热水锅炉的氧腐蚀及其防止

热水锅炉的氧腐蚀及其防止
热水锅炉的氧腐蚀及其防止

热水锅炉的氧腐蚀及其防止

近几年来,由于贯彻执行 GB1576-1996 《低压锅炉水质标准》,锅炉损坏率大大降低。但是,通过现场调查发现我处的热水锅炉氧腐蚀的问题却变得突出起来。

热水锅炉因温度低、水容量大,而且无明显的蒸发和浓缩现象,锅水中杂质的结垢速度缓慢得多。在给水硬度符合要求的条件下,热水锅炉的损坏主要是由于锅炉的氧腐蚀。

热水锅炉循环水量大。带入锅内的溶解氧也多,由于溶解氧的存在,金属铁会在锅水中发生电化学腐蚀,产物被带到受热面上,容易与其他杂质形成导热性能极差的氧化铁垢,随着氧化铁垢的增多,导致锅筒鼓包、爆管等,而且还会发生垢下腐蚀。若构件表面吸附的水膜呈酸性或碱性,金属构件会发生吸氧腐蚀,随着锅水温度、 pH 值及溶解氧含量的变化,可生成铁垢。

锅水中溶解氧浓度不同,会引起金属表面电位发生变化,形成浓差腐蚀,氧浓度大的部位失去电子,发生氧化反应,溶解氧浓度越大,相应的电极电位越高,腐蚀越严重。为了防止溶解氧分布不均造成的浓差腐蚀,除进行必要的水处理之外,还要注意采用焊接结构的构件,焊口上不要出现焊瘤、咬边、未焊透等缺陷。

溶液的 pH 值对金属的腐蚀会产生很大的影响。由于 pH 值代表溶液中的氢离子浓度的大小, pH 值低即溶液中氢离子浓度大,能使金属产生腐蚀现象。一般说来,溶液的 pH 值越低,溶液中的金属或与该溶液接触的金属越容易产生腐蚀。当有溶解氧存在时,pH 值的改变对金属腐蚀影响更大。由图 1 可以看出,当溶液的 pH 值在某一范围内,铁的腐蚀速度差不多是稳定的,当 pH 值为 12 时,铁的腐蚀速度受氧气浓度的影响不大,几乎为 0 。

在锅炉运行中我们进行了大量的数据分析, pH 值小于 6 时,腐蚀速度随 pH 降低迅速增加; pH 在 6~10 之间,含氧量的高低决定腐蚀速度的高低; pH 值在 10~12 之间时,腐蚀速度随 pH 值的增加而降低; pH 值为 12 小时,腐蚀速度几乎很小。

由此可见,锅炉正常运行时,控制锅水pH值有10?12范围内,可以使金属表面形成一层稳定的保护膜,造

成阳极钝化,从而大大降低锅炉的腐蚀速度。

通过以上分析和大量现场调查,对于采暖用锅炉,防止氧腐蚀的发生,采取以下措施较好:

(1)控制锅水的 pH 值

控制锅水的pH值在10?12范围内,从而在金属表面形成一层保护膜,可以避免或减少氧腐蚀的发生。但在实际运行中锅水的 pH

值有时发生变化,那么当 pH值V 10时,我们可以采用向锅内投加一定量的碱性药剂的方法以提高锅水的 pH 值。对冬季采暖的热水锅炉建议投加氢氧化钠或碳酸钠,其计算方法如下:

Na2CO3 的加入量 G=(H+JD炉-p-a).53(g/t 水)

NaOH的加入量 G=(H+JD炉/P).40(g/t水)式中G—

Na2CO3固体的加入量(g)

H=非碳酸盐硬度(mmol/L)

JD炉一炉水的碱度(mmo1/L)

P—锅炉排污率

a—碳酸钠的当量数

值得注意的是:以上两个计算公式适合含有非碳酸盐硬度的水质,根据以上公式计算出来的药品用量,还

需要在实践中根据炉水的变化进行调整,以使炉水的pH 值保持在 10?12 范围内。

(2)给水除氧

GB1576-96《低压锅炉水质标准》中规定:热水锅炉额定功率大于等于

4.2MW 时应除氧,额定功率小于 4.2 的锅炉应尽量除氧。根据这一要求,我处采用的除氧方法主要有

炉内加药法、真空除氧、海棉铁除氧、和被膜罐保护等。

炉内加药主要是加入亚硫酸钠进行除氧,亚硫酸钠作为还原剂和水中的溶解氧反应,以除去溶解氧。其方程式为:

2Na2SO3+O2=2Na2SO4,这里值得注意的是,操作过程中,亚硫酸钠的配制与储存应在密闭的、不和空气

接触的容器内进行,以防氧化而达不到预期的目的。操作过程中,如水已预热,则维持2m1/ L 即可,

对每吨已加热的除氧水,一般加 3~4kg 亚硫酸钠,而且亚硫酸钠和氧气反应时温度越高则作用越快,实践证明在80 C时,在1分钟内二者可完全反应。

真空除氧器是在低于大气压下进行除氧的,要想使其有效的运行,需注意以下几个方面:① 在运行中,

必须保持进行温度处于相应真空度的沸点,否则稍不注意便不能保持它的负压,因此必须注意运行中的调节。

② 必须使整个系统保持真空运行。为此整个系统必须十分严密,包括阀门、管道、泵等。管道的联接须要用焊接,不宜用法兰,否则应在联接处涂一层隔离层。以免漏入空气,破坏除氧效果。③ 注意进水温度保持在

真空度的沸点以上 0.5?1.0 C。此外,喷射器对于除氧效果的好坏也至关重要。

(3)在热水系统中合理布置排气装置

在热水系统中合理布置排气装置,有利于排出系统内的空气和由于加热从水中析出的气体,从而减少氧腐蚀的发生。我处热水采暖系统供水管线的末端应选择性能好的集气罐、自动放气阀,及时排出气体,达到除氧目的。

(4)加强对停用锅炉的保养工作

在热水锅炉的管理中还加强了停用期间的保养工作。我处在非供暖期每年将近八个月的时间,如保养不当对锅炉的损害是很大的。对于停用和备用的锅炉我们主要采用加入干燥剂法,保养锅炉常用的干燥剂及它们的加入量如表 1 :

(表略)

