电气类外文翻译---- 110KV供电系统继电保护作用浅析
Protection relay(继电保护) 外文翻译资料

Protection relayProtective relayingProtective relaying is that area of power system design concerned with minimizing service interruption and limiting damage to equipment when failures occur. The function of protective relaying is to cause the prompt removal of a defective element from a power system. The defective element may have a short circuit or it may be operating in an abnormal manner. Protective relaying systems are designed to detect such failures or abnormal conditions quickly and to open a minimum of circuit breakers to isolate the defective element. The effect of quick isolation is threefold: (1) it minimizes or prevents damage to the defective element, thus reducing the time and expense of repairs and permitting quicker restoration of the element to service; (2) it minimizes the seriousness and duration of the defective elements affecting on the normal operation of the power system; and (3) it maximizes the power that can be transferred on power systems. The second and third points are of particular significance because they indicate the important role protective relaying plays in assuring maximum service reliability and in system design. The power that can be transmitted across system without the loss of synchronism is the function of fault clearing times. It is apparent that fast fault clearing times permit a higher power transfer than longer clearing times. High-speed clearing of faults can often provide a means for achieving higher power transfers and thereby defer investment in additional transmission facilities.A protective relaying system is based on detecting fault conditions by continuously monitoring the power system variables such as current, voltage, power, frequency, and impedance. Measuring of currents and voltage is performed by instrument transformers of the potential type (PT) or current type (CT). Instrument transformers feed the measured variables to the relay system, which in turn, upon detecting a fault, commands circuit breaker (CB) to disconnect the faulted section of the system.An electric power system is divided into several protective zones for generators, transformers, buses, transmission and distribution circuit, and motors. The division is such that zones are given adequate protection while keeping service interruption to a minimum. It is to be noted that each zone is overlapped to avoid unprotect (blind) areas. The connections of current transformers achieve the overlapping. The general philosophy ofrelay application is to divide the power system into zones that can be adequately protected by suitable protective equipment and can be disconnected from the power system in a minimum amount of time and with the least effect on the remainder of the power system. The protective relaying provided for each zone is divided into two categories: (1) primary relaying and (2) backup relaying. Primary relaying is the first line of defense when failures occur, and is connected to trip only the faulted element from the system. If a failure occurs in any primary zone the protective relays will operate to trip all of the breakers within that zone. If a breaker is omitted between two adjacent elements, both elements will be disconnected for a failure in either one. This latter arrangement is illustrated by the unit generator-transformer connection in the power plant. On bulk power generating and transmission systems, primary protection is designed to operate at high speed for all faults. Slower protection may be used in less important system areas but, in general, any system area will benefit by the fastest possible primary relaying.If the fault is not cleared by the primary protection, backup relaying operates to clear the fault from the system. In general, backup relaying disconnects a greater portion of the system to isolate the fault. Backup protection is provided for possible failure in the primary relaying system and for possible circuit