐标为(0,m),且可看成由抛物线y=﹣(x﹣1)2沿对称轴(直线x=1)上下平移得到,当抛物线y'=﹣(x﹣1)2+m+1的顶点坐标为(1,﹣4)时,符合题意,即m+1=﹣4,解得m=﹣5;当抛物线y'=﹣(x﹣1)2+m+1经过点B(0,﹣3)时,如图所示,此时有1个交点.将B(0,﹣3)代入y'=﹣(x﹣1)2+m+1,即可解得m=﹣3;当抛物线y'=﹣(x﹣1)2+m+1经过点A(3,0)时,如图3所示,此时没有交点;将A(3,0)代入y'=﹣(x﹣1)2+m+1,即可解得m=3;如图4所示,当﹣3<m<3时,此时有一个交点.综上所述,m的取值范围为﹣3≤m<3或m=﹣5.8.解:(1)由图象和抛物线解析式可知,抛物线C1的开口向上,对称轴为x=﹣4,∴当x<﹣4时,y随x的增大而减小;故答案为:上,减小;(2)把点B的坐标(2,0)代入y=a(x+4)2﹣6得,0=a(2+4)2﹣6,解得:a=;(3)由(2)知抛物线C1的解析式为y=(x+4)2﹣6,∵抛物线C2与抛物线C1关于x轴对称,∴抛物线C2与的解析式为y=﹣(x+4)2+6,∵将抛物线C2在x轴上平移,平移后的抛物线记为C3,∴抛物线C3:y=﹣(x﹣h)2+6,联立得,(x+4)2﹣6=﹣(x﹣h)2+6,整理得:2x2+(8﹣2h)x+h2﹣56=0,∵抛物线C3与抛物线C1只有一个交点,∴Δ=(8﹣2h)2﹣4×2(h2﹣56)=0,整理得:h2+8h﹣128=0,解得:h1=﹣16,h2=8,∴抛物线C3的解析式为y=﹣(x﹣8)2+6或y=﹣(x+16)2+6;把h=8或h=﹣16代入2x2+(8﹣2h)x+h2﹣56=0中,解得:x1=x2=2或x3=x4=﹣10,当x=2时,y=(2+4)2﹣6=0,当x=﹣10时y=(﹣10+4)2﹣6=0,∴抛物线C3与抛物线C1交点坐标为(2,0)或(﹣10,0).9.解:(1)将点A(3,0)和B(0,3)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)∵A(3,0)和B(0,3),∴OA=OB=3,∴∠BAO=45°,∵DF⊥AB,∴EF=AE,∵AB=3,S△BEF=2S△AEF,∴AE=,∴AF=2,∴F(1,0),∴E(2,1),∴设直线DF的解析式为y=k'x+b',∴,解得,∴y=x﹣1,联立方程组,解得x=或x=,∵点D在第一象限,∴x=,∴D(,).10.解:(1)∵y=ax2+bx+3,∴C(0,3),∵OB=OC,∴B(3,0),又∵A(﹣1,0).∴,解得:,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴二次函数表达式为y=﹣x2+2x+3,顶点坐标为(1,4);(2)Ⅰ如图:D(1,4),则D关于x轴的对称点D′坐标为(1,﹣4),∵翻折前后抛物线的形状、大小都相同,开口方向相反,∴翻折后的图象对应的函数表达式为y=(x﹣1)2﹣4=x2﹣2x﹣3;Ⅱ翻折后关于抛物线的对称轴对称,此时对称轴为直线x=1,同时两个图象关于两个图象的交点所在的中线对称,此时对称轴为直线y=0(或x轴);(3)当直线y=﹣x+k过点A时,则有三个交点,把A(﹣1,0)代入y=﹣x+k,得k=﹣1;当直线y=﹣x+k与抛物线y=x2﹣2x﹣3只有一个交点(相切)时,则有三个交点,联立,则x2﹣2x﹣3=﹣x+k,即x2﹣x﹣3﹣k=0,Δ=1﹣4×1×(﹣3﹣k)=13+4k=0,解得:k=﹣,由图像可知,若直线y=﹣x+k与两抛物线所剩部分有4个交点,k的取值范围为﹣<k<﹣1.11.解:(1)由题意设抛物线y=a(x+1)2+4,代入点C(0,3)得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)∵点M(m,y1),N(m+2,y2)都在该抛物线上,∴y1﹣y2=(﹣m2﹣2m+3)﹣[﹣(m+2)2﹣2(m+2)+3=4m+8,当4m+8>0,即m>﹣2时,y1>y2,当4m+8=0,即m=﹣2时,y1=y2,当4m+8<0,即m<﹣2时,y1<y2.