高考线性回归方程汇总

高考线性回归方程汇总
高考线性回归方程汇总

高考线性回归方程汇总

————————————————————————————————作者:————————————————————————————————日期:

2

第二讲 线性回归方程

一、相关关系:

1、??

?<=1

||1||r r 不确定关系:相关关系

确定关系:函数关系

2、相关系数:∑∑∑===-?

---=

n

i i

n

i i

n

i i

i

y y x x y y x x r 1

2

1

2

1

)

()

()

)((,其中:

(1)??

?<>负相关

正相关0

0r r ;(2)相关性很弱;相关性很强;3.0||75.0||<>r r

例题1:下列两个变量具有相关关系的是( )

A.正方形的体积与棱长;

B.匀速行驶的车辆的行驶距离与行驶时间;

C.人的身高和体重;

D.人的身高与视力。

例题2:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ΛΛ≥的散点图中,若所有样本点),2,1)(,(n i y x i i Λ=都在直线12

1

+-=x y 上,则样本相关系数为( )

2

1.2

1.

1.1.-

-D C B A 例题3:r 是相关系数,则下列命题正确的是:

(1)]75.0,1[--∈r 时,两个变量负相关很强;(2)]1,75.0[∈r 时,两个变量正相关很强;

(3))75.0,3.0[]3.0,75.0(或--∈r 时,两个变量相关性一般; (4)(4)1.0=r 时,两个变量相关性很弱。 3、散点图:初步判断两个变量的相关关系。

例题4:在画两个变量的散点图时,下列叙述正确的是( )

A.预报变量在x 轴上,解释变量在y 轴上;

B.解释变量在x 轴上,预报变量在y 轴上;

C.可以选择两个变量中的任意一个变量在x 轴上;

D.可以选择两个变量中的任意一个变量在y 轴上; 例题5:散点图在回归分析过程中的作用是( )

A.查找个体个数

B.比较个体数据的大小

C.研究个体分类

D.粗略判断变量是否线性相关

二、线性回归方程:

1、回归方程:a x b y

???+= 其中2

1

2

1

1

21

)()

)((?x

n x y

x n y

x x x y y

x x b

n i i n

i i

i n i i n

i i

i

--=

---=∑∑∑∑====,x b y a

??-=(代入样本点的中心) 例题1:设),(),,(),,(2211n n y x y x y x Λ是变量n y x 的和个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(过一、二、四象限),以下结论正确的是( ) A.直线l 过点),(y x B.当n 为偶数时,分布在l 两侧的样本点的个数一定相同

C.的和y x 相关系数在0到1之间

D.的和y x 相关系数为直线l 的斜率

例题2:工人月工资y (元)依劳动生产率x (千元)变化的回归直线方程为x y

9060?+=,下列判断正确的是( )

A.劳动生产率为1000元时,工资为150元;

B.劳动生产率提高1000元时,工资平均提高150元;

C.劳动生产率提高1000元时,工资平均提高90元;

D.劳动生产率为1000元时,工资为90元;

例题3:设某大学的女生体重)(kg y 与身高)(cm x 具有线性相关关系,根据一组样本数

据)2,1)(,(n i y x i i Λ=,用最小二乘法建立的回归方程为71.8585.0?-=x y

,则不正确的是( )

A.y 与x 具有正的线性相关关系;

B.回归直线过样本点的中心),(y x

C.若该大学某女生身高增加1cm,则其体重约增加0.85kg

D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg

例题4:为了了解儿子的身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高 174 176 176 176 178 儿子身高 175

175 176 177 177

则y 对x 的线性回归方程为( )A.1-=x y B.1+=x y C.x y 2

1

88+

= D.176=y

2、残差:

(1)残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差。 (2)残差图呈带状分布在横轴附近,越窄模型拟合精度越高。 (3)残差平方和

∑=-n

i i i

y

y

1

2)?(越小,模型拟合精度越高。 3、相关指数:∑∑==---

=n i i

n

i i i

y y

y

y

R 1

2

122)()?(1

(1)其中:

∑=-n

i i i

y

y

1

2

)?(为残差平方和;∑=-n

i i y y 1

2)(为总偏差平方和。 (2))1,0(2∈R ,越大模型拟合精度越高。 例题5:下列说法正确的是( )

(1)残差平方和越小,相关指数2R 越小,模型拟合效果越差; (2)残差平方和越大,相关指数2R 越大,模型拟合效果越好; (3)残差平方和越小,相关指数2R 越大,模型拟合效果越好; (4)残差平方和越大,相关指数2R 越小,模型拟合效果越差; A.(1)(2) B.(3)(4) C.(1)(4) D.(2)(3) 例题6:关于回归分析,下列说法错误的是( )

