线性变换的矩阵表示与坐标变换

合集下载

矩阵分析与计算--02-线性变换

矩阵分析与计算--02-线性变换

,n ) A , n ) B
基发生变化
A 与 B 的 关 系?
定理2 线性变换T 在不同基下的所对应的矩阵 是相似的
设T 在Vn的两个基1 , 2 , , n 及1 , 2 ,
,n ) P
, n
下的矩阵分别为A与B, 且有
(1 , 2 , , n)=(1 , 2 ,
线性变换的逆

基本性质
4)可逆线性变换把线性无关的向量组映射成向量 无关的向量组,即, 若x1 , x2 , 线性无关 xr 线性无关,则T ( x1 ), T ( x2 ), T ( xr )
线性变换的多项式

1.线性变换的幂
设T 为V中线性变换,n N , 定义 T T
n n
T
称之为T 的n次幂
T ( r 1 ) a1r 1 1 a2r 1 2 arr 1 r ar 1r 1 r 1 ,,anr 1 n T ( n ) a1n 1 a2n 2 arn1 r ar 1n r 1 ,,ann n
T( + )=T( )+T( ) T(k )=kT( )
, Vn
Vn , k P
则称T 为Vn到Vm的线性映射或线性算子
线性映射
Vn
Vm
T
应用:
T ( ) T ( )
k1T ( )
Vn , k2 P


k1
k2
k2T ( )
k1T ( ) k2T ( )
线性变换的逆
设T 为V的线性变换,若有V的线性变换S TS ST I 则称T 为可逆变换,称S 为T的逆变换, 记作T
-1
线性变换的逆

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
二、线性空间的定义 1、数域
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.