效益分析:我处 6t/h 以上的热水锅炉有 20 台,更换由于氧腐蚀损坏的部分对流管束每台需要6~7 万元,

20 台共需 140 万元。我们采取以上相应措施后,可以有效的防止热水锅炉氧腐蚀的发生,延长我处热水锅炉的使用寿命,保证锅炉安全、经济运行。

锅炉垢下腐蚀机理

垢下腐蚀简介 1、定义 垢下腐蚀under-deposit corrosion:金属表面沉积物产生的腐蚀 2、腐蚀机理 一种特殊的局部腐蚀形态,其机理是由于受设备几何形状和腐蚀产物、沉积物的影响,使得介质在金属表面的流动和电介质的扩散受到限制,造成被阻塞的的空腔内介质化学成分与整体介质有很大差别,空腔内介质pH值发生较大变化,形成阻塞电池腐蚀(Occude cell corrosion),尖端的电极电位下降,造成电池腐蚀。按其腐蚀原理可分为酸性腐蚀和碱性腐蚀两种,通常循环冷却系统的垢下腐蚀为酸性腐蚀。 结垢是指在冷却水中所含成垢组分在水侧金属表面的结垢过程,污垢是包括水垢在内的固形物的集合体。常见的污垢物有:泥渣及粉尘砂粒,腐蚀产物,天然有机物群生物群体,一般有碎屑、氧化铝、磷酸铝、磷酸铁和污垢的沉积,冷却塔的污垢来自于以下几个方面:①来自补充水的污垢。②来自空气污垢。③来自系统本身的污垢。 微生物是一些细小多为肉眼看不见的生物,微生物的种类有细菌、藻类、真菌和原生动物,微生物在冷却水系统中大量繁殖,会使冷却水颜色变黑,发生恶臭。破坏环境,同时会形成大量粘泥使冷却塔的冷却效率降低,使效率迅速降低的水头损失增加,沉积在金属表面的菌类,会引起严重的垢下腐蚀所有这些总是导致冷却水系统不能长期安全运转影响生产,造成经济损失。因此,微生物危害与水垢腐蚀对冷却水的危害是一样的重要三者比较起来控制微生物的危害应是首要的。冷却水的微生物有以下种类:有真菌、硫酸菌、还原菌、自养菌、异样菌、硫细菌、铁细菌、硝化菌、藻类,藻类是低级的绿色植物,没有要茎叶的分化固然又叫原植体植物,藻类与菌类的主要区别在于具有色素体的色素,能进行光合作用。制造营养物质是光合自养型生物,在循环冷却水系统,常出现的有蓝绿藻、绿藻、硅藻三大类,在循环冷却水池,冷却塔受光照的部分生长繁殖枯死的藻类进入循环冷却系统成为沉积物的一种成份,金属的垢下腐蚀是由于其本身电化学腐蚀存在自催化作用,酸腐蚀是氢的去极化作用(2H++2e→H2),腐蚀产物主要是可溶性盐,这些盐类的水解使介质的酸性进一步增强,加速了金属的腐

浅谈低压锅炉氧腐蚀及其对策

编号:AQ-JS-02987 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 浅谈低压锅炉氧腐蚀及其对策Discussion on oxygen corrosion of low pressure boiler and Its Countermeasures

浅谈低压锅炉氧腐蚀及其对策 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 本文就低压工业锅炉普遍存在,且较为严重的腐蚀——氧腐蚀,从理论上对其机理、特征及影响因素和发生过程加以阐述论证,并结合自己近年来进行锅炉检验的实际体会,提出防止对策,以期对锅炉的防腐有所帮助。 一、锅炉的氧腐蚀现状 近年来,随着南平市经济的发展,锅炉数量增加很快,总数已达1500台左右,从每年的定期检验情况看,由于不按GB1576—2001的要求进行除氧,不能有效地控制给水和锅水指标,锅炉自身结构的缺陷,运行方式不合理,锅炉保养跟不上等,导致锅炉受力部件的氧腐蚀现象很严重。据统计,不同程度的氧腐蚀锅炉台数约占总数的10%(尤以采暖热水锅炉的氧腐蚀最为严重)。在这10%的锅炉中,轻者使受力部件的壁厚减薄,降低了锅炉的使用寿命,重者使元件无法满足强度要求,需要修理或报废,更严重者达到了临

界爆炸的状态,直接威胁着人们的生命财产安全。就南平市来说典型例子如下:(1)某单位的DZL2—7蒸汽锅炉右集箱(φ159×6mm)中底部,在停炉检验时发现有—φ120mm的溃疡腐蚀,经铲除腐蚀物,发现剩余壁厚仅0.5mm。(2)某厂生产用锅炉DZL4—13,刚运行六年,因氧腐蚀问题,锅炉只能降压运行,无法满足要求而报废。 (3)某养殖场SZL4—1.25型蒸汽锅炉改热水锅炉,锅筒内壁大面积溃疡腐蚀,深度达3.0mm,锅内胀接管端溃疡腐蚀,管头剩余厚度仅0.5mm。 二、腐蚀的机理和特征 按机理,可把腐蚀分为化学腐蚀和电化学腐蚀两大类。一般化学腐蚀无电流产生,电化学腐蚀伴有电流的产生。对锅炉受力元件来说,水侧以电化学腐蚀为主,火侧(或烟气侧)以化学腐蚀为主。氧腐蚀实际上是一种电化学腐蚀,其机理为:由于锅炉水是一种有极性的电解质,在水的极性分子的吸引下,钢材表面的一部分铁原子,开始移入炉水而成为带正电的铁离子,而钢材上保留多余的电子带负电荷。若铁离子不断进入锅水,则使钢板(管)上逐渐出现坑洞,产

水垢的形成机理、类型及清洗对策

水垢的形成机理 工业锅炉在使用过程中,由于给水水质不符合要求,以及操作管理不善等原因,在锅筒、管壁及汽包等部位会产生水垢,水垢形成的机理是比较复杂的。 2.1 给水水质 工业锅炉几乎都是以原水或软化水作为给水,给水使锅炉产生水垢的原因比较多。水垢的形成过程是难溶盐的沉积过程,当炉水温度升高时,炉水中的盐类发生浓缩,当其浓度超过该温度下的溶解度时就会产生沉积;有些盐类,如硫酸钙、硫酸镁、磷酸钙等则随温度升高溶解度下降并析出;在炉水中,当二氧化硅的浓度对碱度而言偏高时也会析出;而可溶性重碳酸盐,如碳酸二氢钙、碳酸二氢镁则受热分解,产生难溶性盐也会导致沉积。 如:O H CO CaCO CO H Ca 223232)(+↑+?→?? 水垢产生的严重程度与给水水质有着非常密切的关系,锅炉给水分原水与软化水。 原水:也称生水,是未经任何处理的天然水(如江河水、湖水、地下水等),一般由自备水源(地面水或地下水)或城市供水网取得,这种水水质差别很大,城市或市郊取用经过过滤处理的自来水水质较稳定,直接采用地下水的水质硬度大。有些单位取用附近未经过滤处理的江河水,水质不稳定,水中含有悬浮物、胶体物质及各种溶解性杂质,尤其是下雨季节,水中混有泥砂,水是黄色浑浊的。我们曾遇见过某厂在雨天用这种水作给水,使用这种水的锅炉极易沉积泥砂垢或泥砂与水垢结成一体的混合垢。 软化水:常用钠离子交换水或炉内处理水,前者应用最多。经钠离子交换树脂处理的水,其硬度一般能满足工业锅炉的要求,司炉中只要定时排污,水垢不易沉积。但是有些单位,因为水处理设备容量小,处理的水量不足,有时则向炉内补充部分原水,从而加快了水垢的沉积。 采用炉内加药处理的水,往往由于加药量不足或加药不及时及排污不严格等