A.在回归分析中,变量间的关系若是非确定关系,则因变量不能由自变量唯一确定;

B.线性相关系数r 可以是正的,也可以是负的

C.样本点的残差可以是正的,也可以是负的

D.相关指数2R 可以是正的,也可以是负的 例题7:下列命题正确的是( )

(1)线性相关系数r 越大,两个变量的线性相关性越强,反之,线性相关性越弱; (2)残差平方和越小的模型,拟合的效果越好;

(3)用相关指数2R 来刻画回归效果,2R 越小,说明模型的拟合效果越好; (4)随机误差e 是衡量预报精确度的一个量,但它是一个不可观测的量;

(5)i e

?表示相应于点),(i i y x 的残差,且0?1

=∑=n

i i

e

A.(1)(3)(5)

B.(2)(4)(5)

C.(1)(2)(4)

D.(2)(3) 例题8:已知x 与y 之间的几组数据如下表:

x 1 2 3 4 5 6 y 0

2

1

3

3

4

假设根据上表数据所得的线性回归直线方程为a x b y

???+=。若某同学根据上表中的前两个数据)2,2(),0,1(求得的直线方程为a x b y '+'=,则下列结论正确的是( )

A.a a b b

'>'>?,? B.a a b b '<'>?,? C.a a b b '>'

例题9:关于某设备的使用年限x (年)和所支出的维修费用y (万元)有下表所示的资料: 使用年限

2 3

4

5

6

维修费用

2.2

3.8 5.5

6.5

7.0

若由资料知,y 对x 呈线性相关关系,求:

(1)线性回归方程a x b y

???+=中的回归系数b a ?,?; (2)残差平方和与相关指数2R ,作出残差图,并对该回归模型的拟合精度作出适当判断;

(3)使用年限为10年时,维修费用大约是多少?

三、非线性回归模型:

例题1:如果样本点分布在某一条指数函数曲线bx ae y =的周围,其中a 和b 是参数,通过两边取自然对数的方法,把指数关系式变成对数关系式后,下列哪个变换结果是正确的( )

A.a bx y ln ln ?=

B.a bx y ln ln +=

C.a bx y ln ln ln ?=

D.a bx y ln ln ln += 例题2:下列回归方程中, 是线性回归方程; 是非线性回归方程。

(1)27.3688.0?+=x y

(2)8.1225.0?2-=x y (3)x e y 3.16.2?= (4)x y

5.14?-= (5)x

e y 185

.038.1?-

=

例题3:某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的

值。

x r

y u r

w u r

8

21

()i i x x =-∑

8

21

()i i w w =-∑

8

1

()()i i i x x y y =--∑

8

1

()()i

i

i w w y y =--∑

46.6

563

6.8

289.8 1.6 1469 108.8

表中w 1 =x 1, ,w u r =

1

8

8

1

i w

=∑1

(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)

(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;

(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z=0.2y-x 。根据(Ⅱ)的结果回答下列问题:

(i ) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii ) 年宣传费x 为何值时,年利率的预报值最大?

附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v=αβ+u 的斜率和截距的最小二乘估计分别为:

^

^^

1

2

1

()()

,()

n

i

i

i n

i

i u u v v v u u u βαβ==--=

=--∑∑

四、独立性检验:

例题1:下表是一个22?列联表:

1y

2y

1x a

21 73 2x

2

25

27

总计

b

46 100 则表中b a ,的值分别为 。

例题2:可以粗略的判断两个分类变量是否有关系的是( ) A.散点图 B.残差图 C.等高条形图 D.以上都不对

例题3:在等高条形图中,下列哪两个比值相差越大,要推断的论述成立的可能性就越大( )

A.

d c c b a a ++与 B.d a c d c a ++与 C.c b c d a a ++与 D.c

a c

d b a ++与

例题4:在判断两个分类变量是否有关系的常用方法中,最为精确的方法是( ) A.考察随机误差e B.考察线性相关系数r C.考察相关指数2R D.考察独立性检验中的2

K

例题5:在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()。

①若2k 的观测值满足635.62

≥k ,我们有99%的把握认为吸烟与患肺病有关系,那么在

100个吸烟的人中必有 99人患有肺病;

②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他

有99&的可能患有肺病;

③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断

出现错误。

A.①

B. ①③

C. ③

D. ②

例题6:在调查学生数学成绩与物理成绩之间的关系时,得到如下数据(人数):