breaker failures. Any backup scheme must provide both relay backup as well as breaker backup. Ideally, the backup protection should be arranged so that anything that may cause the primary protection to fail will not also cause failure of the backup protection. Moreover, the backup protection must not operate until the primary protection has been given an opportunity to function. As a result, there is time delay associated with any backup operation. When a short circuit occurs, both the primary and the backup protection start to operate. If the primary protection clears the fault, the backup protection will reset without completing its function. If the fault is not cleared by the primary protection, the backup relaying will time out and trip the necessary breakers to clear the fault from the system.There are two forms of backup protection in common use on power systems. They are remote backup and local backup.(1)Remote backup. In remote backup relaying, faults are cleared from the system onestation away from where the failure has occurred.(2)Local backup. In local backup relaying, faults are cleared locally in the samestation where the failure has occurred. For faults on the protected line, both the primary and the backup relays will operate to prepare tripping the line breaker. Relay backup may be just as fast as the front line relays. When either of these relays operates to initiate tripping of the line breaker, it also energizes a timer to start the breaker backup function. If the breaker fails to clear the fault, the line relays will remain picked up, permitting the timer to time out and trip the necessary other breakers on the associated bus section.Computer relayingThe electric power industry has been one of the earliest users of the digital computer as a fundamental aid in the various design and analysis aspects of its activity. Computer-based systems have evolved to perform such complex tasks as generation control, economic dispatch (treated in chapter 11)and load-flow analysis for planning and operation , to name just a few application areas. research efforts directed at the prospect using digital computers to perform the tasks involved in power system protection date back to the mien-sixties and were motivated by the emergence of process-control computers a great deal of research is going on in this field, which is now referred to as computer relaying. Up to the early 1980s there had been no commercially availability protection systems offering digital computer-based relays.However, the availability of microprocessor technology has provided an impetus to computer relaying.*Microprocessors used as a replace*and solid state relays non provide a number of advantages while meeting the basic protection philosophy requirement of decentralization.There are many perceived benefits of a digital relaying system:1.Economics: with the steady decrease in cost of digital hardware, coupled with theincrease in cost of conventional relaying. It seems reasonable to assume that computer relaying is an attractive alternative. Software development cost can be expected to be evened out by utilizing economies of scale in producing microprocessors dedicated to basic relaying tasks.2.Reliability: a digital system is continuously active providing a high level of aself-diagnosis to detect accidental failures within the digital relaying system.3.Flexibility: revisions or modifications made necessary by changing operationalconditions can be accommodated by utilizing the programmability features of a digitalsystem. This would lead to reduced inventories of parts for repair and maintenance purposes4.System interaction: the availability of digital hardware that monitors continuously thesystem performance at remote substations can enhance the level of information available to the control center. Post fault analysis of transient data can be performed on the basis of system variables monitored by the digital relay and recorded by the peripherals.The main