第三章第五讲 线性变换

第三章第五讲 线性变换

通识教育平台数学课程系列教材第一节向量空间第二节向量的线性相关性第三节向量空间的基及向量的坐标第四节欧氏空间第五节线性变换定义1一、线性变换的定义设σ是向量空间V 到向量空间W 的一个映射,如果σ满足:1) σ( α+ β) = σ( α) + σ( β),2) σ( k α) = k σ( α).其中α,β为V 中任意向量,k 为任意实数σ有上面的性质也说成σ保持向量的线性运算. 简言之,线性映射就是保持线性关系的映射.则称σ是V 到W 的一个线性映射. σ(α) 称为α在σ下的象,也可记为σα.§5 线性变换向量空间V 到其自身的线性映射称为V 中的线性变换.(1) 向量空间中变换的写法σ: ( x , y ) →( x + y , x -y ), (x , y ) ∈R 2σ( x , y ) = (x + y , x -y ), ( x , y ) ∈R 2注:(2)).()()(2121βαβασσσk k k k +=+可简写成σ(α+ β) = σ(α) + σ(β),σ(k α) = k σ( α).(3) 通常用花体字母T , S , … 来表示V 中的线性变换. 向量α在线性变换T 下的像,记为T (α) 或T α.上一页例1设A为n 阶实矩阵,对任意的n维行向量α,令T(α)=αA, α∈V.事实上, 设α, β∈V,因为T(α+ β) = (α+ β)A= αA+ βA= T(α) + T( β).T(kα) = ( kα)A = k (αA)= k T( α)故T是R n中线性变换.例2设V 是一向量空间,λ∈R . 对任意的α∈V ,令T (α) = λα,则T 是V 中的一个线性变换.所以T 是V 中的线性变换. 称这种变换为数乘变换.E (α) = α, O (α) = 0.上一页事实上, 设α, β∈V ,k ∈R ,因为T (α+ β) = λ(α+ β)= λα+ λβ= T (α) + T ( β).T (k α) = λ( k α)= k (λα)= k T (α)特别地,当λ= 1 时,T (α) = α,T 称为恒等变换,记为E ;当λ= 0时,T (α) = 0,T 称为零变换,记为O ,即例3R 3 中σ( x , y , z ) = (x , y , 0) 是线性变换.事实上, 设α= ( x 1, y 1, z 1) , β=( x 2, y 2, z 2)σ(α+ β) = σ( x 1+ x 2, y 1 + y 2, z 1+ z 2 )= ( x 1+ x 2, y 1 + y 2, 0)= ( x 1, y 1, 0) + ( x 2, y 2, 0)= σ(α) + σ( β).证σ(k α) = σ(k x 1, k y 1, kz 1 )= ( k x 1, k y 1, 0)= k (x 1, y 1, 0)= k σ( α).故σ( x , y , z ) = (x , y , 0) 是R 3 中线性变换,称之为R 3 中向xOy 面的投影变换.x y z ( x , y , z )(x , y , 0)0上一页例4在R 2 中,设0≤ θ<2π, 令σ:(x , y )→(x cos θ-y sin θ, x sin θ+ y cos θ)则σ是R 2的一个线性变换.称线性变换σ是绕原点按逆时针方向旋转θ角的旋转变换.xy ( x , y )0θ事实上,由σ( (x , y )+(x 1 , y 1))=σ(x +x 1, y +y 1)证上一页)cos sin ,sin cos (θθθθy x y x k +-=)cos sin ,sin cos (θθθθky kx ky kx +-=),()),((ky kx y x k σσ=).,(),(11y x y x σσ+=)cos sin ,sin cos (θθθθy x y x +-=)cos sin ,sin cos (1111θθθθy x y x +-+)]cos )(sin )(,sin )(cos )[(1111θθθθy y x x y y x x ++++-+=二、线性变换的性质和运算§5 线性变换定理1设T 是V 中的线性变换,则(1)T 把零向量变到零向量,把α的负向量变到α的像的负向量,即T ( 0 ) = 0, T ( -α) = -T (α).(2)T 保持向量的线性组合关系不变,即)(2211s sk k k ααα+++ T = k 1T (α1)+k 2T (α2)+…+k s T (αs )(3)T 把线性相关的向量组变为线性相关的向量组,即若α1, α2, …, αs 线性相关,则T (α1 ), T (α2), …, T (αs )也线性相关.定义2设L(V) 是向量空间V中的全体线性变换的集合,定义L(V)中的加法、数乘与乘法如下:(1)加法:(T+S)α= T ( α) +S (α) ;(2)数乘:(k T)α= k T (α) ;(3)乘法:(T S)α= T (S (α)) ,其中,α∈V,k∈R,T ,S ∈L(V).易验证,T +S,T S 以及k T 都是V 中的线性变换.§5 线性变换三、线性变换的矩阵设V 是一个m 维向量空间,α1,α2,…,αm 是V 的一组基.T 是V 的一个线性变换.(1)T (α1)=a 11α1+ a 21α2 + … a m 1αm ,T (α2)=a 12α1+ a 22α2 + … a m 2αm ,……………T (αm ) = a 1m α1+ a 2m α2 + … a mm αm ,可用矩阵形式表示为:设则设,,2211m m k k k V ααααα+++=∈∀ (k 1α1+k 2α2+…+ k m αm )= k 1T (α1)+k 2T (α2)+…+k m T (αm )因此,若已知基向量α1,α2, …,αm 在线性变换T 下的像,就可知道V 中任意向量在线性变换T 下的像了.= (α1, α2, …, αm )(T (α1), T (α2), …, T (αm ))⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mm m m m m a a a a a a a a a 212222111211A (T (α1), T (α2), …, T (αm ) ) = (α1, α2, …, αm ) A.