数学成绩与物理成绩之间有()把握有关。

A. B. C. D.

线性回归方程高考题

线性回归方程高考题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

线性回归方程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: 3 4 5 6 3 4 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤(参考数值:) 2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下: 使用年限x 2 3 4 5 6 维修费用y 若有数据知y对x呈线性相关关系.求: (1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号x y xy x2 1 2 2 3 3 4 4 5 5 6 ∑

(2) 估计使用10年时,维修费用是多少. 3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 3 4 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间 (注: 4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表: 3 4 5 6 7 8 9 66 69 73 81 89 90 91 已知:. (Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据:

线性回归方程高考题讲解

线性回归方程高考题讲解

线性回归方程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: 3 4 5 6 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)

2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下: 使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0 若有数据知y对x呈线性相关关系.求: (1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号x y xy x2 1 2 2.2 2 3 3.8 3 4 5.5 4 5 6.5 5 6 7.0 ∑ (2) 估计使用10年时,维修费用是多少.

3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:

4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表: 3 4 5 6 7 8 9 66 69 73 81 89 90 91 已知:. (Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据: 2 4 5 6 8 30 40 60 50 70 (1)画出散点图: (2)求回归直线方程;

线性回归方程高考题

线性回归方程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: 3 4 5 6 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)

2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下: 使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0 若有数据知y对x呈线性相关关系.求: (1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号x y xy x2 1 2 2.2 2 3 3.8 3 4 5.5 4 5 6.5 5 6 7.0 ∑ (2) 估计使用10年时,维修费用是多少.

3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2.5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:

4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表: 3 4 5 6 7 8 9 66 69 73 81 89 90 91 已知:. (Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据: 2 4 5 6 8 30 40 60 50 70 (1)画出散点图: (2)求回归直线方程; (3)据此估计广告费用为10时,销售收入的值.

高考试题回归分析,独立性检验

回归分析与独立性检验 1.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看, ①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 . 2.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( ) A .逐年比较,2008年减少二氧化碳排放量的效果最显着 B .2007年我国治理二氧化碳排放显现成效 C .2006年以来我国二氧化碳年排放量呈减少趋势 D .2006年以来我国二氧化碳年排放量与年份正相关 3.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 根据上表可得回归直线方程???y bx a =+ ,其中???0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )] A .万元 B .万元 C .万元 D .万元 4.在画两个变量的散点图时,下面哪个叙述是正确的 ( ) A .预报变量在x 轴上,解释变量在y 轴上 B .解释变量在x 轴上,预报变量在 y 轴上 C .可以选择两个变量中任意一个变量在x 轴上 D .可以选择两个变量中任意一个变量在y 轴上 5 2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年

不得病 61 213 274 合计 93 314 407 ( ) A .种子经过处理跟是否生病有关 B .种子经过处理跟是否生病无关 C .种子是否经过处理决定是否生病 D .以上都是错误的 6.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际问 题中,y 的预报最大取值是10,则x 的最大取值不能超过 ( ) A .16 B .17 C .15 D .12 7.在研究身高和体重的关系时,求得相关指数≈2 R ___________,可以叙述为“身高解释了64%的体重变化,而随 机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。 8.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图 (I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到),预测2016年我国生活垃圾无害化处理量。 参考数据: 7 1 9.32i i y ==∑,7 1 40.17i i i t y ==∑, 7 2 1 ()0.55i i y y =-=∑,7≈. 参考公式:相关系数1 2 2 1 1 ()() ()(y y)n i i i n n i i i i t t y y r t t ===--= --∑∑∑, 回归方程 y a bt =+) )) 中斜率和截距的最小二乘估计公式分别为: 9.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 10.为了研究某班学生的脚长x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取10名学生,根据 测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为???y bx a =+.已知10 1 225i i x ==∑,10 1 1600i i y ==∑,?4b =.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 11.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案) 高中苏教数学③ 2. 4线性回归方程测试题 一、选择题 1.下列关系属于线性负相关的是() A.父母的身高与子女身高的关系 B.身高与手长 C.吸烟与健康的关系 D.数学成绩与物理成绩的关系 答案:C 2.由一组数据得到的回归直线方程,那么下面说法不正确的是() A.直线必经过点 B.直线至少经过点中的一个点 C.直线 a的斜率为 D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线 答案:B 3.实验测得四组的值为,则y与x之间的回归直线方程为() A.B. C.D.