elements of a digital computer-based relay are indicated in Figure 9-59. The input signals to the relay are analog (continuous) and digital power system variables. The digital inputs are of the order of five to ten and include status changes (on-off) of contacts and changes in voltage levels in a circuit. The analog signals are the 60-Hz currents and voltages. The number of analog signals needed depends on the relay function but is in the range of 3 to 30 in all cases. The analog signals are scaled down (attenuated) to acceptable computer input levels ( 10 volts maximum) and then converted to digital (discrete) form through analog/digital converters (ADC). These functions are performed in the block labeled “Analog Input Subsystem.”The digital output of the relay is available through the computer’s parallel output port, five-to-ten digital outputs are sufficient for most applications.The analog signals are sampled at a rate between 210 Hz to about 2000 Hz. The sampled signals are entered into the scratch pad (RAM) and are stored in a secondary data file for historical recording. A digital filter removes noise effects from the sampled signals. The relay logic program determines the functional operation of the relay and uses the filtered sampled signals to arrive at a trip or no trip decision which is then communicated to the system.The heart of the relay logic program is a relaying algorithm that is designed to perform the intended relay function such as over currents detection, differential protection, or distance protection, etc. It is not our intention in this introductory text to purse this involved in a relaying algorithm, we discuss next one idea for peak current detection that is the function of a digital over current relay.Microcomputer-based RelayingA newer development in the field of power system protection is the use of computers(usually microcomputers) for relaying. Although computers provide the same protection as that supplied by conventional relays, there are some advantages to the use of computer-based relaying. The logic capability and application expansion possibilities for computer-based, relaying is much greater than for electromechanical devices. Computer-base relaying samples the values of the current, voltage, and by use of A/D converters, change these analog values to digital form and then send them to the computer. In the event of a fault, the computer can calculate the fault’s current values and characteristics, and settings can be changed merely by reprogramming. Computer-based relaying are also capable of locating faults, which has been one of the most popular features in their application. In addition, self-checking features can be built in and sequence of events information can be downloaded to remote computers for fast analysis of relaying operations.Computer-based relaying system consists of subsystems with well defined functions. Although a specific subsystem may be different in some of its details, these subsystems are most likely to be incorporated in its design in some form. The block diagram in Figure 13-1 shows the principal subsystems of a computer-base relaying. The processor is the center of its organization. It is responsible for the execution of relaying programs, maintenance of various timing functions, and communicating with its peripheral equipment. Several types of memories are shown in Figure13-1-each of them serves a specific need. The Random Access Memory (RAM) holds the input sample data as they are brought in and processed. The Read Only Memory (ROM) or Programmable Read Only Memory (PROM) is used to store the programs permanently. In some cases the programs may execute directly from the ROM if its read time is short enough. If this is not the case, the programs must be copied from the ROM into the RAM during an initialization stage, and then the real-time execution would take place from the RAM. The Erasable PROM (EPROM) is needed for storing certain parameters (such as the relaying