称矩阵A 为线性变换T 在基α1, α2, …, αn 下的矩阵.记T (α1, α2, …, αm ) = (T (α1), T (α2), …, T (αm ) )则有T (α1, α2, …, αm ) = (α1, α2, …, αm )A因此,取定V 的一组基后,对于V 的线性变换T 有唯一确定的m 阶方阵A 与它对应.T A在给定基下一一对应(1)V 中的全体线性变换组成的集合L (V ) 与全体实m 阶方阵所成集合R m X m 之间存在一一对应关系.注意:(2)线性变换的和、数乘和乘法对应于相应的矩阵之间的和、数乘和乘法.(3)线性变换可逆(即存在V 的一个变换S ,使得TS =E )当且仅当T 对应的矩阵A 可逆,且T 的逆变换对应的矩阵就是A -1.例2例1R n 中恒等变换E (α) = α在每一组基下的矩阵为n 阶单位阵.R n 中零变换O (α)=0在任意基下的矩阵为零矩阵.R n 中线性变换T (α) = k α,k ∈R . T 在每一组基下的矩阵为数量矩阵k E n .例3求R 3 中的线性变换T (x 1, x 2, x 3)在标准基下的矩阵.T (e 1) = T (1, 0, 0 ) = (a 1 , b 1, c 1) = a 1e 1+b 1e 2+c 1e 3解所以T 在标准基下的矩阵为),,(332211332211332211x c x c x c x b x b x b x a x a x a ++++++=T (e 2) = T (0, 1, 0 ) = (a 2 , b 2, c 2) = a 2e 1+b 2e 2+c 2e 3T (e 3) = T (0, 0, 1 ) = (a 3 , b 3, c 3) = a 3e 1+b 3e 2+c 3e 3.321321321⎪⎪⎪⎭⎫ ⎝⎛=c c c b b b a a a A练习求R 2 中旋转变换σ(x , y ) = (x cos θ-y sin θ, x sin θ+ y cos θ)在标准基e 1= (1, 0), e 2= (0, 1)下的矩阵.σ(e 1) = (cos θ, sin θ) = cos θ⋅e 1+ sin θ⋅e 2,,σ(e 2) = (-sin θ, cos θ) = -sin θ⋅e 1+cos θ⋅e 2,,,.cos sin sin cos ),())(),((2121⎪⎪⎭⎫ ⎝⎛-=θθθθe e e e σσ解若设(x , y )的象σ(x , y )在e 1, e 2下的坐标为(x ', y ')则x ' = x cos θ-y sin θy ' = x sin θ+ y cos θ.cos sin sin cos ''⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛y x y x θθθθ四、象与原象的坐标变换公式设α1,α2, …, αn 是向量空间V 的一组基,线性变换σ在基α1, α2, …, αn 下的矩阵为A. 如果ξ与σ(ξ)在该基下的坐标分别为(x 1, x 2, …, x n ) 和(y 1, y 2, …, y n ),则(3)§5 线性变换得由n n y y y αααξ+++= 2211)(σ),,,(21n ααα =.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y nn x x x αααξ+++= 2211).()()()(2211n n x x x ασασασξσ+++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n x x x 2121))(,),(),((ααασσσ),,,(21n ααα =.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x A 将(3)与(4)比较得.2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y α的坐σ(α)的坐σ的矩(4)定理2设α1,α2,…,αn 是向量空间V 的一组基,线性变换σ在基α1,α2,…,αn 下的矩阵为A .如果ξ与σ(ξ)在该基下的坐标分别为(x 1,x 2,…,x n )和(y 1,y 2,…,y n ),则.2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y例4设σ是R 4的一个线性变换,对∀(x 1,x 2,x 3,x 4)∈R 4,σ(x 1,x 2,x 3,x 4)=(2x 1+x 2,3x 1-x 3,x 3,x 1+x 4),求σ在标准基ε1,ε2,ε3,ε4下的矩阵.σ(ε1) = σ(1, 0, 0, 0) = (2, 3, 0, 1)=2ε1+ 3ε2+ε4,σ(ε2) = σ(0, 1, 0, 0)= (1, 0, 0, 0)=ε1,,σ(ε3) = σ(0, 0, 1, 0) = (0, -1, 1, 0)=-ε2 + ε3,σ(ε4) = σ(0, 0, 0, 1) = (0, 0, 0, 1)=ε4.解因为))(),(),(),((4321εεεεσσσσ.1001010001030012),,,(4321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=εεεε所以σ在ε1, ε2, ε3, ε4下的矩阵为.1001010001030012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=A 上一页定理3设α1,α2,⋯,αm 和β1,β2,⋯,βm 是向量空间V 的两组基.线性变换σ在这两组基下的矩阵分别为A 与B ,从基α1,α2,⋯,αm 到基β1,β2,⋯,βm 的过渡矩阵是C ,则五、同一线性变换在不同基下的矩阵B =C -1AC .§5 线性变换线性变换与矩阵的对应关系是在取定了空间的一组基的情况下建立的.如果取不同的基,同一线性变换对应的矩阵一般是不相同的.于是得B =C -1AC.