(3)∵二次函数图象的对称轴是直线x=﹣1,∴当x=2与x=﹣4时的函数值相等,∵a<0,∴抛物线的开口方向向下,∵当t﹣1≤x1≤t+2,x2≥2时均满足y1≥y2,∴,解得:﹣3≤t≤0.12.解:(1)∵一次函数y=﹣x+3的图象经过点B,C,∴C(0,3),B(3,0),设点A(m,0),∴抛物线对称轴为x=(3+m),∴点D(+,﹣m+),∵S△ABD=4,∴(3﹣m)(﹣m+)=4,解得:m=﹣1或m=7(舍去),∴点A(﹣1,0),将A,B,C三点坐标代入解析式得:,解得:,∴抛物线的函数解析式为y=﹣x2+2x+3;(2)过点P作PE∥OC交BC于E,PF⊥BC于F,∵OC=OB=3,∠COB=90°,∴∠OCB=∠OBC=45°,∵PE∥OC,∴∠PEF=∠OBC=45°,∴PF=PE×sin45°=PE,∴点P到直线BC的距离的最大只需PE最大,设P(x,﹣x2+2x+3),则点E(x,﹣x+3),∴PE=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣)2+,∵﹣1<0,∴当x=时,PE最大值为,∴PF最大=PE最大=×=,∴点P到直线BC的距离的最大值为.13.解:(1)设直线OD解析式为y=kx,将(2,2)代入y=kx得2=2k,解得k=1,∴y=x,设点A坐标为(m,m),则抛物线解析式为y=(x﹣m)2+m,将x=0代入y=(x﹣m)2+m得y=m2+m=(m+1)2﹣,∴点B纵坐标最小值为﹣,此时m=﹣1,∴点A坐标为(﹣1,﹣1).(2)由(1)得y=﹣(x+1)2﹣1,将y=0代入y=﹣(x+1)2﹣1得0=﹣(x+1)2﹣1,解得x1=﹣1+,x2=﹣1﹣,∴EF=﹣1+﹣(﹣1﹣)=2.14.解:(1)由题意得,,解得.∴抛物线的解析式为y=x2﹣2x﹣3.(2)设过A、C两点直线的解析式为y=kx+n,由题意得,,解得.∴直线AC的解析式为y=x﹣3.∵点P在第四象限的抛物线上,∴设点P的坐标为(x,x2﹣2x﹣3)且0<x<3.∵PE⊥x轴交直线AC于点D,∴可设点D的坐标为(x,x﹣3),∴PD=|x﹣3﹣(x2﹣2x﹣3)|,∵点D在点P的上方,∴PD=﹣x2+3x(0<x<3),即线段PD的长为﹣x2+3x(0<x<3).∵线段PD的长为﹣x2+3x,∴﹣x2+3x是开口向下的抛物线,∴PD有最大值,∴当x=﹣=时,PD最大值=.∴此时点P的纵坐标为y=﹣2×﹣3=﹣.∴此时点P的坐标为(,﹣).15.解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.16.解:(1)将(﹣2,0)、(4,0),(0,2)代入y=ax2+bx+c中得,解得,∴抛物线的解析式为y=﹣x2+x+2.设直线AC的解析式为y=kx+n,将(0,2),(4,0)代入y=kx+n得,解得,∴直线AC的解析式为y=﹣x+2.(2)如图,作ME⊥x轴,交AC于点N,设M点坐标为(m,﹣m2+m+2),则N点坐标为(m,﹣m+2).∴MN=﹣m2+m+2﹣(﹣m+2)=﹣m2+m,∴S四边形ABCM=S△ABC+S△ACM=×6×2+4(﹣m2+m)=﹣(m﹣2)2+8.∴当m=2时,S四边形ABCM有最大值为8,此时M点坐标为(2,2).17.解:(1)∵抛物线L1的顶点为(1,),∴设抛物线L1的解析式为y=a(x﹣1)2+,将(0,3)代入解析式可得:a(0﹣1)2+=3,解得:a=﹣,∴抛物线L1的解析式为y=﹣(x﹣1)2+;(2)存在.