答案:A 4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是() A.直线和一定有公共点 B.直线和相交,但交点不一定是 C.必有直线 D.和必定重合 答案:A 二、填空题 5.有下列关系: (1)人的年龄与他(她)拥有的财富之间的关系 (2)曲线上的点与该点的坐标之间的关系 (3)苹果的产量与气候之间的关系 (4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系 其中,具有相关关系的是. 答案:(1)(3)(4) 6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表

中的各对数据在直角坐标系中描点得到的表示具有相关关 系的两个变量的一组数据的图形,叫做. 答案:统计分析;相关关系;散点图 7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是. 答案:;; 8.已知回归直线方程为,则可估计x与y增长速度之比约为. 答案: 三、解答题 9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下: 3 5 2 8 9 12 4 6 3 9 12 14 求y对x的回归直线方程. 解:,, 回归直线方程为. 10.已知10只狗的血球体积及红血球的测量值如下: 45 42 46 48 42 6.53 6.30 9.25 7.580 6.99 35 58 40 39 50

线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用 第一公式:线性回归方程为???y bx a =+的求法: (1) 先求变量x 的平均值,既1231 ()n x x x x x n =+++???+ (2) 求变量y 的平均值,既1231 ()n y y y y y n = +++???+ (3) 求变量x 的系数?b ,有两个方法 法11 2 1 ()() ?() n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222 12()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--= ??-+-++-?? (需理解并会代入数据) 法21 2 1 ()() ?() n i i i n i i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx ++-?= ??+++-?? (这个公式需要自己记忆,稍微简单些) (4) 求常数?a ,既??a y bx =- 最后写出写出回归方程???y bx a =+。可以改写为:??y bx a =-(?y y 与不做区分) 例.已知,x y 之间的一组数据: 求y 与x 的回归方程: 解:(1)先求变量x 的平均值,既1 (0123) 1.54 x =+++= (2)求变量y 的平均值,既1 (1357)44 y = +++= (3)求变量x 的系数?b ,有两个方法 法1?b = [] 11223344222212342222 ()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--= ??-+-+-+-??--+--+--+--==??-+-+-+-??

高考线性回归方程总结

第二讲 线性回归方程 一、相关关系: 1、?? ?<=1 ||1||r r 不确定关系:相关关系 确定关系:函数关系 2、相关系数:∑∑∑===-? ---= n i i n i i n i i i y y x x y y x x r 1 2 1 2 1 ) () () )((,其中: (1)?? ?<>负相关正相关0 0r r ;(2) 相关性很弱;相关性很强;3 .0||75.0||<>r r 例题1:下列两个变量具有相关关系的是( ) A.正方形的体积与棱长; B.匀速行驶的车辆的行驶距离与行驶时间; C.人的身高和体重; D.人的身高与视力。 例题2:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ≥的散点图中,若所有样本点),2,1)(,(n i y x i i =都在直线12 1 +-=x y 上,则样本相关系数为( ) 2 1.2 1. 1.1.- -D C B A 例题3:r 是相关系数,则下列命题正确的是: (1)]75.0,1[--∈r 时,两个变量负相关很强;(2)]1,75.0[∈r 时,两个变量正相关很强; (3))75.0,3.0[]3.0,75.0(或--∈r 时,两个变量相关性一般; (4)(4)1.0=r 时,两个变量相关性很弱。 3、散点图:初步判断两个变量的相关关系。

例题4:在画两个变量的散点图时,下列叙述正确的是( ) A.预报变量在x 轴上,解释变量在y 轴上; B.解释变量在x 轴上,预报变量在y 轴上; C.可以选择两个变量中的任意一个变量在x 轴上; D.可以选择两个变量中的任意一个变量在y 轴上; 例题5:散点图在回归分析过程中的作用是( ) A.查找个体个数 B.比较个体数据的大小 C.研究个体分类 D.粗略判断变量是否线性相关 二、线性回归方程: 1、回归方程:a x b y ???+= 其中2 1 2 1 1 21 )() )((?x n x y x n y x x x y y x x b n i i n i i i n i i n i i i --= ---=∑∑∑∑====,x b y a ??-=(代入样本点的中心) 例题1:设),(),,(),,(2211n n y x y x y x 是变量n y x 的和个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(过一、二、四象限),以下结论正确的是( ) A.直线l 过点),(y x B.当n 为偶数时,分布在l 两侧的样本点的个数一定相同 C.的和y x 相关系数在0到1之间 D.的和y x 相关系数为直线l 的斜率 例题2:工人月工资y (元)依劳动生产率x (千元)变化的回归直线方程为 x y 9060?+=,下列判断正确的是( ) A.劳动生产率为1000元时,工资为150元; B.劳动生产率提高1000元时,工资平均提高150元; C.劳动生产率提高1000元时,工资平均提高90元;