锅炉汽水系统的腐蚀问题和防腐措施分析

锅炉汽水系统的腐蚀问题和防腐措施分析 发表时间:2018-04-19T12:34:26.280Z 来源:《防护工程》2017年第35期作者:孙悦龙 [导读] 其设备的腐蚀问题也愈发凸显,这也为本设备防腐措施研究带来了极大的现实意义,进一步加强对其的研究非常有必要。 宁夏特种设备安全技术检查中心宁夏银川 750200 摘要:锅炉汽水系统如果不采取适当的保护措施,进入锅炉内的氧气会很容易使潮湿的金属表面产生腐蚀。因此,在采用适当的保护,对防止锅炉腐蚀,延长锅炉的使用寿命,有着重要的意义,需要进一步加强对其的研究。基于此本文分析了锅炉汽水系统的腐蚀问题和防腐措施。 关键词:锅炉汽水系统;腐蚀问题;防腐措施 1、腐蚀类型及特征 1.1、气体腐蚀 在中性或碱性介质中发生的气体腐蚀,其基本特征是:在金属表面上形成点蚀或溃疡腐蚀。在腐蚀部位,一般均有突起的腐蚀产物,从表面上看,似乎是一层均匀面较厚的锈层,锈层下面的金属表面有许多高低不同的点蚀坑。 当给水中含有溶解氧时,它的危害主要表现在以下几个方面:破坏金属表面的保护膜使它变成铁锈而脱落,反应式为: 从上式可见,水中的CO2越多,生成的H+就越多,pH也就越低,引起氢去极化腐蚀,当水中同时存在CO2和O2时,阴极上则同时存在H+和O2去极化剂,使腐蚀加剧。 1.2、水蒸汽腐蚀 这种腐蚀主要发生在锅炉受热面水流动工况不良的部位。如发生水汽分层,水流不畅等部位,水汽腐蚀的特征是在金属表面上有一层紧密的“鳞片”状氧化铁层,下面的金属出现较大面积的减薄。 1.3、应力腐蚀 锅炉金属产生应力腐蚀破裂时,常发现裂纹周围附有炉水中的固体盐类,在裂纹内还有灰黑色的腐蚀产物。苛性脆化腐蚀就是由于锅炉金属在过应力的条件下与水在裂缝中浓缩的氢氧化钠作用而引起的。 1.4、腐蚀疲劳 当受热面受到交变热应力,并同时受电化学腐蚀时,金属的疲劳极限大大降低,形成穿晶裂缝,这种情况称为腐蚀疲劳。其特征是金属产生了裂纹或破裂。裂纹大多在表面上的一些点蚀坑处延伸或在氧化膜破裂处向下发展。锅炉汽包或下降管等部位常发生腐蚀疲劳问题。 2、锅炉汽水系统防腐措施 2.1、除氧可以采取热力除氧和化学除氧两种方法 给水热力除氧通过热力除氧器来实现,这种除氧方法,可将水中绝大部分的溶解氧除去。根据气体溶解定律,热力除氧法不仅能除去水中的溶解氧,而且也可以除去水中其它各种溶解气体,包括大部分的游离CO2。电厂中用得最广的为混合式除氧器,在除氧器中,给水与加热用的蒸汽直接接触,把水加热到相当于除氧器压力下的沸点,从而除去水中的气体。运行过程中,应注意除氧器汽量和水量的调节,以及排氧门大小的调节,及时排出氧气;稳定的补给水量和随工况的调整是保证除氧器正常工作的前提。 给水化学除氧是通过向给水中加入化学药品,使其发生反应,从而除去水中残留的溶解氧的过程。向给水中加入联氨可以有效地起到去除溶解氧的效果。联氨是一种还原剂,它可以与水中的溶解氧结合,将其还原,产物为氮气和水,这两种物质对热力系统没有任何害处,同时联氨还可以将金属氧化物还原,防止汽包内结成铁垢和铜垢。运行过程中要控制好联氨的加药量,根据随时监控到的含氧量进行及时的调节。 2.2、合理调节炉水pH值 为防止给水对金属的腐蚀,除了消除其含氧量外,还可以调节给水的pH值。因为随着pH值的增大,金属的腐蚀明显减少,调节给水pH值的方法是在给水中加氨。 由于水中含有游离的CO2,所以加入氨水就相当于用氨水的碱性来中和碳酸的酸性。时间表明,若加入适量的氨,能起到很好的中和作用,防止系统的酸性腐蚀。同样,我厂加氨的位置也设置在除氧器出口管道上,在运行过程中很好地起到了pH调节的作用,将给水,炉水等的PH值调整在最合理的范围内,保证了机组安全、经济地运行。 2.3、适当减少应力腐蚀 要合理设计锅炉给水系统,保持设备的正常启停工况,必要时做到对炉水中敏感成分所造成影响的有效消除。可以通过审查锅炉汽水系统设计过程中所忽略的受热膨胀因素来看其是否产生了较大应力。如果锅炉启停次数过多,其水中的含氧量就会提高,容易引发设备的点蚀,而点蚀集中更会引发应力集中,所以在启停锅炉过程中要考虑它的交变应力作用,尽量减少对锅炉的启停,减少产生腐蚀疲劳裂纹。 2.4、基于热负荷强度要求水质 由于高温高压管道管壁存在热传递现象,这也是锅炉汽水系统在蒸发过程中的腐蚀本质原因。由于在设备运行过程中这一热传递会直

锅炉管道腐蚀的原因分析和建议

锅炉管道腐蚀的原因、分析及建议 ×××(××××××××××发电有限责任公司×××××× 044602) 摘要:四管爆漏是火力发电厂中常见、多发性故障,而管道的腐蚀常常中四管泄漏的重要原因。大部分管道腐蚀的初始阶段,其泄漏量和范围都不大,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,发展成为破坏性泄漏或爆管,严重威胁着火力发电厂的安全稳定运行,故本文对锅炉四管腐蚀的原因进行了分析并根据相应的原因提出了一些建议。 关键词:腐蚀、硫化物、氯化物 0 前言 腐蚀是火力发电厂中常见的故障。腐蚀的初始阶段,没有明显的现象或其泄漏量和范围都小,对于故障的部位不好确定和判断。一般要经过几天或更长时间泄漏程度才会逐渐增大,同时局部的泄漏会冲刷周围邻近的管壁,造成连锁性破坏,危及到整个锅炉运行的安全。1.腐蚀的原因 广义的腐蚀指材料与环境间发生的化学或电化学相互作用而导致材料功能受到损伤的现象。 狭义的腐蚀是指金属与环境间的物理-化学相互作用,使金属性能发生变化,导致金属,环境及其构成系功能受到损伤的现象。 1.1管内壁腐蚀:也称水汽侧腐蚀。 1.1.1溶解氧腐蚀。 1.1.2垢下腐蚀。 1.1.3碱腐蚀 1.1.4氢损伤。 1.1.5铜氨化合物腐蚀。 1.2烟气侧腐蚀。 1.2.1高温腐蚀。