●●●由 证,),,(),,(2121A m m αααααα =σ,),,(),,(2121B m m ββββββ =σ.),,,(),,(2121C m m αααβββ =),,(21m βββ σ[][]C C m m ),,,(),,,(2121αααααα σσ==AC m ),,(21ααα =.),,,(121AC C m -=βββ (线性变换保持线性关系)定义4设A,B为两个n阶矩阵,如果存在可逆矩阵C,使得B=C-1AC,则称A与B相似,记作A~B.由定理3知线性变换在不同基下的矩阵是相似的;反之,若两矩阵相似,那么它们可以看作同一线性变换在不同基下的矩阵.定理设B=C-1AC,如果线性变换σ在基α1,α2,⋯,αn下的矩阵为A,且则σ在基β1, β2, ⋯, βn 下的矩阵为B.(β1, β2, ⋯, βn) = (α1, α2, ⋯, αn )C.σ基α1, α2, ⋯, αn下Aσ基(β1, ⋯, βn) = (α1, ⋯, αn)CBB = C-1AC.下上一页*相似是矩阵之间的一种关系,它具有下面三个性质:1. 反身性:A~A;2. 对称性:如果A ~B, 则B ~A;3. 传递性:如果A~B, B ~C, 则A~C.例2线性变换σ在基β1, β2下的矩阵为上一页设α1,α2与β1 , β2 是向量空间V 的两组基,由基α1,α2到基β1, β2的过渡矩阵为C ,线性变换σ在基α1,α2下的矩阵为求线性变换σ在基β1, β2下的矩阵B.,2111⎪⎪⎭⎫ ⎝⎛--=C ,0112⎪⎪⎭⎫ ⎝⎛-=A 解AC C B 1-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-2111011221111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=11011112.1011⎪⎪⎫ ⎛=定理4设σ是欧氏空间的一个线性变换,则下面几个命题等价:六、正交变换(1) σ是正交变换;§5 线性变换定义5设σ为欧氏空间V 中的线性变换, 如果对于任意的α, β∈V , 都有),,(),(βασβσα=则称σ为V 中的正交变换.(2) σ保持向量的长度不变,即对于任意的;)(,αασα=∈V 的标准正交基;也是的标准正交基,则是如果V V m m )(,),(),(,,,)3(2121ασασασααα (4) σ在任一组标准正交基下的矩阵都是正交矩阵.B =C -1AC .例6定义映射上述映射显然为一个线性变换,σ在标准正交基下的矩阵为(,)(cos sin ,sin cos ).x y x y x y σθθθθ=-+.cos sin sin cos ⎪⎪⎭⎫⎝⎛-=θθθθA .,为正交矩阵即且满足A E AA A A T T ==故坐标旋转变换是一个正交变换,它保持向量的长度不变.七、线性变换的特征值与特征向量§5 线性变换给定V 中的一个线性变换σ,是否存在V 的一组基,使σ在此组基下的矩阵为对角矩阵?事实上,的特征向量的属于特征值也是,非零实数的特征向量,则对任意的属于特征值是如果.λσξλσξk k 定义6设σ是向量空间V 的一个线性变换,如果存在实数λ和V 中一非零向量ξ,使得λξξ=)(σ那么λ称为σ的一个特征值, ξ称为σ的属于特征值λ的一个特征向量.1.线性变换的特征值与特征向量的概念例7设σ是数乘变换:σ(α)=λα, α∈V,则λ是σ的特征值,V中非零向量都是σ的属于特征值λ的特征向量.2. 线性变换可对角化的条件定理5设V为m维向量空间,为V中的一个线性变换.那么存在V的一组基,使得σ在这组基下的矩阵为对角矩阵的充要条件是σ有m个线性无关的特征向量.设σ可对角化, 则存在V 的一组基α1, α2, ⋯αm , 使σ在此基下的矩阵为对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m Λλλλ 21即σ(α1, α2, …, αm ) = (α1, α2, …, αm )Λ证则mi i i i ,2,1,)(==ααλσ反之,如果σ有m 个线性无关的特征向量,就取它们为基,则σ在此基下的矩阵就是对角形矩阵.因此α1,α2,⋯αm 就是σ的m 个线性无关的特征向量.上一页注意:从以上证明可知,如果线性变换σ在某一组基下的矩阵为对角阵A ,则这组基由σ的特征向量组成,且矩阵A 的对角元就是线性变换σ的特征值.方阵与线性变换是一一对应的,可类似引入方阵的特征值与特征向量的概念.3.矩阵的特征值与特征向量的概念定义1设A 是一个m 阶实方阵, 如果存在实数λ和非零的m 维列向量ξ, 使得λξξ=A 那么λ称为方阵A 的一个特征值, ξ称为A 的属于特征值λ的一个特征向量.(1)设m 阶方阵A 是m 维向量空间V 上线性变换σ在一组基下的矩阵,则λ是σ的特征值的充要条件是λ为矩阵A 的特征值.结论:从线性变换与矩阵的对应关系可得如下结论.设R m 中线性变换σ在基α1, α2, …, αm 下的矩阵为A . 即的特征向量于特征值的属是矩阵是的特征向量的充要条件征值的属于特是线性变换则为下的坐标中非零向量,它在基为..),,,(,,,2121λλσξαααξA X x x x X V Tm m =(2)m 阶矩阵A 可对角化的充要条件是A 有m 个线性无关的特征向量.即m 阶矩阵A 相似于对角矩阵的充要条件是A 有m 个线性无关的特征向量.σ的特征值= A 的特征值ξ= (α1, α2, …, αm ) XA 的属于λ的特征向量σ的属于λ的特征向量练习设R 2 的线性变换σ为σ: (x 1, x 2)→(2x 1+ 4x 2, -x 1),求σ在基α1= (1, -1), α2= (-1, 2) 下的矩阵.上一页σ在标准基ε1, ε2下的矩阵为,0142⎪⎪⎭⎫ ⎝⎛-=A 而由ε1, ε2 到α1, α2 的过渡矩阵为,2111⎪⎪⎭⎫ ⎝⎛--=C 解那么σ在α1, α2 下的矩阵为B =C -1AC ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-2111014221111⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=211101421112.73135⎪⎪⎭⎫ ⎝⎛--=。