高考线性回归方程地总结上课讲义

高考线性回归方程地 总结

第二讲 线性回归方程 一、相关关系: 1、?? ?<=1 ||1||r r 不确定关系:相关关系 确定关系:函数关系 2、相关系数:∑∑∑===-? ---= n i i n i i n i i i y y x x y y x x r 1 2 1 2 1 ) () () )((,其中: (1)?? ?<>负相关正相关00r r ;(2) 相关性很弱;相关性很强;3 .0||75 .0||<>r r 例题1:下列两个变量具有相关关系的是( ) A.正方形的体积与棱长; B.匀速行驶的车辆的行驶距离与行驶时间; C.人的身高和体重; D.人的身高与视力。 例题2:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ΛΛ≥的散 点图中,若所有样本点),2,1)(,(n i y x i i Λ=都在直线12 1 +-=x y 上,则样本相关 系数为( ) 2 1.2 1.1 .1 .- -D C B A 例题3:r 是相关系数,则下列命题正确的是: (1)]75.0,1[--∈r 时,两个变量负相关很强;(2)]1,75.0[∈r 时,两个变量正相关很强; (3))75.0,3.0[]3.0,75.0(或--∈r 时,两个变量相关性一般; (4)(4)1.0=r 时,两个变量相关性很弱。 3、散点图:初步判断两个变量的相关关系。 例题4:在画两个变量的散点图时,下列叙述正确的是( ) A.预报变量在x 轴上,解释变量在y 轴上; B.解释变量在x 轴上,预报变量在y 轴上; C.可以选择两个变量中的任意一个变量在x 轴上; D.可以选择两个变量中的任意一个变量在y 轴上;

高考数学真题专题(理数)回归分析与独立性检验

专题十一 概率与统计 第三十三讲 回归分析与独立性检验 一、选择题 1.(2017山东)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关 系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相 关关系,设其回归直线方程为???y bx a =+.已知101 225i i x ==∑,10 1 1600i i y ==∑,?4b =.该 班某学生的脚长为24,据此估计其身高为 A .160 B .163 C .166 D .170 2.(2015福建)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户 家庭,得到如下统计数据表: 根据上表可得回归本线方程???y bx a =+ ,其中???0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为 A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元 3.(2014重庆)已知变量x 与y 正相关,且由观测数据算得样本的平均数3x =, 3.5y =, 则由该观测数据算得的线性回归方程可能为 A .0.4 2.3y x =+ B .2 2.4y x =- C .29.5y x =-+ D .0.3 4.4y x =-+ 4.(2014湖北)根据如下样本数据 得到的回归方程为?y bx a =+,则 A .0a >,0b < B .0a >,0b > C .0a <,0b < D .0a <,0b > 5.(2012新课标)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不

线性回归练习题资料

线性回归练习 一、选择题 1.下列两个变量之间的关系中,哪个是函数关系 ( ) A.学生的性别与他的数学成绩 B.人的工作环境与健康状况 C.女儿的身高与父亲的身高 D. 正三角形的边长与面积 2.从某大学随机选取8名女大学生,其身高x (cm)和体重y (kg)的回归方程为 ?0.84985.712y x =-,则身高172cm 的女大学生,由回归方程可以预报其体重 ( ) A.为6 0.316kg B. 约为6 0.316kg C.大于6 0.316kg D.小于6 0.316kg 3. 工人月工资(元)依劳动生产率(千元)变化的回归直线方程为?160180y x =+,下列判断正确的是 ( ) A .劳动生产率为1000元时,工资为340元 B .劳动生产率提高1000元时,工资提高180元 C .劳动生产率提高1000元时,工资平均提高180元 D.工资为520元时,劳动生产率为2000元 4.由右表可计算出变量,x y 的线性回归方程为( ) A. ?0.350.15y x =-+ B. ?0.350.25y x =-+ C. ?0.350.15y x =+ D. ?0.350.25y x =+ 二、填空题 5.下列说法中正确的是 (填序号) ①回归分析就是研究两个相关事件的独立性;②回归模型都是确定性的函数;③回归模型都是线性的;④回归分析的第一步是画散点图或求相关系数r ;⑤回归分析就是通过分析、判断,确定相关变量之间的内在的关系的一种统计方法. 6.三点()3,10,(7,20),(11,24)的线性回归方程是 三、解答 [2016高考新课标Ⅲ文数]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图 x 5 4 3 2 1 y 2 1.5 1 1 0.5