∵L1的解析式为y=﹣(x﹣1)2+,且L1、L2关于x轴对称,∴L2的解析式为y=(x﹣1)2﹣,∵E在x轴上方的抛物线L1上,故可设E(m,﹣(m﹣1)2+),∵EF∥x轴,点E在点F的左侧,且对称轴为x=1,∴F(2﹣m,﹣(m﹣1)2+),即EF=2﹣2m,∵四边形EFMN是矩形,∴可设N(m,(m﹣1)2﹣),故EN=﹣(m﹣1)2+﹣(m﹣1)2+=﹣(m﹣1)2+,∵矩形长与宽的长度之比为3:1,当EF为长时:=,整理得:3m2﹣10m﹣32=0,解得:m1=﹣2,m2=,当m=时,EF=2﹣2m=﹣,不符合实际意义,舍去,∴m=﹣2,此时F(4,1);当EF为宽时,=,整理得:m2﹣14m=0,解得:m1=0,m2=14,当m=14时,EF=2﹣2m=﹣26,不符合实际意义,舍去,∴m=0,此时F(2,3).综上所述:F(2,3)或(4,1).18.解:(1)∵A(﹣3,0),对称轴为x=﹣1,点B的坐标为:(1,0);∵点B(1,0)在抛物线y=ax2+bx+c上,∴a+b+c=0,∵函数的对称轴为:x=﹣1=﹣∴b=2a,将b=2a代入a﹣b+c=0得:c=﹣3a,故抛物线的表达式为:y=ax2+2ax﹣3a,∴C(0,﹣3a),∵a>0,∴OC=3a,∴S△ABC=AB•OC=×4×3a=6a;(2)∵S△ABC=6a=6,∴a=1,∴抛物线的函数表达式为y=x2+2x﹣3;(3)①当m﹣1≥﹣1时,即m≥0,函数在x=m﹣1时,取得最小值,即:(m﹣1)2+2(m+1)﹣3=﹣2,解得:m=±(舍去负值),故m=;②当m﹣1<﹣1,即m<0时,函数在顶点处取得最小值,而顶点纵坐标为﹣4≠﹣2,故不存在m值;综上,m=.19.解:(1)∵抛物线y=ax2﹣mx+2m﹣3经过点A(2,﹣4),∴4a﹣2m+2m﹣3=﹣4,解得:a=﹣;(2)由(1)知a=﹣,∴抛物线解析式为y=﹣x2﹣mx+2m﹣3,∵抛物线与y轴的公共点为(0,﹣1),∴2m﹣3=﹣1,解得m=1,∴y=﹣x2﹣x﹣1,∴Δ=b2﹣4ac=(﹣1)2﹣4×(﹣)×(﹣1)=1﹣1=0,∴抛物线与x轴是有一个公共点,令y=0,则﹣x2﹣x﹣1=0,解得:x1=x2=﹣2,∴公共点的坐标为(﹣2,0);(3)由(1)知,抛物线解析式为y=﹣x2﹣mx+2m﹣3,∴对称轴为直线x=﹣=﹣2m,①当﹣2m<2,即m>﹣1时,∵a<0,抛物线开口向下,∴当2≤x≤4时,y随x的增大而减小,∴当x=2时,M=y max=﹣×22﹣2m+2m﹣3=﹣4,当x=4时,N=y min=﹣×16﹣4m+2m﹣3=﹣2m﹣7,∵=,∴=,解得:m=﹣,不符合题意;②当2≤﹣2m≤4即﹣2≤m≤﹣1时,若直线x=2与直线x=﹣2m接近时,则当x=﹣2m时y取得最大值,即M=﹣×(﹣2m)2﹣m×(﹣2m)+2m﹣3=m2+2m ﹣3,当x=4时,y取得最小值,即N=﹣×42﹣4m+2m﹣3=﹣2m﹣7,∵=,∴=,解得:m1=﹣,m2=﹣(不合题意,舍去);若直线x=4与直线x=﹣2m接近时,则当x=﹣2m时y取得最大值,即M=﹣×(﹣2m)2﹣m×(﹣2m)+2m﹣3=m2+2m ﹣3,当x=2时,y取得最小值,即N=﹣×22﹣2m+2m﹣3=﹣4,∵=,∴=,解得:m1=,m2=(不符合题意,舍去);③当﹣2m>4即m<﹣2时,∵a<0,抛物线开口向下,∴当2≤x≤4时,y随x的增大而增大,∴当x=2时,N=﹣×22﹣2m+2m﹣3=﹣4,当x=4时,M=﹣×16﹣4m+2m﹣3=﹣2m﹣7,∵=,∴=,解得:m=﹣(不符合题意,舍去),综上所述,m的值为﹣或.20.解:(1)∵二次函数的图象经过点P(2,﹣1),∴(2﹣a)(2﹣a+2)=﹣1,解得:a=3,∴y=(x﹣3)(x﹣3+2)=x2﹣4x+3,∴二次函数的表达式为y=x2﹣4x+3;(2)由二次函数的交点式得二次函数与x轴交点横坐标x1=a,x2=a﹣2,∴二次函数的对称轴为直线x==a﹣1,把x=a﹣1代入解析式得顶点纵坐标为﹣1,∴将二次函数图象向上平移k个单位可得顶点纵坐标为k﹣1,∵图象与轴无交点,∴k﹣1>0,∴k>1;(3)∵二次函数的对称轴为直线x==a﹣1,不妨设m<n,∵|m﹣n|=d,∴m=a﹣1﹣,n=a﹣1+,把x=a﹣1﹣,y=t代入函数解析式,得t=d2﹣1,∵d≥2,∴t的最小值为0.。