第五章 线性变换 S2 线性变换的矩阵

第五章 线性变换 S2 线性变换的矩阵
522522的过渡矩阵为m即14由线性变换在同一基底下矩阵的唯一性可知这就是线性变换在不同基底下的矩阵之间的关系15矩阵间bm1am这种关系可以用一个新的概念来描述性质ii对称性iii传递性定义设ab为两个n阶矩阵
第五章 线性变换
第二节 n维线性空间中线性 变换的矩阵
只讨论n维线性空间V上的线性变换T. 研究线性变换T和n阶矩阵之间的关系.
x11 x2 2
xn n
又T是线性变换,(保持线性组合不变)必有
2
T T ( x1 1 x2 2 x1T 1 x2T 2
xn n ) xnT n
(1)
这说明当已知 T 1 ,T 2 , ,T n 时,每个向量的象 由(1)确定,即线性变换被完全确定.
T x2 x 3 x3 x1
求T在基底
1 0 0 e1 0 , e2 1 , e3 0 0 0 1
下的矩阵A.
解:由T的定义知 1 0 1
T [T 1 , T 2 , x2 ,T n ] [T 1 , T 2 , x n
xnT n
,T n ]X
(3)
T [T 1 , T 2 ,
(2)代入(3)得到
, T n ] X ( 1 , 2 ,
T ( 1 , 2 ,
, n M ) (T 1 , 2 ,
, n ) M
[T 1 ,T 2 ,
1 ,2 ,
,T n ]M 1 , 2 ,
,n M AM
1
, n AM