线性回归方程题型

线性回归方程 1。【2014高考全国2第19题】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: (Ⅰ)求y 关于t 的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入。 附:回归直线的斜率和截距的最小二乘法估计公式分别为: ()() () 1 2 1 n i i i n i i t t y y b t t ∧ ==--= -∑∑,??a y bt =-

2。【2016年全国3】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1–7分别对应年份2008–2014. (Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0。01),预测2016年我国生活垃圾无害化处理量。 附注: 参考数据: 7 1 9.32i i y ==∑,7 1 40.17i i i t y ==∑7 2 1 () 0.55i i y y =-=∑,≈2.646. 参考公式:1 2 2 1 1 ()() ()(y y)n i i i n n i i i i t t y y r t t ===--= --∑∑∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为: 1 2 1 ()() () n i i i n i i t t y y b t t ==--= -∑∑, =.a y bt -

3。【2015全国1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2, ,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值。 (I)根据散点图判断,y a bx =+与y c x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由); (II )根据(I)的判断结果及表中数据,建立y 关于x 的回归方程; (III)已知这种产品的年利润z 与x,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费x =49时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?

线性回归方程高考题

线性回归程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)

2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下: 若有数据知y对x呈线性相关关系.求: (1)填出下图表并求出线性回归程=bx+a的回归系数,; (2) 估计使用10年时,维修费用是多少.

3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注:

4、某服装店经营的某种服装,在某获纯利(元)与该每天销售这种服装件数之间的一组数据关系如下表: 已知:. (Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据:

(1)画出散点图: (2)求回归直线程; (3)据此估计广告费用为10时,销售收入的值. 6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据: (I)请画出上表数据的散点图; (II)请根据上表提供的数据,求出y关于x的线性回归程; (III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据:,)

高考数学复习点拨-非线性回归问题

非线性回归问题 两个变量不呈线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型。分析非线性回归问题的具体做法是: (1)若问题中已给出经验公式,这时可以将变量x 进行置换(换元),将变量的非线性关系转化为线性关系,将问题化为线性回归分析问题来解决. (2)若问题中没有给出经验公式,需要我们画出已知数据的散点图,通过与各种已知函数(如指数函数、对数函数、幂函数等)的图象作比较,选择一种与这些散点拟合得最好的函数,然后采用适当的变量置换,将问题化为线性回归分析问题来解决. 下面举例说明非线性回归分析问题的解法. 例1 在彩色显影中,由经验可知:形成染料光学密度y 与析出银的光学密度x 由公式 e b x y A =(b <0)表示,现测得实验数据如下: 试求对的回归方程. 分析:该例是一个非线性回归分析问题,由于题目中已给定了要求的曲线为e b x y A =(b <0)类型,我们只要通过所给的11对样本数据求出A 和b ,即可确定x 与y 的相关关系的曲线方程. 解:由题意可知,对于给定的公式e b x y A =(b <0)两边取自然对数,得ln ln b y A x =+. 与线性回归方程对照可以看出,只要取1 u x = ,ln v y =,ln a A =,就有v a bu =+,这是v 对u 的线性回归直线方程,对此我们再套用相关性检验,求回归系数b 和a . 题目中所给数据由变量置换1 u = ,ln v y =变为如表所示的数据: 由于|r |=0.998>0.602,可知u 与v 具有很强的线性相关关系. 再求得0.146b =-$,$0.548a =, ∴v =$0.5480.146u -,把u 和v 置换回来可得$0.146 ln 0.548y x =-, ∴$ 0.146 0.1460.1460.5480.548 e 1.73x x x y e e e - - - ===g , ∴回归曲线方程为$ 0.146 1.73e x y - =. 点评:解决本题的思路是通过适当的变量置换把非线性回归方程转化为线性回归方程,然后再套用线性回归分析的解题步骤. 例2 为了研究某种细菌随时间x 变化的繁殖个数,收集数据如下:

线性回归方程题型

线性回归方程 1.【2014高考全国2第19题】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表: (Ⅰ)求y关于t的线性回归方程; (Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘法估计公式分别为: ???t?t i1?i n?????yy?t?t ii????y?bta1i?,?b n2 供参考. 亿吨)2014年生活垃圾无害化处理量(单位:年全国3】下图是我国2008年至2.【2016. 的折线图 2014.