九年级抛物线各类大题

九年级期中二次函数压轴题面积类(﹣11,0)、B(3,0)、C(0,3)三点.如图,已知抛物线经过点A(﹣(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.)在(22)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的(3)在(值;若不存在,说明理由.平行四边形类如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.周长类如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣两点的坐标分别为(﹣33,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;)在(22)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P (3)在(点的坐标;)在(22)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过(4)在(点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M 点的坐标;若不存在,说明理由.等腰三角形类°至OB的位置.120°至如图,点A在x轴上,OA=4=4,将线段,将线段OA绕点O顺时针旋转120(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.。

抛物线形状及文字型应用题

1、我市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000kg 存放入冷库中,据预测,该野生菌的市场价格以每天每千克上涨1元;但冷冻存放这批野生菌每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3kg 的野生菌损坏不能出售。

(1) 设x 天后每千克该野生菌的市场价格为y 元,试写出y 与x 之间的函数关系式;(2) 若存放x 天后,将这批野生菌一次性出售,设这批野生菌的销售额为P 元,试写出P 与x 之间的函数关系式; (3) 李经理将这批野生菌存放多少天后出售可获得最大利润W 元? (利润=销售总额-收购成本-各种费用)2、某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满,当每间客房每天的定价涨10元时,就会有5间客房空闲,如果旅客居住客户,宾馆需对每间客房每天支出60元的各种费用。

(1)请写出该宾馆每天的利润主(元)与每间客房涨价x (元)之间的函数关系式;(2)设某天的利润为8000元,8000元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?(3)请回答客房定价在什么范围内宾馆就可获得利润?3、研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价乙甲、P P (万元)均与x 满足一次函数关系。

(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x 吨时,14201+-x P =甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润甲w (万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,n x P +-101=乙(n 为常数),且在乙地当年的最大年利润为35万元,试确定n 的值;(3)受资金、生产能力等多种因互影响,某投资商计划第一年生产并销售该产品18吨,根据(1)、(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?4、生产一批帐篷,要求必须在12天(含12天)内完成,已知每顶帐篷的成本价为800元,该车间平均每天能生产帐篷20顶,为了加快进度,车间采取人工分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高,这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶,由于机器损耗等原因,当每天生产的帐篷达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元,设生产这批帐篷的时间 为x 天,每天的帐篷为y 顶。

初三数学常考题型:抛物线经典好题

初三数学常考题型:抛物线经典好题
对于抛物线压轴题,要善于归类总结,掌握常规方法,积累特殊方法。

比如说平行四边形的存在性问题,等腰直角三角形的存在性问题,都是有多种方法求解的。

手写版的参考答案和简单分析:
第一题:考点有待定系数法求抛物线表达式,将军饮马问题,直角三角形的存在性问题,这道题目比较基础,适合初步接触抛物线时练习。

第二题,这道题目也比较常规基础,第一问求直线解析式,知道截距求表达式,可不用列方程组,省下一点时间。

第2问同样是将军饮马问题,送分问。

第3问是求线段长度的最值,最常见的方法就是设坐标列式子求最值。

第三题,这是一道面积问题和平行四边形的存在性问题,用到了水平宽乘以铅垂高求三角形面积。

平行四边形的存在性问题通常有三种方法求点的坐标,我在前面的文章中已经有详细讲解。

这道题我采用的是平行四边形对角坐标公式(中点坐标公式),也可以用点的平移的方法来解决。

第四题,又见将军饮马,可见将军饮马问题有多重要。

第3问求面积的最大值,采用的是直线平移,当直线与抛物线只有一个交点时,高最大,面积最大。

第5题:线段旋转问题,等腰三角形的存在性问题。

第6题:平行四边形的存在性问题和线段最值问题,第三问线段最值问题,用到了转换的思想,通过等腰直角三角形把求直角边的最值转化为求斜边的最值。

初三数学抛物线练习题.