1.2.2低温腐蚀。 1.3应力腐蚀,也称冲蚀。指管道受到腐蚀和拉(压)应力的综合效应。 3.设备发生腐蚀的理论原因分析 3.1管内壁腐蚀 3.1.1溶解氧腐蚀 由于Fe与O2、CO2之间存在电位差,形成无数个微小的腐蚀电池,Fe是电池中的阳极,溶解氧起阴极去极化作用,Fe比O2等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH值介于4~13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随着给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内壁结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓缩有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓缩的炉水(沉积着高浓度的OH-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含Cl-的天然水,水中的MgCl2、CaCl2将进入锅炉、产生强酸HCl,这样沉积物下浓缩的炉水(很高浓度的H+)pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表面局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe3O4。 保护膜Fe3O4阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe2O3和FeO。 Fe2O3、FeO比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下晶界强度低,H2与钢中的碳和FeC反应生成CH4。

锅炉氧腐蚀危害介绍

锅炉氧腐蚀危害介绍 腐蚀一词指的是材料在周围环境介质的化学或电化学作用下发生的破坏。 氧腐蚀是锅炉系统中最常见的腐蚀形态。锅炉给水一般都与大气接触,水中溶解氧含量很高,这就为锅炉系统氧腐蚀提供了充分条件。当锅炉给水不采取除氧措施或除氧不当时,溶解氧将全部或部分进入锅炉系统,造成给水管路、水箱、省煤器、汽包、蒸汽管路以及凝结水系统的氧腐蚀,这种腐蚀对金属构件强度的损坏是十分严重的。例如,某厂的0.37Mpa、9.5t/h锅炉,当给水氧浓度为0.5mg/L时,试片的腐蚀速度为0.7mm/a,每隔五六年炉管就发生腐蚀穿透事故,汽包壁的蚀坑深度达总厚度的1/3。在锅炉给水未除氧的情况下,锅炉往往运行3~5年,甚至1~2年后,锅炉内壁的腐蚀深度即达2~3mm,严重地影响它们的安全运行。 热水锅炉的氧腐蚀更为严重。国家某权威机构曾对在用的800台采暖锅炉进行调查,结果表明,发生腐蚀的锅炉就有755台,占95%,其中严重腐蚀的约占10%~15%,腐蚀泄漏约占5%~8%,由于腐蚀而花的正常检修费用达近百万元。我国热水锅炉的设计寿命为15年,由于腐蚀等原因,目前一般只能运行5~8年,仅为设计寿命的1/2~1/3。同时,热水锅炉的腐蚀泄漏常常发生在最严寒的冬季采暖期,供热中断直接影响到居民的正常生活。 锅炉系统氧腐蚀的特征为溃疡腐蚀,常常在金属表面生成许多直径为1~30mm的鼓包。其表面颜色由黄褐色到砖红色等不等,主要成分为氧化铁。次层为黑色粉末状物,为四氧化三铁。有时,在腐蚀物的最深处,紧靠金属表面,还存在一个黑色层,为氧化亚铁。将这些腐蚀产物清除后,便露出蚀坑。 溶解氧腐蚀之所以呈溃疡状,与差异充电池的形成有关。氧腐蚀的

软化水腐蚀铸铝锅炉机理

软化水腐蚀机理 金属材料通常含有大量的杂质及非金属夹杂物。金属上的表面膜往往是不均匀的,当金属表面层存在化学不均匀性或物理缺陷(缝隙、裂纹、小孔穴等)时,点蚀就容易在这些薄弱环节上发生。腐蚀刚开始时,金属整个表面都同含氧溶液接触,因此无论是在金属表面蚀孔内还是蚀孔外金属表面上,都进行着以氧还原作为阴极反应的腐蚀过程。蚀孔内溶液中的溶解氧只能靠扩散进入,由于蚀孔的几何形状及腐蚀产物的限制,使蚀孔外部本体溶液中的溶解氧很快就耗尽了,从而中止了蚀孔内的氧的还原的阴极反应,阻止了蚀孔内的微电池反应,而使蚀孔内金属表面(阳极区)同蚀孔外自由暴露表面(阴极区)之间组成闭塞腐蚀电池。在蚀孔内发生下面腐蚀反应: Fe— Fe +2e 随之发生水解,生成H : Fe2 +2H20-*'FeOH +H 随着腐蚀的进行,蚀孔内的H 浓度增加,pH值降低,使蚀孔内呈酸性,加速了孔内铁的溶解。在蚀孔口,FeOH 和FeE 被溶解氧氧化: 4FeOH + 02+4H --.4r~OS2 +2H20 4re2 +O2+4H --.4re3 +2H20 反应产物随后发生水解: FeOH2 +H2O— Fe(0H) +H Fe3 +HEO-*'FeOH2 +H 04和铁锈的沉积: 2FeOH2 +Fe +H2O—}Fe3O4+6H Fe(OH)2++OH一— FeOOH+S20 在蚀孔外部,溶解氧还原: 02+2H20+4e--~40H一 铁锈的还原: 2FeOOH-*'F%o3+ H20 这一区域由于阴极产生的OH-导致pH值增大而钝化,并且部分地受到蚀孔内部阳极过程所释放的电子的阴极保护作用。这样就构成活化(孔内)一钝化(孔外)腐蚀电池,促使孔内金属不断溶解,蚀孔外表面发生氧的还原。由于点蚀的过程具有自催化特征,从而促进腐蚀破坏的迅速发展。 5 软化水腐蚀的影响因素 (1)溶解氧浓度的影响 软化水中的溶解氧对金属腐蚀起着重要的作用,它起着阴极去极化剂的作用,促进金属的腐蚀。即使在氧浓度很低的情况下,也能引起严重的腐蚀。随着氧含量的增加,腐蚀速度加快。 (2)Cl-的影响 氯离子的极化度高,半径小,因此具有很高的极性和穿透性,易优先吸附于金属表面,特别是在金属表面成膜有缺陷或薄弱处或者在有缝隙的地方及应力集中的小孔处密集。在孔蚀发展过程中,随着蚀孔内金属离子的不断增多,为保持电中性,孔外C1-优先向蚀孔内迁移,引起蚀孔内进一步酸化,使蚀孔内处于HCI腐蚀环境下,促使孔内金属的不断溶解,并伴随着H 的生成,反应如下: 2HCl+Fe-*'FeC12+H2 溶液中cl-的存在,加速了孔蚀的自催化腐蚀过程,Cl-浓度越高,孔蚀速度越快。(3)pH值的影响 碳钢在pH值为4~10的水中,腐蚀速率几乎不变,由溶解氧的浓度扩散控制整个腐蚀过程,