settings) which may be changed from time to time, but once it is set it must remain fixed even if the power supply to the computer is interrupted.The relaying inputs are currents and voltages—or, to a lesser extent—digital signals indicating contact status. The analog signals must be converted to voltage signals suitable for conversion to digital from. The current and voltage signals obtained from current andvoltage transformer secondary windings must be restricted to a full scale value of +10 volts. The current inputs must be converted to voltages by resistive shunts. As the normal current transformer secondary currents may be as high as hundreds of amperes, shunts of resistance of a few milliohms are needed to produce the desired voltage for the Analog to Digital Converter (ADC). An alternative arrangement would be to use an auxiliary current transformer to reduce the current to a lower level. An auxiliary current transformer serves another function: that of providing electrical isolation between the main CT secondary and the computer input system.Since the digital computer can be programmed to perform several functions as long as it has the input and output signals needed for those functions. It is a simple matter to the relaying computer to do many other substation tasks, for example, measuring and monitoring flows and voltages in transformers and transmission lines, controlling the opening and closing of circuit breakers and switches, providing backup for other devices that have failed, are all functions that can be taken over by the relaying computer. With the program ability and communication capability, the computer-based relaying offers yet another possible advantage that is not easily realizable in a conventional system. This is the ability to change the relay characteristics (settings) as the system conditions warrant it. With reasonable prospects of having affordable computer-based relaying which can be dedicated to a single protection function, attention soon turned to the opportunities offered by computer-based relaying to integrate them into a substation, perhaps even a system-wide network. Integrated computer systems for substations which handle relaying, monitoring, and control tasks offer novel opportunities for improving overall system performance.International Journal of Electrical Power & Energy Systems继电保护1. 继电器当故障发生的时候继电器将电力系统的停电范围减小到最小,并且减小对设备的破坏。
电力系统继电保护专业英语词汇

131
Auxiliary relay/intermediate relay
中间继电器
132
Common-mode voltage
共模电压
133
Impedance mismatch
阻抗失配
134
Intermittent fillet weld
间断角缝焊接
135
Loss of synchronism protection
线圈端漏电抗
84
Coil inductance
线圈电感
85
Current transformer phase angle
电流互感器相角
86
Distance relay; impedance relay
阻抗继电器
87
Power rheostat
电力变阻器
88
Electrically operated valve
换流器
78
Current compensational ground distance relay
电流补偿式接地远距继电器
79
Current consumption
电流消耗
80
Coil adjuster
线圈调节器
81
Coil curl
线圈
82
Coil current
线圈电流
83
Coil end leakage reactance
分段电抗器
68
Bus structure
母线支架;总线结构
69
Bus tie switch
母线联络开关
70
Bus-bar chamber
母线箱
浅析110kV电力系统的继电保护_邱才楷

广东科技2011.4.第8期对故障点电容电流进行补偿使事故点残流减小,从而达到自然熄弧。
经验证明这种方法是有一定效果的。
实际上,由于电网运行方式多样化及弧光接地的随机性。
消弧线圈仅补偿工频电容电流,而实际接点电流不仅有工频电容电流且有大量高频及组性电流。
严重时高频电流和组性电流将维持电弧的持续燃烧。
电网中断线,非全相线路电容偶合等非接地故障,使电网不对称电压升高都会导致消弧线圈自动调节器误判为接地而动作、中性点位移增大。
而消弧线圈结构复杂,成本加大,更换困难。
我国研制的XGB 消弧消谐过电压保护装置,在“HXB ”过电压保护装置基础上用微机控制方法,配合相应的真空接触器组成一套自动控制系统。
将非直接接地电网相对地及相对相之间的过电压(无论是何类过电压)限制略大于正常残电水平,保证了出现过电压情况下电气设备的安全运行。
“HXB ”是一种特殊高能容量的氧化锌过电压保护器“ZN0”是由非线性电阻和放电间隙结合的,当发生过电压时,它与常规的避雷器相比,相间过电压降低了60~70%,结线图中它处于前级,是在接触器JZ 未动作前就将电压限制在安全范围之下。
分相控制的高压接触器JZ 正常处于断开状态,它受ZK 控制,只当系统发生弧光接地过电压时,使其由不稳定的弧光接地转变成稳定的金属性接地从而保护了设备,使其不受损害。
在非直接接地系统中金属氧化物避雷器对于过电压倍数高的铁磁谐振过电压的抑制作用有着明显的优越性。
“ZK ”———微机控制器的测量显示、运算、通讯功能的判断执行中心机构。
“FU ”———是整个装置的后备保护元件,开断容量大,可达63kA ,快速达0.3ms 。
“ST ”———提供信号转换,将三相电压信号转换成“ZK ”处理的三相电压信号,即中点信号,如系统发生故障,为金属性接地,它发出指示信号并告警且等值班人员处理,或者由微机选线处理,如接地故障为不稳定的弧光接地,判断相别后指令JZ 动作(对应相),使故障相对的电压为零。
综述110KV供电系统的继电保护