分别对应年份2008–注:年份代码1–7 与t的关系,请用相关系数加以说明;(Ⅰ)由折线图看出,可用线性回归模型拟合y年我国生活垃圾无害化处理,预测2016关于t的回归方程(系 数精确到0.01)y(Ⅱ)建立. 量附注: ??20.55?y)(y?40.17ty?9.32?y2.646. 777? 参考数据:,≈,,iiii1i?1?i1i?n?)?y)((t?ty ii1i?,r?参考公式: nn??22y))(t?t?(y ii1i1?i?bt?y?a回归方程中斜率和截距的最小二乘估计公式分别为: n ?)ytt?)(y?(ii1i?,b?.bta=y?n?2)?(tt i1i? 供参考. 3.【2015全国1】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:x 和年的宣传费z(单位:千元)的影响,对近8t千元)对年销售量y(单位:)和年利润i??,8,2,i?y1数据作了初步处理,得到下面的散点图及一些统计量的值年销售量. i

线性回归方程高考题

线性回归方程高考题 1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据: 3 4 5 6 2、5 3 4 4、5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤、试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:) 2、假设关于某设备的使用年限x与所支出的维修费用y(万元)统计数据如下: 使用年限x2 3 4 5 6 维修费用y2、2 3.8 5、5 6、57.0 若有数据知y对x呈线性相关关系、求: (1) 填出下图表并求出线性回归方程=bx+a的回归系数,; 序号xyxyx2 1 2 2、2 2 3 3、8 3 4 5、5 4 56、5 5 6 7、0 ∑

(2) 估计使用10年时,维修费用就是多少、 3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下: 零件的个数x(个) 2 3 4 5 加工的时间y(小时) 2、5 3 4 4.5 (1)在给定的坐标系中画出表中数据的散点图; (2)求出y关于x的线性回归方程,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间? (注: 4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表: 3 4 5 6 78 9 66 69 73 81 89 90 91

已知:. (Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程. 5、某种产品的广告费用支出与销售额之间有如下的对应数据: 2 4 5 6 8 30 4060 50 70 (1)画出散点图: (2)求回归直线方程; (3)据此估计广告费用为10时,销售收入的值、 6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据: x 3 456 y 2.5 344、5 (I)请画出上表数据的散点图; (II)请根据上表提供的数据,求出y关于x的线性回归方程; (III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?

高考线性回归方程总结

高考线性回归方程总 结 Revised on November 25, 2020

第二讲 线性回归方程 一、相关关系: 1、?? ?<=1 ||1||r r 不确定关系:相关关系 确定关系:函数关系 2、相关系数:∑∑∑===-? ---= n i i n i i n i i i y y x x y y x x r 1 2 1 2 1 ) () () )((,其中: (1)?? ?<>负相关正相关00r r ;(2) 相关性很弱;相关性很强;3 .0||75 .0||<>r r 例题1:下列两个变量具有相关关系的是( ) A.正方形的体积与棱长; B.匀速行驶的车辆的行驶距离与行驶时间; C.人的身高和体重; D.人的身高与视力。 例题2:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ≥的散 点图中,若所有样本点),2,1)(,(n i y x i i =都在直线12 1 +-=x y 上,则样本相关 系数为( ) 例题3:r 是相关系数,则下列命题正确的是: (1)]75.0,1[--∈r 时,两个变量负相关很强;(2)]1,75.0[∈r 时,两个变量正相关很强; (3))75.0,3.0[]3.0,75.0(或--∈r 时,两个变量相关性一般; (4)(4)1.0=r 时,两个变量相关性很弱。 3、散点图:初步判断两个变量的相关关系。 例题4:在画两个变量的散点图时,下列叙述正确的是( ) A.预报变量在x 轴上,解释变量在y 轴上; B.解释变量在x 轴上,预报变量在y 轴上; C.可以选择两个变量中的任意一个变量在x 轴上; D.可以选择两个变量中的任意一个变量在y 轴上; 例题5:散点图在回归分析过程中的作用是( ) A.查找个体个数 B.比较个体数据的大小 C.研究个体分类 D.粗略判断变量是否

核按钮(新课标)高考数学一轮复习 第十一章 统计 11.3 变量间的相关关系与线性回归方程习题 理

§11.3 变量间的相关关系与线性回归方程 1.变量间的相关关系 常见的两变量之间的关系有两类:一类是确定性的函数关系,另一类是________;与函数关系不同,相关关系是一种________关系,带有随机性. 2.两个变量的线性相关 (1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有____________,这条直线叫________. (2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为________;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为________. ※(3)相关系数r = ∑∑∑===----n j j n i i n i i i y y x x y y x x 1 2 1 2 1 )()() )((,当r >0时,表示两个变量正相关;当r <0时,表示两个变量负相关.r 的绝对值越接近________,表示两个变量的线性相关性越强;r 的绝对值越接近________,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,认为两个变量具有很强的线性相关关系. 3.回归直线方程 (1)通过求Q (α,β)= ∑=--n i i x y 1 2 i ) (αβ的最小值而得出回归直线的方法,即使得 样本数据的点到回归直线的距离的平方和最小的方法叫做 .该式取最小值时的 α,β的值即分别为a ?,b ?. (2)两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为a x b y ???+=,则 ?? ? ???? ?? -=--=---=∑ ∑∑∑====. x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ??, )())((?1 2 2112 1 自查自纠 1.相关关系 非确定性 2.(1)线性相关关系 回归直线 (2)正相关 负相关 (3)1 0 3.最小二乘法