热水锅炉腐蚀与防腐蚀

济南绿桥环保技术有限公司https://www.360docs.net/doc/ca6363220.html,热水锅炉腐蚀与防腐蚀 热水锅炉腐蚀与防腐蚀 济南绿桥环保王恒摘要:热水锅炉无论在工业生产还是人民生活中都发挥着重要作用。然而,热水锅炉矽统的运行腐蚀、停用腐蚀以及由此而引起的腐蚀产物结垢问题却是长期困扰人们的难题。目前在热水锅炉运行、停用期间主要是以传统的处理方法,但是,由于传统方法操作繁琐,往往不完全具备实施条件等原因,效果不理想。BF-3a解决对锅炉运行、停用期间腐蚀性两大难题。 关键词:热水锅炉,腐蚀,传统的处理,BF-30a防腐蚀性,锅炉腐蚀控制 1、问题的提出 据辽宁省辽阳市锅炉检验研究所统计,在在用的800台采暖锅炉中,发生了腐蚀的锅炉就有755台,占95%,其中严重腐蚀约占10%—15%腐蚀泄露约占5%—8%,与国外相比我国的锅炉寿命仅为设计寿命的1/2—1/3。 2、腐蚀产生的原因 锅炉材质钢中含有碳及一些杂质,由于钢中成分及组织的不均匀,存在着电极电位差,既有正负微电机的存在,锅炉水中的去极剂,如氧和二氧化碳能够不断从微电机负极吸收电子,而作为微电机正极的铁离子也能顺利的失去电子而进入水溶液。水及其中的氧、二氧化碳去极剂相当于接通电池的导线,使电子传递完而产生微电流。这种微电极的反应的最终结果是刚中的杂质或铁被溶出而形成缺陷,严重时形成深坑和穿孔,这就是电化学腐蚀。 由于溶解氧本身是阴极去极化剂,对金属的危害十分严重,而二氧化碳在水溶液呈酸性,直接破坏金属表面的保护膜,加速了氧对金属的电化学腐蚀。在天然水中,硬度主要有HCO3的盐类组成,这些重碳酸盐在锅炉中经过一系列的变化,在水中产生二氧化碳和碳酸,从而引起锅炉内表面腐蚀,特别是有些单位对原水不进行任何处理,直接送进锅炉,在锅炉被加热过程中,重盐酸被分解,产生沉淀物,粘附于锅炉及管道内加热表面,形成坚硬的水垢。 二氧化碳的产生处于直接进入锅炉的原水有关外,还与是否采用除氧有关。 3、锅炉腐蚀原因分析 3-1大量补入原水未经任何处理 当补给水质达不到标准的要求,补给水中重碳酸盐在锅炉内加热过程中产生二氧化碳,或在直接补入生水的过程中,既不进了溶解氧,对锅炉金属表面产生腐蚀。

锅炉给水水质超标的危害

一、水中的杂质 水的杂质除氧、二氧化碳等气体和悬浮物外,还有溶解固形物。溶解固形物最常见的有八种离子:氯离子(Cl--)、硫酸根离子(SO2-4)、重碳酸根离子(HCO--3)、碳酸根离子(CO2-3)、钠离子(Na+)、镁离子(Mg2+)、钙离子(Ca2+)、钾离子(K+)。以上杂质的水溶液,假如直接用于锅炉给水,则对锅炉和蒸汽品质都会直接或间接地造成危害:产生水垢与沉渣;对锅炉腐蚀;恶化蒸汽品质。 二、各种杂质对安全生产的影响 钠离子:限制炉水中的含钠量是为了保证蒸汽品质。因蒸汽带水,使炉水中的钠盐带入蒸汽,当含盐量超过一定数值时,蒸汽带水量会明显增加,使蒸汽品质明显变坏。过热蒸汽带入汽轮机的钠化合物,由于钠化合物在过热蒸汽中的溶解度不大,而且随着蒸汽压力的下降,溶解度也会很快下降。所以在汽轮机内,当蒸汽压力稍有降低时,它们在蒸汽中的含量就高于溶解度,因此很容易从蒸汽中析出而沉积在汽轮机内,不仅影响汽轮机的出力,而且还危机安全运行。 氧:自然水中,大多都溶解有氧。氧存在于水中,对于钢、铁、铜等金属,都具有不同的腐蚀作用。pH值较低的水,能促进溶解氧的腐蚀作用;pH值较高的水,可使这种作用减弱。当水温升高,但不足以使溶解氧从水中析出时,腐蚀作用的速度会加快,所以在热水管和凝聚水管中,氧腐蚀更为严重。经验得知,此温度约在60~90℃之间。溶解氧的腐蚀,只

有在水溶解中才能发生。溶解氧的腐蚀,是锅炉金属表面腐蚀的主要和常见的原因。 二氧化硅:在所有自然水中,二氧化硅的含量差异较大,江河中二氧化硅在一年中变化也很大。二氧化硅在锅炉内形成的水垢是非常坚硬的,且呈透明或半透明状态,类似玻璃。用机械方法清除这种水垢,要比清洗一般碳酸盐水垢多几倍工时,这种水垢的导热性能极差。当水垢产生后,会使受热面降低传热作用,以致造成受热面过热烧坏。 铁:自然水中含铁量小于0.1mg/L时,并无影响,但当含量超过0.3mg/L 时,水就会有味、混浊。地下水含有铁时,会出现红色氢氧化铁沉淀。锅炉补给水中含铁量过高,会导致锅炉受热面炉管产生氧化铁垢。氧化铁水垢的导热性能很差,平均导热系数只有0.1~0.2kcal/(m·h·℃),仅为钢材的1.67‰~5‰;即使与锅炉内常见的钙镁水垢相比,平均导热数也要低很多,约为钙镁水垢平均导热系数的1.67%~40%。而资料显示,锅炉受热面上附着1mm厚的水垢时,其燃料的消耗将增加1.5~3.0%,由此可见,在锅炉炉管上生成的氧化铁水垢将大大降低锅炉的经济性。氧化铁水垢不仅严重阻碍传热,而且会造成传热面局部温度过高,导致金属强度下降。因此,锅炉给水的铁含量超标,还容易造成炉管变形,进而危及锅炉的安全。