在 电网运行 的过程中 , 供 电系统 的继 电保 护发挥着 非常重要 的 因主要体现在两个方面 , 一方 面是变压器在运行 的过程 中无法承受 作用 , 它能够有效 的对危 险进行 严格的控制 , 其对整个 系统 的正 常 高强度 电流对其 自身的冲击或者是长时间的大电流 ,第 二点是 , 主 运行都有着 非常积极 的推动作 用 , 1 1 0 k V供 电系统是 当前 电力 系统 变压器 的侧保护措施不是十分的完善 , 同时继 电保护过程 中相关设 运行和发展过程 中较为重要的一套 供电系统 , 所 以在 电力 系统运 行 施 的配备也不是十分的完善 , 在这样 的情况下要更加有效 的避免这 的过程 中一定要将继 电保 护工作作为工作 中的一项 十分重要 的内 种现 象的产生 , 就一定要从两方 面予以掌控 , 首先是生产 厂家要对 容。 设备 的质量和性能予以严格的控制 , 其次就是变 电站 的工作人员一 1概 述 定要在使用之前对变电设备进行仔细的帅选 , 还要严格检查设备 的 1 . 1 1 1 0 K V系统 中应配置的继电保护。 按照供 电企业 1 1 0 K V供 质量 , 加强设 备后期 的维护 。 电系统 的设计规范要求, 一般应设 置以下保 护装 置: l 1 0 K V变 压器保 3 1 1 O k V供 电 系 统 中应 配 置 的 相 应 继 电 保护 类型 护、 1 0 K V瞬时过电流保护, 带 时限的电流速断保护, 三段式 过电流保 根据《 供配 电系统设计 规范) ) G B 5 0 0 5 2 - - - 9 5的国家标准 , 现在对 护, 零序 电流保护等等 。 于1 1 0 K V供 电系统来说 , 一次系统应尽量简单 , 可考虑采用直 降变 1 . 2 1 1 0 K V供 电系统在 电力系统中的重要位置 。电力系统在运 的形式 , 这样对 于二次系统就可采用相应 的保护来配置 。具体可 配 行 的过程 中主要经历 5 个 流程 , 首先是发 电, 然后是变 电, 其 次是 输 置 1 1 0 K V变压器保护 、 1 0 K V电流速断保护 、三段式过 电流保护 和 电, 再次是配 电 , 最后是用电 , 在 电力 系统运行 的过程 中要有很 多大 零序 电流保护 。 型 的设备参与其 中,它们通过 电气线路会被紧紧地联 系在一起 , 电 3 . 1 1 1 0 K V变压器保护 。 对 于变压器而言 , 它 的主保护可以采用 力系统存在着非常强的整体性 , 所 以五个流程 中间是存在着 十分 紧 最 常见的纵联差动保护 和瓦斯保护 ,用 两者的结合来做 到优势互 密 的联 系的 , 五者是在 同一 时间完成各 自的工作 内容 , 同时每 时每 补 , 从而 可以更好地反应这些 区域 内相 间短路 , 高压侧 接地短路 以 刻都要 保持一个相对 比较平衡 的状态 , 在这 五个 环节 当中 , 变 电和 及 主变压器绕组匝短路故障。 输 电起到 了重要的桥梁和纽带的作用 , 所 以在实际的工作中也应该 对 于变压器而言 , 它的后备保护可 以采 用 1 1 0 K V高后备保护 和 受到相应 的重视 , 在 1 l O k V供 电系统 的运行过程 中 , 最重要 的就 是 1 0 K V低后 备保 护 。其 中 , 1 1 0 K V高后备 保 护采 用高 复 压过 流 和 要 采取相 应的措施 保证 输 电和 变电两个 环节 的稳定性 和安全 性 , 1 1 0 K V零序过流 、 过压保护 , 1 0 K V低后备保护通常采用低复压过 流 1 1 0 k V供 电系统 存在着很大的优势 , 其一 次供 电系统在结构上和其 保 护。 他系统相 比要更加的简洁和直观 , 所 以在一次 系统 的建设 中也不存 3 . 2 1 0 K V电流速断保护 。 电流速断保护是一种无时限或略带 时 在非常大的难度 , 但是在整个供 电系统 的二次设备 上是 比较 有难 度 限动作 的电流保 护。它能在最短的时间 内迅速切 除短路 故障, 减小 的, 因为这种 复杂性会严重 影响到供 电系统 的正 常运行 , 所 以在 电 故 障持续 时间, 防止事故扩大 。电流速断保 护又分为瞬时 电流速 断 力 系统建设 和运行 的过程 中一定要 重视继 电保护装置 的设置。 保 护和带 时限的电流速断保护两种 。 瞬时电流速断保护与过电流保 2 1 1 0 W 供 电 系 统 的继 电保 护 常见 问题 的 解 决 对 策 护的区别, 在 于它 的动作 电流值不是躲过最大负荷 电流, 而是必须 大 2 . 1 加强继 电保护高素质人员 的配置 。当前 我国的经济和科 技 于保护范 围外部短路时的最大短路 电流 。 在不 断的发展和进 步 ,这也使得我 国的电力行业得 到 了巨大 的发 3 . 3三段式过 电流保护装置 。由于瞬时电流速断保护只能保 护 展, 继 电保护装置也不断推陈 出新 , 为 了适应这种变化 , 继 电保 护工 线路 的一部分, 所 以不能作为线路 的主保护, 而只能作为加速切 除线 作人员 根据当前 的需要 不断学习新 的知识 和新 的技 能是非常重 要 路首端故 障的辅助保护; 带时 限的电流速断保护能保护线路 的全长, 的, 但是继 电保护工作 和其 他工作相 比有其 自身的特点 , 所 以继 电 可作 为本线路 的主保护, 但不能作为下一段线路 的后备保护; 定 时限 保护工作人员 的 日常工作也是非常繁忙 的, 工作就 已经将机 电保护 过电流保 护既可作为本级线路的后备保护, 还可以作为相I 临下一 级 人员大量 的时间全部 占满 , 所 以他们很少有 时间去 继续 学习新 的知 线路 的后备保护, 但切除故障 的时限较 长。 识 和技能 , 在 这样 的情况下 电力 系统在运行方式 和工作 分配等方面 3 . 4 1 0 K V零序 电流保护 。1 0 K V零序 电流保 护是相对于 I O K V 都要进行适 当的调整和改革 , 为继 电保护 工作 的工作人 员提供一系 相过流保 护而言的 。一般 1 0 K V系统通常是不接地系统 , 当发生单 列深造和学 习的机会和平 台, 这样才 能在 知识 储备 以及业 务水平上 相接 地故障时 , 相过流保护不 会动作跳闸 , 这样零序保 护动作后一 得到提高 , 尤其是 在进行设备更换 的过程 中一定要 由相 关的部门组 般启动发信 , 不跳 闸。因为发生单相接地故障时 , 1 0 K V系统没有破 织一部分 的人员对继 电保护出现的一些新情况和新变化予 以学 习, 坏其对称性 , 可继续运行 1 - 2 小 时, 但要防止其再发生故障 , 从 而演 同时还要在设备得到运行机理 、 设备 的功 能和在使 用过程中需要注 变成相 间故 障, 所 以应尽快消除故障点。 意 的重点事项进行培训和降解 ,这样才能保证设备的运行质量 , 同 结束 语 时也保证 了变 电站 的正常运行 , 促进 了电力系统工作 质量 的提升 。 我 国电 网规模 不断扩大 , 电力 系统设备不 断改进 , 电压 等级不 2 . 2完善继电保护设备配置 。当前我 国很多大规模 的 1 1 0 k V的 断提 高, 电力系统 的安全稳定运行就显得尤为重要 。继 电保 护装 置 变 电站 内部继 电保护设备在功能上和结构上都 比较单一 , 同时设 备 作为 电力 系统最重要 的组成 部分 , 其 安全可靠 、 稳定运行就 成为 电 在运行 的过程 中还非常容易出现故障现象 , 产生这种现象最 为重要 力系统最为关注的问题。 的原 因就是设备 自身的性能和设计存在着一定的缺陷 , 为了保证 变 参 考 文献 电站 的安全和平稳运行 , 变 电站应该按 照相关 的要求 和规定来设 置 [ 1 1 余 华平. 1 l O k V及 以上供 电 系统继 电保 护作 用浅析[ J ] . 科技 博览, 继 电保护装置 , 同时在实际 的应用过程 中还要不断加大对设备后期 2 0 0 9 Q) . 的维护和管理力度 , 举例来说 , 变压器 烧毁就是一个最 近几年我 国 【 2 ] 倪剑锋 , 姜 荣生. 1 1 0 k V 变电所故 障及分析 叽 电气与仪表 安装 , 电网运行过程 中经常发生的一个安全隐患 , 造成这种安全 隐患的原 2 0 1 1
综述110 KV供电系统的继电保护

综述110 KV供电系统的继电保护摘要:目前,不同的是电网系统及电网输出系统的组合与配置的不同,输送电力的大小也不同,随着电网规模的发展,为了确保110KV供电系统的正常运行,必须正确地设置继电保护装置并准确整定各项相关定值,确保我国的电网有序合理的进行。
关键词:电力系统;继电保护;发电变电;输电配电;一、概述1、110 KV系统中应配置的继电保护按照供电企业110KV供电系统的设计规范要求,一般应设置以下保护装置:110KV变压器保护、10KV瞬时过电流保护,带时限的电流速断保护,三段式过电流保护,零序电流保护等等。
2、110KV供电系统在电力系统中的重要位置电力系统是由发电、变电、输电、配电和用电等五个环节组成的。
在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。
由于电力系统的特殊性,上述五个环节应是环环相扣、时时平衡、缺一不可,又几乎是在同一时间内完成的。
而变电和输电环节起到承上启下的作用,尤为重要。
对110KV 供电系统来说,就是要确保输、变电部分的可靠稳定运行。
110KV供电系统又由于一次系统比较简单、更为直观,在考虑和设置上较为容易;而二次系统相对较为复杂,包括了大量的继电保护装置、自动装置和二次回路。