线性变换的相关知识点总结

线性变换的相关知识点总结

线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。

2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。

根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。

二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。

设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。

线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。

由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。

另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。

线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。

因此,矩阵表示是研究线性变换的重要工具。

三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。

设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。

这里的λ就是T的特征值,v就是T的特征向量。

工程数学第六章 线性变换

工程数学第六章 线性变换
第六章




例5. 下列变换:
σ1:(a1, a2, …, an) →(a1, 0, 0, …, 0); σ2:(a1, a2, …, an) →(a1, a2, a3, …, an−1, 0); σ3:(a1, a2, …, an) → k(a1, a2, a3, …, an); σ4:(a1, a2, …, an) → ( ∑ b1 j a j , ∑ b2 j a j ,L, ∑ bnj a j )
= k1σ (α1 ) + k 2σ (α 2 ) + L + k sσ (α s );
(3) 若α1, α2, …, αs 线性相关,则 σ (α1 ), σ ( α2), …, σ ( αs)也线性相关.
第六章




§2 线性变换和矩阵
R2 中变换σ (x, y)=(2x+y, x−3y) 是一个线性变换.
x' cosθ = y ' sin θ
象的坐标
− sin θ x cos θ y
原象的坐标 第六章




二、象与原象的坐标变换公式
设 ξ∈V, ξ 在基α1, α2, …, αn下的坐标为(x1, x2, …, xn ), 设 σ (ξ )在基 α1, α2, …, αn下的坐标 为 (y1, y2, …, yn ), 则
y1 y2 M =A y n
σ(α)
的 坐 标
x1 x2 M x n
α
的 坐 标 第六章
σ
的 矩 阵

程 定理1 定理

线性变换的矩阵表示

线性变换的矩阵表示线性变换是数学中的重要概念,它在许多领域都有广泛应用。

线性变换可以通过矩阵表示,这种表示形式方便计算和讨论线性变换的性质。

本文将介绍线性变换的矩阵表示以及相关概念和性质。

1. 线性变换的定义线性变换是指满足以下两个条件的映射:(1) 对于任意向量u和v以及实数a和b,线性变换T满足T(a*u +b*v) = a*T(u) + b*T(v)。

(2) 线性变换T对于向量的加法和数乘运算封闭,即T(u + v) = T(u) + T(v),T(k*u) = k*T(u)(k为实数)。

2. 矩阵表示的意义线性变换的矩阵表示可以将线性变换转化为矩阵的乘法运算,从而方便计算和分析线性变换的性质。

对于任意线性变换T,可以找到一个矩阵A,使得对于任意向量u,有T(u) = A*u。

矩阵A被称为线性变换T的矩阵表示。

3. 线性变换的矩阵表示方法线性变换的矩阵表示可以通过以下步骤得到:(1) 选择标准基下的基向量,分别记作e1, e2, ..., en。

(2) 对于每个基向量ei,计算线性变换T(ei)的坐标表示,得到矩阵A的第i列。

(3) 将所有计算得到的列向量排列起来,得到矩阵A。

4. 矩阵表示的性质线性变换的矩阵表示具有以下性质:(1) 线性变换的合成对应于矩阵的乘法。

对于线性变换T1和T2,它们的矩阵表示分别为A和B,则它们的合成线性变换对应的矩阵表示为A*B。

(2) 线性变换的逆对应于矩阵的逆。

若线性变换T存在逆变换,它们的矩阵表示分别为A和A^-1,则逆变换对应的矩阵表示为A^-1。

(3) 线性变换的像空间和核空间可以通过矩阵表示进行刻画。

像空间对应于矩阵的列空间,而核空间对应于矩阵的零空间。

5. 矩阵表示的例子考虑一个二维平面上的旋转变换,将向量绕原点逆时针旋转θ度。

选择标准基下的基向量为e1 = (1, 0)和e2 = (0, 1)。

对于基向量e1,旋转变换后的坐标表示为cosθ*e1 - sinθ*e2。

线性变换的矩阵表示式


0 1 0 0 0 2 A 0 0 0 0 0 0
0 0
n 1
0
例3 在 R3中,T表示将向量投影到xOy平面的线性
变换,即
(1)取基为Ti(,xji,
k,
yj zk) xi 求T的矩阵;
yj ,
(2)取基为
i ,
j,
i
j
k,
求T的矩阵.
解 即
Ti i ,
(1)
TTkj
j, 0,
1
T (i , j , k ) (i , j , k ) 0
0 1
0 0.
0 0ቤተ መጻሕፍቲ ባይዱ0
T i ,
(2)
T T
j ,
i j
,