锅炉形成水垢原因及其处理措施

锅炉形成水垢原因及其处理措施(1) 1 水垢的形成及性质 水垢的形成是一个复杂的物理化学过程,其原因有内因和外因两个方面。一是水中有钙、镁离子及其它重金属离子存在,是水垢形成的根本原因也叫内因;二是固态物质从过饱和的炉水中沉淀析出并粘附在金属受热面上,是水垢形成的外因。当含有钙、镁等盐类杂质的水进入锅炉后,吸收高温烟气传给的热量,钙、镁盐类杂质便会发生化学反应,生成难溶物质析出。随着炉水的不断蒸发逐渐浓缩,当达到一定浓度时,析出物就会成为固体沉淀析出,附着在锅筒、水冷壁管等受热面的内壁上,形成一层“膜”,阻碍热量传递,这层“膜”称之为水垢。 水垢的组成或成分是比较复杂的,通常都不是一种单一化合物,而是以一种化学成分为主,并同时含有其它化学成分。按其水垢的化学成分,一般可分为碳酸盐水垢、硫酸盐水垢、硅酸盐水垢、氧化铁水垢、含油水垢、混合水垢及泥垢等几种。 水垢是一种导热性能极差的物质,仅为锅炉钢材的十分之一到数百分之一(钢材的导热系数为46.5~58.2w/m.k),是“百害之源”。在各种水垢中,硅酸盐水垢最为坚硬,导热性能非常小,容易附着在锅炉受热面最强的蒸发面上,是危害最大的一种水垢。 2 水垢的预防 要保证锅炉不结垢或薄垢运行,就要加强锅炉给水处理,这是保证锅炉安全和经济运行的重要环节。预防水垢生成,通常采用下列方法来预防: 锅内水处理。此法主要是向炉水中加入化学药品,与炉水中形成水垢的钙、镁盐形成疏松的沉渣,然后用排污的方法将沉渣排出炉外,起到防止(或减少)锅炉结垢的作用。炉内加药水处理一般用于小型低压火管锅炉。锅内水处理常用的药品有:磷酸三钠、碳酸钠(纯碱)、氢氧化钠(火碱、也称烧碱)及有机胶体(栲胶)等。加药时,应首先将各种药品配制成溶液,然后再加入锅炉内。通常磷酸三钠的溶液浓度为5~8%,碳酸钠的溶液浓度不大于5%,氢氧化钠的浓度不大于 1~2%。加药方法有定期和连续加药两种。定期加药主要靠加药罐进行加药;连续加药则在给水设备前,将药连续加入给水中。对于蒸汽锅炉,最好采用连续加药法,这样可使炉内保持药液的均匀。凡采用锅内水处理的,应加强锅炉排污,使已形成的泥渣、泥垢等排出炉外,收到较好效果。

锅炉腐蚀原因及预防

锅炉腐蚀原因及预防 锅炉腐蚀原因分析 1、锅内氧腐蚀形貌特征分析 a.腐蚀部位一般位于水位线附近; b.一般为点状的高于金属表面的包状物,外表面为黄褐色到砖红色不等,包状物内多为黑色粉状物,含有一定水份; c.去除包状物后金属表面为一圆状深坑; d.锅炉一般有带水停用的现象。 2、锅内溶解氧腐蚀成因分析 a.锅内氧腐蚀属于电化学腐蚀,锅水是一种电介质,由于水位线附近锅水溶解氧的浓度较高,形成了腐蚀电池; b.腐蚀电池是指:不同金属的电偶腐蚀电池、浓差腐蚀电池、温差腐蚀电池,金属化学成份的不均匀、金相组织的不均匀、应力大小的不同、表面损伤情况或保护膜的破坏等可形成腐蚀电池; c.钢材等在各自盐类溶液中不能产生平衡电位(电位平衡了腐蚀就停止了),即容易发生腐蚀(锌铜金不易腐蚀)。 锅内溶解氧腐蚀的预防 a.定期煮炉,清除金属表面的腐蚀产物,并在金属表面形成完整的保护膜; b.运行时保持锅水碱度和ph值符合要求(可以选择给水加氨,使给水ph值符合水、汽质量要求,以减缓氧腐蚀); c.给水除氧或锅内加药除氧; d.减少锅水中氯离子含量; e.加强停炉保养,长期停炉宜用干法保养(烘干或吹干后密封,放置除湿剂,将水汽接管用盲板全部隔断);短期停炉宜用湿法保养(充氮或采用防护药品除氧)或热保养法(保持炉温、保持锅内蒸汽压力大于大气压,防止空气侵入);临时停炉时宜用充水带压保养(加温后去火,将水加满并保持一定压力, 防止外界空气侵入)。 3、管内壁腐蚀

3.1.1溶解氧腐蚀 由于Fe与02. C02之间存在电位差,形成无数个微小的腐蚀电池, Fe是电池中的阳极,溶解氧起刚极去极化作用,Fe 比02等的电位低而遭到腐蚀。 当pH值小于4或在强碱环境中,腐蚀加重,pH 值介于4^13之间,金属表面形成致密的保护膜(氢氧化物),腐蚀速度减慢。腐蚀速度与溶解氧的浓度成正比,随若给水速度提高、锅炉热负荷增加、溶解氧腐蚀也随之加剧。 3.1.2垢下腐蚀 由于给水质量不良或结构缺陷防碍汽水流通,造成管道内璧结垢。垢下腐蚀介质浓度高,又处于停滞状态,会使管内壁发生严重的腐蚀,这种腐蚀与炉水的局部浓縮有关。如果补给水或因凝汽器泄漏(河水)使炉水含碳酸盐,其沉积物下局部浓縮的炉水(沉积着高浓度的0H-)pH值上升到13以上时发生碱对金属的腐蚀。如果凝汽器泄漏的是海水或含C1-的天然水,水中的MgCl2. CaC12 将进入锅炉、产生强酸HC1.这样沉积物下浓缩的炉水( 很高浓度的时) pH值快速下降,而发生对金属的酸性腐蚀。 3.1.3碱腐蚀 游离碱会在多孔性沉积物和管内表面浓缩,浓缩的强碱会溶解金属保护膜而形成铁酸根与次铁酸根离子的混合物,当管壁表而局部碱浓度超过40%时,会释放出氢气,从而形成金属表面深而广的腐蚀,也称延性腐蚀。 3.1.4氢损伤(氢损伤实际就是酸性腐蚀) 一般情况下给水与管壁(Fe)发生反应生成H2和Fe301.保护膜Fe304阻隔H2进入管壁金属而被炉水带走,当给水品质不佳或管内结垢会生成Fe203和Fe0. Fe203. Fe0比较疏松、附着性很差,有利于H2向管壁金属的扩散,高温下品界强度低, H2与钢中的碳和FeC反应生成CH4. 管壁金属脱碳,CH4 积聚在晶界上的浓度不斷升高,形成局部高压以致应力集中,晶界断裂,产生微裂纹并发展成网络,导致金属强度严重降低,使金属变脆而断裂。

锅炉软水中溶解氧的危害与去除

锅炉软水中溶解氧的危害与去除 一、炉内为什么会发生氧腐蚀? 在正常情况下,锅炉内不会发生氧腐蚀,但当发生下述情况时,就可能发生炉内氧腐蚀。 1.除氧工作不正常 当热力除氧器运行不正常或除氧剂投加不正常时,就可能使进人锅炉的给水中带有过量的溶解氧。当给水中溶氧含量不是很大时,腐蚀可能首先发生在省煤器入口处,随着给水含氧量的增大,腐蚀则可能延伸到省煤器的中部和尾部,严重时锅炉的下降管也可能遭到腐蚀。 2.锅炉停用时防护不好 锅炉停用时,如果防护措施不当,大气可能侵入锅炉内而造成腐蚀。锅炉停用时发生的氧腐蚀,通常是整个水汽系统中,特别容易发生在积水不易放干的部分,这与锅炉运行时发生的氧腐蚀常常局限在某一部位是不同的。 二、酸腐蚀 1.发生酸腐蚀的原因 当炉水中氯化镁MgCl2含量较高时,在高温的作用下,会发生水解反应而生成酸。盐酸是一种强酸,它能破坏金属表面的氧化膜,又能腐蚀钢铁。在炉水pH值较低的情况下,腐蚀产物(铁的氯化物)又可能与氢氧化镁Mg(OH)作用而生成新的氯化镁。新生成的氯化镁在适宜的条件下则又可能水解成盐酸,如此周而复始,使铁不断遭到酸腐蚀而被损坏。