为了确保110KV供电系统的正常运行,必须正确的设置继电保护装置。
二、110 kV供电系统的继电保护常见问题的解决对策2.1 加强继电保护高素质人员的配置由于继电保护装置的不断更新换代,继电保护人员继续学习也是非常重要的。
但由于继电保护工作的特殊性,继电保护人员工作一般任务繁重,没有足够的时间进行后续培训和学习深造。
因此,电力系统相关机构应该做出适当的调整,创造更多的培训和学习机会给继电保护人员,提高他们的业务水平。
特别是有新型设备更换时,应组织一部分继电保护人员进行专项技术研讨和学习,保证相关人员充分掌握该设备的原理、功能、特点以及运行过程中需要注意的事项等,为设备稳定高效的运行做好充分的理论准备,促进变电站的发展。
浅谈110KV变电所的继电保护应用

浅谈110KV变电所的继电保护应用作者:陶如超来源:《中小企业管理与科技·上旬》2009年第05期摘要:继电保护装置就是及时发现并切除故障,及时报警的一种自动保护装置。
本文对继电保护在变电所的应用方面进行了阐述。
关键词:变电所继电保护0 引言供电系统在运行中,有可能发生一些故障和非正常运行状态,从而影响煤矿安全生产,甚至造成严重后果。
为了保证供电安全可靠,在供电系统中,必须加入继电保护,尽快将故障元件切离电源,以防止故障蔓延。
1 继电保护的基本任务当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求。
反映电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。
反映不正常工作情况的继电保护装置允许带一定的延时动作。
2 变压器保护2.1 接地保护对110V以上中性点直接接地系统中的电力变压器,一般装设零序电流(接地)保护,作为变压器主保护的后备保护和相邻元件短路的后备保护大接地电流系统发生单相或两相接地短路时,零序电流的分布和大小与系统中变压器中性点接地的台数和位置有关。
2.2 差动保护主变的差动是主变的主保护,保护的范围是主变三侧(三圈式)CT以内的区域,在范围内的故障,由于电流方向发生了变化,会产生电流差流过差动继电器而动作。
2.3 零序电压闭锁零序电流在3只CT无零序CT的微机型保护器保护软件中,防止CT断线时三相电流之和不等于零当作接地故障误跳闸,保护器对零序电压采样,当无零序电压而三相电流之和不为零时,当作CT断线,不跳闸。
2.4 过负荷保护变压器过负荷保护在大多数情况下都是三相对称的,故保护装置只采用1个电流继电器接于一相上,并经过一定延时作用于信号来反映对称过负荷。
浅析110 kV电力继电保护技术

浅析110 kV电力继电保护技术作者:兰颖王向伟来源:《世纪之星·交流版》2015年第05期[摘要]文章介绍了当前电力系统110 kV继电保护装置技术要求,如何使电力系统继电保护装置做到高效,安全,可靠的运行将是一个重要问题,对我国电力系统的发展有着重要的意义。
[关键词]110kV;继电保护;装置;技术分析一、继电保护的概述与基本任务继电保护主要是指确保电力系统供电可靠性和保障电气设备安全。
继电保护的可靠性是指保护装置在预定时间内在规定条件下完成规定功能的能力。
一般要求继电保护装置满足选择性、可靠性、速动性和灵敏性要求,能在电网发生故障时快速、可靠地动作,有效遏制系统状态进一步恶化,起到保障电网安全的作用。
继电保护系统主要根据电气元件发生故障时电力系统的电气量的变化情况构成保护动作,即该系统由一套或者几套相互独立的继电保护装置经某种方式相连接构成。
继电保护的首要任务是在被保护元件发生故障时,确保该元件的继电保护装置向距故障元件最近且具有脱离故障功能的断路器迅速、准确地发出跳闸命令,使故障元件能够及时、快速地从电力系统中剥离,从而尽可能地降低电力系统元件本身损坏。
这样,可以最大限度地降低故障元件对电力系统安全稳定供电的影响。
其次,继电保护还能够在一定程度上反映电气设备的不正常运行状态。
当设备运行维护条件不当或者设备不正常运行时,继电保护能够发出警示信号,便于自动装置进行调节、自动切除某些危险设备或者提醒值班人员进行及时处理。
二、110 kV继电保护装置技术要求1.继电保护装置的设置基本要求。
按照电力企业110kV 供电系统的设计规范要求,在110kV 的供电线路、配电变压器和分段母线上一般应设置以下保护装置:(1)110kV 线路应配置的继电保护。
110kV 线路一般均应装设过电流保护。
当过电流保护的时限不大于0.5~0.7s,并没有保护配合上的要求时,可不装设电流速断保护;自重要的变配电所引出的线路应装设瞬时电流速断保护。
110KV供电系统继电保护的探讨

110KV供电系统继电保护的探讨引言随着社会的发展,经济迅速崛起,人们对生活水平的要求不断提高,人们的用电量越来越大,这就要求相应的电力设备系统不断更新以适应电网规模扩大的现状。
电力系统稳定安全的关键就是继电保护装置的存在和安全。
由于110kV的继电保护装置对变电站的稳定运行具有不可忽视的作用,所以本文旨在通过研究我国110kV继电保护装置出现的问题,提出相应的解决策略和对策。
一、110KV供电系统继电保护概述1、110KV系统中应配置的继电保护按照供电企业110KV供电系统的设计规范要求,一般应设置以下保护装置:110KV变压器保护、10KV瞬时过电流保护,带时限的电流速断保护,三段式过电流保护,零序电流保护等等。
2、110KV供电系统在电力系统中的重要位置电力系统在运行的过程中主要经历5个流程,首先是发电,然后是变电,其次是输电,再次是配电,最后是用电,在电力系统运行的过程中要有很多大型的设备参与其中,它们通过电气线路会被紧紧地联系在一起,电力系统存在着非常强的整体性,所以五个流程中间是存在着十分紧密的联系的,五者是在同一时间完成各自的工作内容,同时每时每刻都要保持一个相对比较平衡的状态,在这五个环节当中,变电和输电起到了重要的桥梁和纽带的作用,所以在实际的工作中也应该受到相应的重视,在110kV供电系统的运行过程中,最重要的就是要采取相应的措施保证输电和变电两个环节的稳定性和安全性,110kV供电系统存在着很大的优势,其一次供电系统在结构上和其他系统相比要更加的简洁和直观,所以在一次系统的建设中也不存在非常大的难度,但是在整个供电系统的二次设备上是比较有难度的,因为这种复杂性会严重影响到供电系统的正常运行,所以在电力系统建设和运行的过程中一定要重视继电保护装置的设置。
二、110kV继电保护的故障分析1、电压互感器二次电压回路故障问题电压互感器二次电压回路的运行故障是110KV继电保护的薄弱环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中文2000字附录:110Kv power supply system relay protection function brief analysisNot only the 110Kv power supply system relay protection function brief analysis electrical power system security and the reliability relate electrical power system itself the movement, similarly relates in the power transmission scope the factories and mines, the enterprise, whether the inhabitant uses electricity normally.Because simultaneously the electrical power system has the strong connectivity, electrical power system interior any barrier all possibly affects the overall system normal operation, thus we must complete the power supply system practically the relay protection question.First, the 11OKV power supply systemGenerally speaking electrical power system including the electricity generation, changes the electricity, the electric transmission, the power distribution and uses electricity and so on five links, between five links restricted mutually, cooperates mutually has facilitated the electrical power system stability together.But in fact, because these five links not always in the identical place, the identical time complete, the electric transmission