1 0 1
T ( , , ) ( , , ) 0 1 1.
0 0 0
此例表明:同一个线性变换在不同的基下一般 有不同的矩阵.
i 1
i 1
x1
(T ( 1),T (
2),
,T (
n))
x2
xn
x1
( 1 , 2 , , n)A x2 ,
xn

T ( 1 , 2 ,
,
n)
x1 x2
( 1 , 2 ,
,
n) A
x1 x2 .
x
n
xn
上式唯一地确定了一个变换T ,并且所确定的 变换T是以A为矩阵的线性变换.
x
n
xn
可知 : 在基 1 , 2 , , n下,
的坐标为
x1
x2 ;
xn
T ( )的坐标为
x1
T ( ) A x2 .

1-2 线性变换及其矩阵表示


定理2:设x1,x2,…,xn是数域K上n维线性空间V的一 组基,在这组基下,V上的每一个线性变换都与 Kn×n中的唯一一个矩阵对应,且具有以下性质: ① 线性变换的和对应于矩阵的和; ② 线性变换的数量乘积对应于矩阵的数量乘积; ③ 线性变换的乘积对应于矩阵的乘积; ④ 可逆线性变换与可逆矩阵对应,且逆变换对应 于逆矩阵。 推论1:设T是线性空间V的一组基x1,x2,…,xn下的 f 矩阵, ( x ) am x m am 1 x m 1 a1 x a0 , 则线 性变换f(T)在同一组基下的矩阵是: f ( A) am Am am 1 Am 1 a1 A a0 I .
2. 线性变换的矩阵表示
(a) 线性变换在给定基下的矩阵表示 设x1,x2,…,xn是n维线性空间V的一组基,T是V上 的线性变换。
对于V中的任意一个向量x,必存在数域K中的一 组数k1,k2,…,kn使得 x k1 x1 k2 x2 kn xn , 从而有 T ( x ) k1T ( x1 ) k2T ( x2 ) knT ( xn ). 这表明,T(x)由T(x1),T(x2),…,T(xn)完全确定。
设T为线性空间V的线性变换,若有V上的变换S 使得:TS=ST=Te,则称T为可逆变换,并称S为T 的逆变换,记为S=T-1。 1. 可逆变换的逆变换仍然是线性变换。 2. 线性变换T可逆当且仅当T是一一对应。 3. 可逆线性变换把线性无关的向量组变成线性无 关的向量组。 4. 设x1,x2,…,xn是线性空间V的一组基,T是V上的 线性变换,则T可逆当且仅当T(x1),T(x2),…,T(xn)也 是V的一组基。 (T1T2 )1 T21T11 . 5. 若T1,T2都是可逆变换,则

3线性变换及其矩阵表示


此公式在工程和物理中被称为 叠加原理。如果 u1 , u2 ,u p 分别是某个 系统或过程的输入信号向量,则 T (u1 ), T (u2 ),T (up ) 可 分别 视为 该系 统 或过程的输出信号向量。
判断一个系统是否为线性系统的判据 如果系统的输入为线性表达式
y k1u1 k 2 u2 k p u p ,则当系统的输
T (k1α k2 β) k1T (α) k2T ( β)
n u , u , u V 更一般地,若 1 2 ,反 p
复使用上面公式可得
T (k1u1 k2 u2 k p u p ) k1T (u1 ) k2T (u2 ) k pT (u p )
使 T1 1 , T 2 2 ,
则有 1 , 2 Vn ,
从而 1 2 T1 T 2 T 1 2 T Vn ,
因1 2 Vn ; k1 kT1 T k1 T Vn , 因k1 Vn ,
§3
线性变换及其矩阵表示
一、线性变换的引入
在技术科学、社会科学和数学的一些分支中,不
同向量空间之间的线性变换起着重要的作用。因此, 为了研究两个向量空间之间的关系,有必要考虑能够
从一个向量空间到另一个向量空间的转换关系的函数。 事实上,在我们的日常生活中,也经常遇到这种 转换。当我们欲将一幅图像变换为另一幅图像时,通 常会移动它的位置,或者旋转它。例如,函数就能够 将图像的坐பைடு நூலகம்和坐标改变尺度。根据和大于1还是小 于1,图像就能够被放大或者缩小。
在 Vn 中取定一个基 1 , 2 ,, n ,如果这个基 在变换T下的象为
定义 设T是线性空间 Vn 中的线性变换,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性变换的矩阵表示与坐标变换线性变换是线性代数中非常重要的概念之一。