【推荐】2013-2019高考文科数学分类汇编-第12章题型141 线性回归方程

题型141 线性回归方程 2013年 1.(2013湖北文4)四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直 线方程,分别得到以下四个结论: ①y 与x 负相关且 2.347 6.423y x =-; ②y 与负相关且 3.476 5.648y x =-+; ③y 与x 正相关且 5.4378.493y x =+; ④y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确... 的结论的序号是( ). A .①② B .②③ C .③④ D . ①④ 2.(2013福建文11)已知x y 与之间的几组数据如下表: 假设根据上表数据所得线性回归直线方程为,y bx a =+若某同学根据上表中的前两组数据 ()()1,02,2和求得的直线方程为,y b x a '''=+则以下结论正确的是( ). A .,b b a a ''>> B .,b b a a ''>< C .,b b a a ''<> D .,b b a a ''<< 3. (2013重庆文17)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得 10 101010 21 1 1 1 8020184720i i i i i i i i i x y x y x ========∑∑∑∑,,,. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (2)判断变量x 与y 之间是正相关还是负相关; (3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y bx a =+中,1 2 21 n i i i n i i x y nx y b a y bx x nx ==-= =--∑∑,, 其中,x y ,为样本平均值.线性回归方程也可写为y bx a =+. 2014年 1.(2014湖北文6)根据如表所示样本数据

高中数学线性回归方程讲解练习题

教学步骤及教学内容 线性回归方程 (参考公式:b= i=1 n xiyi-n x y i=1 n x2i-n x2 ,a=y-b x) 1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为( ) A.y ^=x+1 B.y^=x+2 C.y^=2x+1 D.y^=x-1 2.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是( ) A.甲B.乙C.甲、乙相同D.不确定 3.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得∑8i=1x i=52,∑8i=1y i=228,∑8i=1x2i =478,∑8i=1x i y i=1849,则其线性回归方程为( ) A.y ^=11.47+2.62x B.y^=-11.47+2.62x C.y ^=2.62+11.47x D.y^=11.47-2.62x 4.下表是某厂1~4月份用水量(单位:百吨)的一组数据: 月份x 123 4 用水量y 4.543 2.5 由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归 直线方程是y^=-0.7x+a,则a等于______. 5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次 试验,得到的数据如下:

零件的个数x(个)234 5 加工的时间y(小时) 2.534 4.5 (1)在给定的坐标系中画出表中数据的散点图; ^=bx+a,并在坐标系中画出回归直线; (2)求出y关于x的线性回归方程y (3)试预测加工10个零件需要多少小时? 作业 布置

高考线性回归方程汇总

高考线性回归方程汇总

————————————————————————————————作者:————————————————————————————————日期: 2

第二讲 线性回归方程 一、相关关系: 1、?? ?<=1 ||1||r r 不确定关系:相关关系 确定关系:函数关系 2、相关系数:∑∑∑===-? ---= n i i n i i n i i i y y x x y y x x r 1 2 1 2 1 ) () () )((,其中: (1)?? ?<>负相关 正相关0 0r r ;(2)相关性很弱;相关性很强;3.0||75.0||<>r r 例题1:下列两个变量具有相关关系的是( ) A.正方形的体积与棱长; B.匀速行驶的车辆的行驶距离与行驶时间; C.人的身高和体重; D.人的身高与视力。 例题2:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ΛΛ≥的散点图中,若所有样本点),2,1)(,(n i y x i i Λ=都在直线12 1 +-=x y 上,则样本相关系数为( ) 2 1.2 1. 1.1.- -D C B A 例题3:r 是相关系数,则下列命题正确的是: (1)]75.0,1[--∈r 时,两个变量负相关很强;(2)]1,75.0[∈r 时,两个变量正相关很强; (3))75.0,3.0[]3.0,75.0(或--∈r 时,两个变量相关性一般; (4)(4)1.0=r 时,两个变量相关性很弱。 3、散点图:初步判断两个变量的相关关系。 例题4:在画两个变量的散点图时,下列叙述正确的是( )

相关文档
最新文档