2.炉内酸腐蚀特点 锅炉内酸腐蚀多发生在水冷壁管上,其特征是:在水冷壁管皿状蚀坑上,有较硬的Fe,04突起物,呈现层状结构,在附着物和金属交接处有明显的蚀坑,腐蚀部位金相组织发生变化,有明显的脱碳现象。 三、碱腐蚀 1.发生碱腐蚀的原因 在正常情况下,炉水pH值一般在9~11之间,此时炉管金属表面的氧化膜是稳定的,不会发生碱腐蚀。 发生碱腐蚀的原因,是由于在炉管的局部地方发生了碱的浓缩。例如:由于水循环不良或在一些水平或倾斜度不够的炉管内,发生“汽水分层”现象时,使附在管壁的液膜浓缩。该部位的游离NaOH达到危险浓度,从而产生碱腐蚀。另外,在有沉积物的地方,其沉积物下炉水滞流,也可能使NaOH浓缩到危险的浓度。 2.炉内发生碱腐蚀的机理 在高温高压的条件下,炉水中游离苛性钠溶解了铁金属表面的氧化保护膜,使其生成可溶性的亚铁酸,进而亚铁酸盐在高温作用下分解成磁性四氧化三铁并放出氢气,使铁金属遭碱腐蚀而破坏: Fe0+Na0H——NaHFe02 3NaltFe02+H20叫Fe304+3NaOH+H2 3.炉内碱腐蚀特点 炉内碱腐蚀多发生在软水冷壁管的向火侧,热负荷较高或水循环不良的部位和倾斜管上;多孔沉积物下,和管壁与焊接的细小间隙处。

不锈钢腐蚀的机理

不锈钢腐蚀的机理 1 氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高[1 ] 。 氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但大致可分为 2 穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合 ,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子,与金属形成氯化物,氯化物与 法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理[2 ] 在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶液中才容易发生应力腐蚀。③一般在合金、碳钢中易发生应力腐蚀。研究表明,应

热水锅炉停炉期内部腐蚀的防护措施(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 热水锅炉停炉期内部腐蚀的防 护措施(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

热水锅炉停炉期内部腐蚀的防护措施(标 准版) 在日常的热水锅炉内部腐蚀防护方面,我们往往将防护工作的重点放在锅炉的运行期,忽略了锅炉停炉期内部腐蚀问题,殊不知热水锅炉停炉期内部腐蚀问题也相当严重。 1热水锅炉停炉期内部腐蚀防护的方法 1.1干式防护法 干式防护法就是使锅炉内部金属表面保持干燥,防止金属腐蚀。常用方法有烘干法、加入干燥剂法和充入氮气法等。 1.2湿式防护法 湿式防护法就是将具有防护性的水溶液充满锅炉,以隔离空气进入锅炉内部,或抑制水溶液中的溶解氧和二氧化碳与金属发生电解腐蚀。湿式防护法包括:氨液法、碱液法、磷酸三钠和亚硝酸钠

混合液保护法、蒸汽压力保护法及给水压力保护法等。 2热水锅炉停炉期内部腐蚀防护方法的选择 2.1对于短期停用的锅炉可采用内部烘干法进行防腐,这种方法最为经济简单。 2.2对于长期停用的锅炉(指停用一年以上),如果各部分水能够排净,而且锅炉的各孔门密封程度较好的中、低压小型锅炉,宜采用加入干燥剂法。采用这种方法防护时,应派专人负责,定期检查干燥剂是否失效,根据每次检查的结果,来确定下次检查的时间。 2.3对于夏季停用的锅炉宜采用给水保持压力法,因为所有的热水系统都有定压装置,无论采用高压水箱定压或采用气体加压罐定压,还是水泵定压,锅炉都能保持一定正压,从而减缓空气中氧和二氧化碳的侵入。但锅炉及系统中的水不应有腐蚀性,即初次加入的水应加热除氧,除去水中溶解氧或二氧化碳气体,然后再加入一定量的亚硫酸钠或直接将亚硫酸钠加入保养的生水中,这样就可以减缓或避免停用锅炉的腐蚀。 无论采用何种防护方法,都应在锅炉停用后由专人进行检修,

余热锅炉积灰和腐蚀机理与防范措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 余热锅炉积灰和腐蚀机理与防范措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8664-36 余热锅炉积灰和腐蚀机理与防范措 施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 余热锅炉是余热回收的主要手段之一,其特点为热负荷不稳定、烟气中含尘量大、烟气有腐蚀性。下面,简述积灰和腐蚀形成的机理,以及积灰和腐蚀的防范。 1.积灰形成的机理 余热锅炉受热面上的积灰一般可分为松散性、粘附性和粘结性三种。 (1)松散性的积灰。由于分子引力和静电引力的作用而形成,主要发生在低温区的锅炉受热面上,一般是小于200mm的微小颗粒,大部分是10~50μm。它往

往在管子背部形成,只有在烟速很小或烟尘颗粒很细时才会在管子的正面形成。这种积灰会大大恶化传热效果,但很容易用机械清灰法除掉。 (2)粘附性的积灰。主要是在烟尘中含有较多低熔点金属元素的情况下形成,这些金属元素的氧化物或硫化物,在高温烟气中大都呈气态,烟温降低时即形成凝结物,变成粘附性较强的物质。它对管子表面附着力很强,易积成封闭性的灰环,如不施加外力一般不会自行脱落。但因质地较松软,即使积灰厚度增加也不会结成硬壳,通过振打吹扫即可清除。 (3)粘结性的积灰。产生在高温区和“过渡温区”。当烟气对管子横向冲刷时,主要在管子的正面形成,会引起烟气阻力迅速增加,直到烟道完全堵塞被迫停炉为止。粘结性积灰是烟尘颗粒呈熔融状态或呈粘性状态所引起的,也可能是活性固体颗粒与烟气中某些成分起化学反应,在积灰的沉积层上发生了二次物理

热水锅炉的氧腐蚀及其防止实用版

YF-ED-J2518 可按资料类型定义编号 热水锅炉的氧腐蚀及其防 止实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

热水锅炉的氧腐蚀及其防止实用 版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 近几年来,由于贯彻执行GB1576-1996《低 压锅炉水质标准》,锅炉损坏率大大降低。但 是,通过现场调查发现我处的热水锅炉氧腐蚀 的问题却变得突出起来。 热水锅炉因温度低、水容量大,而且无明 显的蒸发和浓缩现象,锅水中杂质的结垢速度 缓慢得多。在给水硬度符合要求的条件下,热 水锅炉的损坏主要是由于锅炉的氧腐蚀。 热水锅炉循环水量大。带入锅内的溶解氧 也多,由于溶解氧的存在,金属铁会在锅水中