must surmount the vast area, simultaneously the electrical power system must not carry on the connection with the equipment, thus strengthened its movement environment complexity, causes electrical power system the zero failure rate to guarantee with difficulty.The 110Kv power supply system is in the entire electrical power system important constituent, it whether safe, stable, reliable movement, not only relates the system own movement quality, whether moreover relates in its power transmission scope general user normal prompt using electricity, it the economical normal development and the society is stably taking on the important energy safeguard duty to the power transmission scope in.Therefore the 110KV power supply system design and the movement management must observe national comprehensively the related standard and the standard, as well as correlation area specifically standard standard.In the 110Kv power supply system is containing a subsystems and two subsystems.Two subsystems were opposite in a subsystems are complex, violate the subsystems to include the relay protection installment, the automatic device and the secondary circuit.The relay protection installment is uses for in the power supply system to a subsystems to carry on the surveillance, the survey, the control and the protection, is composed set of special automatic devices by the relay.The reasonable relay protection installment correct establishment to guarantees the 110Kv power supply system the normal operation to have the positive function.Second, the relay protection digs reads and the related principleElectrical power system rapid development to the relay protection to propose unceasingly the new request, the electronic technology, the computer technology and the communication rapid development unceasingly has poured into the new vigor for the relay protection technology development.The relay protection is refers when in the electrical power system electric power part (for example generator, line and so on) or electrical power system itself has occurred the breakdown endangers the electrical power system safe operation, can to the attendant promptly send out thewarning signal, or directly to the circuit breaker which controls sends out the trip order to terminate one kind of automated protection which these events develop, the relay protection equipment can monitor the electrical equipment the normal work situation, and sends out the prompt signal differently according to the normal work situation and the equipment movement maintenance condition, in order to the attendant carries on prompt processing, either carries on the adjustment automatically by the protective device, either continues these to move possibly can cause the accident electrical equipment to excise.Response normal work situation relay protection equipment common belt certain time-lag action.The relay protection principle of work mainly has used in the electrical power system the part has when the short circuit or the unusual situation the electrical quantity (electric current, voltage, power, frequency and so on) change as well as in transformer fuel tank when breakdown occurs the massive gas and the oil stream speed increase or the flowing tubing head pressure intensity increase the higher condition.The electrical power system request provides the safekeeping of security for it to continue the electricity installment to have following performance:(1) reliability. The reliability is refers to the protection to be supposed to move time the body should act reliably.Should not when the movement should reliable not act.The reliability is to the relay protection installment performance most basic request.