一、选择题:1、已知抛物线m x m x y +-+=)1(52与x 轴两交点在y 轴同侧,它们的距离的平方等于2549,则m 的值为()A 、-2 B 、12 C 、24 D 、-2或24 2、已知二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图像交于点A (-2,4),B (8,2),如图所示,则能使21y y >成立的x 的取值范围是()A 、2-<x B 、8>x C 、82<<-x D 、2-<x 或8>x yx 第2题图BAOyx第3题图EBAO yx第4题图BAO3、如图,抛物线c bx ax y ++=2与两坐标轴的交点分别是A 、B 、E ,且△ABE 是等腰直角三角形,AE =BE ,则下列关系:①0=+c a ;②0=b ;③1-=ac ;④2c S A B E =D 其中正确的有()A 、4个B 、3个C 、2个D 、1个4、设函数1)1(22++-+-=m x m x y 的图像如图所示,它与x 轴交于A 、B 两点,线段OA 与OB 的比为1∶3,则m 的值为()A 、31或2 B 、31C 、1 D 、2 二、填空题:1、已知抛物线23)1(2----=k x k x y 与x 轴交于两点A (a ,0),B (b ,0),且1722=+b a ,则k =。

2、抛物线m x m x y 2)12(2---=与x 轴的两交点坐标分别是A (1x ,0),B (2x ,0),且121=x x ,则m 的值为。

3、若抛物线1212-++-=m mx x y 交x 轴于A 、B 两点,两点,交交y 轴于点C ,且∠ACB =900,则m =。

4、已知二次函数1)12(2--+=x k kx y 与x 轴交点的横坐标为1x 、2x )(21x x <,则对于下列结论:①当2-=x 时,1=y ;②当2x x >时,0>y ;③方程1)12(2--+x k kx =0有两个不相等的实数根1x 、2x ;④11-<x ,12->x ;⑤kkx x 21241+=-,其中所有正确的结论是所有正确的结论是 (只填写顺号)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学抛物线应用题
初三数学抛物线应用题

假设小明站在一个高楼上,他向下抛出一个小球。设小球的高度(单
位:米)与时间(单位:秒)的关系可以用抛物线函数表示为 h(t) =
-5t^2 + 10t + 15,其中 t 为时间。

1. 在 t = 0 时刻,小球的初始高度是多少米?
答:将 t = 0 代入函数中,得到 h(0) = -5(0)^2 + 10(0) + 15 = 15
米。所以小球的初始高度是15米。

2. 小球何时会触地?
答:当小球触地时,高度为0。所以要解方程 -5t^2 + 10t + 15 = 0。
通过因式分解或者应用求根公式,可以得到两个解:t = -1 和 t = 3。
由于时间不能是负数,所以小球在 t = 3 时刻会触地。

3. 在小球触地之前,小球的最大高度是多少米?
答:最大高度发生在抛物线的对称轴上,对称轴的横坐标为 -b/2a,
即 t = -10/(-10) = 1。将 t = 1 代入函数中,得到 h(1) = -5(1)^2
+ 10(1) + 15 = 15 米。所以小球的最大高度是15米。

4. 小球从抛出到触地的时间间隔是多少秒?
答:小球从抛出到触地的时间间隔等于小球触地时刻 t = 3 减去小
球抛出时刻 t = 0,即 3 - 0 = 3 秒。所以小球从抛出到触地的时
间间隔是3秒。

以上便是关于初三数学抛物线应用题的解答。抛物线是一种常见的数
学函数,通过解题可以帮助学生理解抛物线的性质和应用。在实际生
活中,抛物线函数可以用来描述很多物体的运动轨迹,比如抛出的物
体、弹射物、射击等。通过解题,学生可以培养抽象思维和数学建模
的能力,提高数学应用题解决能力。

相关文档
最新文档