发生电化学腐蚀,产物被带到受热面上,容易与其他杂质形成导热性能极差的氧化铁垢,随着氧化铁垢的增多,导致锅筒鼓包、爆管等,而且还会发生垢下腐蚀。若构件表面吸附的水膜呈酸性或碱性,金属构件会发生吸氧腐蚀,随着锅水温度、pH值及溶解氧含量的变化,可生成铁垢。 锅水中溶解氧浓度不同,会引起金属表面电位发生变化,形成浓差腐蚀,氧浓度大的部位失去电子,发生氧化反应,溶解氧浓度越大,相应的电极电位越高,腐蚀越严重。为了防止溶解氧分布不均造成的浓差腐蚀,除进行必要的水处理之外,还要注意采用焊接结构的构件,焊口上不要出现焊瘤、咬边、未焊透等缺陷。

第四节 锅炉的腐蚀与防护

第四节锅炉的腐蚀与防护 一给水系统的腐蚀及防止 二汽包锅炉水汽系统的腐蚀、结垢及防止 三锅炉化学清洗 一、给水系统的腐蚀及防止 给水系统中流动的水虽然较纯净,但其中含有O2和CO2,这两种气体是引起给水系统中金属腐蚀的主要因素。 腐蚀特征 给水系统发生氧腐蚀时,表面形成许多小型鼓包,直径不一,称之为溃疡腐蚀,鼓包颜色由黄褐色至砖红色不等,次层则是黑色粉末状物,这些均为腐蚀产物,主要是铁的氧化物。 腐蚀部位 如果除氧工作不善,在给水管道和省煤器中常能看到这种腐蚀形态。 凝结水系统不易发生氧腐蚀。虽然凝汽器汽侧是在负压运行,总有少量空气漏入,使凝结水中含有微量氧,但凝结水的含氧量一般小于50μg/L,而且温度低,含盐量小,微量氧不致引起严重的腐蚀。 (2)游离CO2的腐蚀 腐蚀特征 钢材受游离CO2腐蚀而生成的腐蚀产物都是可溶的,所以其特征是金属均匀地变薄,这种腐蚀虽不致很快引起金属的严重损伤,但大量腐蚀产物进入锅内会引起锅内结垢和腐蚀等问题 腐蚀部位 热力设备汽水系统中的二氧化碳来源于补给水和漏入汽轮机凝结水中的冷却水带入的碳酸化合物,碳酸化合物进入锅内会全部发生分解,生成CO2: 2HCO3-→CO2↑+H2O+CO32- CO32-+H2O →CO2↑+2OH- 在热力系统中,最易发生CO2腐蚀的部位是凝结水系统,由于凝结水较纯,只要含少量CO2,其pH值就会显著降低。 (3)同时有溶解氧和游离CO2的腐蚀 在给水系统中,若同时含有O2和CO2,钢的腐蚀会更严重,这是由于O2的电极电位高,易形成阴极,侵蚀性强;CO2具有酸性,破坏保护膜。这种腐蚀的特征是金属表面往往没有腐蚀产物,但腐蚀速度很快。

锅炉停用的保护方法

锅炉停用的保护方法 常用的有两大类,即湿法保护和干法保护: 1、湿法保护 此类方法是将具有保护性的水溶液充满锅炉,杜绝空气中的氧进入锅内,从而避免或减缓锅炉因停炉而发生的腐蚀。由于保护性水溶液配制的不同,具体有如下几种方法: (1)联氨法它是将化学除氧剂联氨和氨水以及催化剂硫酸钴配成的保护性水溶液打入锅炉中,使整个锅炉充满保护液。联氨的加入量应使炉水的过剩联氨浓度在150~200mg/L 范围内。加氨水的目的是为了使炉水的pH值达到10以上,加硫酸钴是起催化作用。当注入保护性溶液前炉水的pH值已在10以上时,可不加氨水。在注入保护性水溶液前,应关闭所有水系统的阀门和通路。避免药液泄漏和氧气侵入炉水中。维持锅内水压大于大气压力(如0.05MPa),封闭锅炉。联氨法适用于停用时间较长或者备用锅炉。 采用此法保养的锅炉,在启动前应排尽保护性水溶液并用水冲洗干净,排放前应予以稀释。应注意,联氨具有毒性。 (2)氨液法它是将氨水配制成800mg/L以上的稀溶液,打入党锅炉中,使锅内水压略大于大气压力。在保养期间应定期5~10天检查一次含氨量,若有下降应及时予以补充。此法适用于长期保养性锅炉。 (3)保持给水压力法它是用给水泵将锅炉给水(除过氧的水)充满锅炉的水、汽系统,维持锅内水压在0.05MPa以上,关闭全部阀门,防止空气渗入炉内。要注意保持锅内压力,当压力下降时,可用给水泵再顶压。每天要测定炉水的溶解氧,溶解氧超过规定值时,应更换炉水。此法最好加入亚硫酸钠,随给水一起进入锅炉,以提高防腐效果。此法适用于短期停用的锅炉。 (4)保持蒸汽压力法用间断升大的办法保持锅炉蒸汽压力在0.1MPa以上,防止空气渗入锅炉的水、汽系统内。此法适用于锅炉热备用。 (5)碱液法它是向炉内加添碱液(NaOH和Na3PO4),使炉水pH值达10以上,以抑制锅水中溶解氧对锅炉的腐蚀。保养期间,每天检查,不得泄漏,保证锅水碱度。此法适用于较长时间停用的锅炉。 (6)磷酸盐和亚硝酸盐混合液保养法将亚硝酸钠,磷酸三钠按1:1制成的混合液(它们的浓度<1%)注入锅内,并防止空气渗入锅内,即能防止锅炉金属发生腐蚀。此法适宜长期保养。 2、干法保护 干法保护就是使锅炉的金属表面保持干燥,从而防止金属发生腐蚀。具体有如下几种: (1)烘干法锅炉停运后,降低锅水温度到100℃时,放尽锅水,利用炉内余热或在炉内点火,或将热风送入炉膛,使锅炉内部的金属表面被烘干,便于抑制锅炉金属的腐蚀。此法适用于短期或锅炉检修期间的防腐保养。 (2)充氮法可将纯度为99%以上的氮气充人锅内,使氮气压力保持在0.05MPa即可。若锅内仍有水(锅内存水未放尽),可加入联氨或硫酸钠,并保持炉水pH值在10以上。保养期间应定期检查水的溶解氧,过剩联氨和氮气压力三个参数。若水溶解氧升高,过剩联氨量降低,氮气压力下降时,应检查泄漏的地方并予以消除后再补充氮气。此法可适用于长期停炉保养。 (3)干燥剂法锅炉停用后,在锅炉水温降至100℃时,排尽锅炉的存水,并用微火烘烤锅炉金属表面,使其干燥。锅炉内部最好除去水垢和水渣后,进行烘烤。然后在锅炉内部(上下锅筒),集箱等部位,用敞口容器装上干燥剂,沿锅筒长度方向排列放置。关闭所有阀门、防止空气和潮气进入锅炉内部。干燥剂放入后,应定期(一般不超过一个月)检查,如发现干

相关文档
最新文档