(2) selectivity. The selectivity is refers first by the breakdown equipment logical 'OR' circuit itself protection excision breakdown, when the breakdown equipment logical 'OR' circuit itself protection or the circuit breaker resist moves, only then allows by the neighboring equipment to protect, the line protection or the circuit breaker malfunction protection excision breakdown.In order to guarantee has in the coordinate request protection and the identical protection has the coordinate request two parts (for example start and trip part or block system and movement part) the selectivity to the neighboring equipment and the line, its sensitivity coefficient and the operating time, should coordinate mutually in the ordinary circumstances.(3) sensitivity. The sensitivity is refers when the equipment logical 'OR' circuit occurs by the extent of protection in the metallicity short circuit, the protective device should have the essential sensitivity coefficient, each kind of protection smallest sensitivity coefficient has the specific stipulation in the regulations.Selectivity and sensitive request, through relay protection installation realization.(4) speed. The speed is refers to the protective device to be supposed to excise the short circuit breakdown as soon as possible, its date enhances the system stability, reduces the breakdown equipment and the line damage degree, reduces the breakdown to affect the scope, enhances automatic switches on again with the emergency power supply or the emergency apparatus automatic investment effect and so on.Third, relay protection in 11OKV power supply system Chen Ai function1. The guarantee continues the electricity system the reliability is plays the relay protection installment role the premise. Continues the electricity system the reliability is plays the relay protection installment role the premise.Generally speaking the relay protection reliability mainly by the disposition reasonable, the quality and the technical performance fine relay protection installment as well as the normal movement maintenance and the management guaranteed.2. Relay protection in electrical power system safe operation function. The relay protection mainly has following two points in the electrical power system safe operation function:(1) safeguard electrical power system security.When is protected when the electrical power system part breaks down, should rapidly accurately for be separated from the breakdown part recent circuit breaker by this part relay protection equipment to send out the trip order, causes the breakdown part to interrupt promptly from the electrical power system, by maximum limit reduces to the electrical power system part itself damage, reduces to the electrical power system safe power supply influence, and satisfies the electrical power system certain specific requests (for example maintenance electrical power system transition condition stable and so on).(2)pair of electrical power system normal work carries on the prompt.Responded the electrical equipment the normal work situation, (whether there is and different e.g. frequent attendant) does send out the signal according to the normal work situation and the equipment movement maintenance condition, in order to the attendant carries on processing, either carries on the adjustment automatically by the equipment, either continues these to move can cause the accident electrical equipment to excise.Response normal work situation relay protection installment permission belt certain time-lag action.(3) pair of electrical power system movement carries on the monitoring.The relay protection is not merely an accident processing and the response installment, simultaneously also is monitors the electrical power system normal operation the installment.The relay protection is the electrical power system safe normal operation important safeguard, at present oneself after obtained the widespread application, along with the science and technology unceasing progress, the relay protection technology presents day by day to the microcomputer, the network, the intellectualization, protects, the control, the survey and the data communication integration development tendency.110KV供电系统继电保护作用浅析电力系统的安全性和可靠性不仅关系到电力系统本身的运行,同样关系到送电范围内的厂矿、企业、居民能否正常用电。