它是指将一个向量空
间中的向量按照一定的规则进行变换的操作。

线性变换可以通过矩阵
进行表示,并且与坐标变换之间存在着紧密的联系。

一、线性变换的定义与性质
线性变换是指满足以下两个性质的向量空间之间的映射:
1. 对于任意的两个向量u和v,线性变换T(u+v) = T(u) + T(v);
2. 对于任意的标量k和向量u,线性变换T(ku) = kT(u)。

线性变换具有一些重要的性质:
1. 零向量的线性变换结果仍为零向量:T(0) = 0;
2. 线性变换保持向量空间中向量间的线性组合关系;
3. 线性变换将向量空间中所有向量的零向量映射到目标向量空间的
零向量。

二、矩阵表示线性变换
线性变换可以通过矩阵来表示。

假设V和W是两个向量空间,维
数分别为n和m,线性变换T: V→W可以表示为一个m×n的矩阵A。

对于向量v∈V,其在基底B={b1,b2,...,bn}下的坐标表示为[v]B =
[x1,x2,...,xn]^T,T(v)在基底B'={b1',b2',...,bm'}下的坐标表示为[T(v)]B'
= [y1,y2,...,ym]^T,则矩阵A表示了从基底B到基底B'的坐标变换关系。

具体而言,矩阵A的第j列为T(bj)在基底B'下的坐标表示的列向量。

通过矩阵向量乘法,可以得到变换后向量的坐标表示。

即:[T(v)]B' = A[v]B
三、从坐标变换到线性变换
以上我们讨论了线性变换如何通过矩阵表示,现在我们来看看如何
从给定的坐标变换得到对应的线性变换矩阵。

考虑二维向量空间的坐标变换示例。

假设向量空间V的基底为
B={e1,e2},向量空间W的基底为B'={e1',e2'}。

将V中的向量v表示
为[v]B = [x1,x2]^T,W中的向量T(v)表示为[T(v)]B' = [y1,y2]^T。

有如
下的坐标变换关系:
[y1,y2]^T = A[x1,x2]^T
我们需要求解的就是矩阵A。

对于基底B中的向量e1和e2,它们
在基底B'下的坐标表示分别为T(e1)=[a11,a21]^T和T(e2)=[a12,a22]^T。

通过代入基底的表示,我们可以得到矩阵A的表达式:
A = [a11,a12;
a21,a22]
经过坐标变换后,向量空间V中的向量v经过线性变换T(v)后的坐
标为[y1,y2]^T,而通过矩阵A与向量v的坐标[x1,x2]^T的乘法运算,
我们可以得到同样的结果。

四、线性变换的应用
线性变换在许多领域中都有广泛的应用。

在计算机图形学中,线性变换被广泛应用于三维空间中的物体的旋转、缩放和平移等操作。

在工程学中,线性变换用于描述电路网络中的电流与电压之间的关系。

在机器学习和数据分析中,线性变换用于特征提取、降维和模式识别等任务。

总结:
线性变换是向量空间中的重要概念,通过矩阵的乘法运算可以方便地表示线性变换,并且与坐标变换之间存在着密切的联系。

线性变换具有一些重要的性质,能够保持向量间的线性组合关系。

线性变换在计算机图形学、工程学和机器学习等领域中有着广泛的应用。

通过对线性变换的深入理解,我们可以更好地理解和应用线性代数。

相关文档
最新文档