合并同类项与移项练习题

合集下载

人教版七年级数学上册《3-2 第1课时 合并同类项解一元一次方程》作业同步练习题及参考答案

人教版七年级数学上册《3-2 第1课时 合并同类项解一元一次方程》作业同步练习题及参考答案

3.2 解一元一次方程(一)——合并同类项与移项第 1 课时合并同类项解一元一次方程1.方程�+x+2x=210 的解为( )2A.x=20B.x=40C.x=60D.x=802.解下列一元一次方程时,合并同类项正确的是( )A.已知x+7x-6x=2-5,则-2x=-3B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3C.已知25x+4x=6-3,则29x=3D.已知5x+9x=4x+7,则18x=73.方程-3x-3x=5-1 的解为( )2 2A.x=-3B.x=-13C.x=3 D.x=134.如果x=m 是方程1x-m=1 的解,那么m 的值是( )2A.0B.2C.-2D.-65.某人有三种邮票共180 枚,它们的数量比为1∶2∶3,则这三种邮票的数量分别为.6.如果5x-6x=-9+11,那么1-x= .7.小明在做作业时,不小心把方程中的一个常数弄脏了看不清楚,被弄脏的方程为2y-1y=1-■,怎么办?2 2小明想了想,便翻看了书后的答案,此方程的解为y=-5,于是,他很快知道了这个常数,则这个常数3是.8.解下列方程:(1)8y-7y-12y=-5;(2)2.5z-7.5z+6z=32.9.(2018 安徽中考)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100 头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3 家共取一头,恰好取完.问:城中有多少户人家?请解答上述问题.10.解下列方程:(1)11x-2x=9; (2)-4+16=�.211.甲、乙、丙三辆卡车所运货物的吨数比为6∶7∶4.5,已知甲车比乙车少运货物12 t,则三辆卡车共运货物多少吨?12.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32 块皮,黑色皮块和白色皮块各有多少?★13.海宝在研究一元一次方程应用时,被这样一个问题难住了:神厨小福贵对另一个厨师说:“我做的面包不是100 个,我现在的面包加上和我现在的面包数目相等的面包,再加上现在面包数目一半的面包,再加上现在面包数目一半的一半的面包,另外再加上一个面包, 就恰好是100 个面包了.请你算算我做了多少个面包?”请你帮忙算一下小福贵做了多少个面包?★14.太阳下山晚霞红,我把鸭子赶回笼.一半在外闹哄哄,一半的一半进笼中,剩下十五围着我,请问共有多少只鸭子?你能列出方程来解决这个问题吗?3★15.已知 1 + 1 + 1 +…+ 1 =1-1 + 1 − 1 + 1 − 1+…+ 1 − 1 =1- 1 , 则 方 程 � + � + � + 1×2 2×3 3×499×100 2 2 3 3 4 99 100 100 1×2 2×3 3×4�+…+ � =2 017 的解是多少?4×5 2 017×2 018答案与解析夯基达标1.C2.C 选项 A 中,合并同类项,得 2x=-3;选项 B 中,0.1 与 0.5x+0.9x 不是同类项,不能合并;0.4 与 0.9x 不是同类项,不能合并;选项 D 中,5x+9x 与 4x 不在方程的同一边,不能直接合并,所以选项 A,B,D 错误,故选 C .3.B4.C5.30 枚、60 枚、90 枚 设三种邮票的数量分别为 x ,2x ,3x ,则x+2x+3x=180,(1+2+3)x=180,6x=180,x=30(枚),2x=60(枚),3x=90(枚). 6.3解方程 5x-6x=-9+11,得-x=2.所以 1-x=1+2=3.7.38.解 (1)合并同类项,得-11y=-5,系数化为 1,得 5y=11. (2)合并同类项,得 z=32.9. 解 设城中有 x 户人家,依题意得 x+�=100,解得 x=75. 答:城中有 75 户人家.培优促能10. 解 (1)合并同类项,得 9x=9,系数化为 1,得 x=1.2 4 x=99, × (2)合并同类项,得�=12, 系数化为 1,得 y=24. 11. 解 设甲、乙、丙三辆卡车所运货物的吨数分别为 6x ,7x ,4.5x ,则 7x-6x=12,解得 x=12.6x+7x+4.5x=17.5x=17.5×12=210(t).答:三辆卡车共运货物 210 t .12. 解 设黑色皮有 3x 块,白色皮有 5x 块. 根据“足球表面一共有 32 块皮”, 可得 3x+5x=32,解得 x=4.所以 3x=3×4=12,5x=5×4=20.答:黑色皮有 12 块,白色皮有 20 块.13. 解 设现在面包数为 x ,根据题意,得 1 1 x+x+2x+4x=100-1,合并同类项,得11系数化为 1,得 x=36.答:小福贵做了 36 个面包.14. 解 设共有 x 只鸭子,根据题意, 1 得 x+ 11x+15=x ,2 2 2解得 x=60.答:共有 60 只鸭子.创新应用 15. 解 原方程可变为 + 1 + 1 + 1 +…+ 12 017,2×3 3×4 4×5 2 017×2 0181- 1 + 1 − 1 + 1 − 1 + 1 − 1+…+ 1 − 1x=2 017, 2 2 3 3 4 4 5 2 017 2 018- 12 018 x=2 017,x=2 018.1 1×2 1。

(完整版)合并同类项经典提高练习题

(完整版)合并同类项经典提高练习题

合并同类项经典练习题1.1.单项式单项式113a b a x y +--与345y x 是同类项是同类项,,求a b -的值2.x 5-y 3+4x 2y -4x +5,其中x =-1,y =-2;3.x 3-x +1-x 2,其中x =-3;4.4.已知已知622x y 和313m n x y -是同类项是同类项,,求29517m mn --的值5.5.若若22+k k y x与n y x23的和为5n y x 2,则k= k= ,,n= 6..求5xy -8x 2+y 2-1的值,其中x =21,y =4;7..若21|2x -1|+31|y -4|=0,试求多项式1-xy -x 2y 的值.的值.8.若0)2(|4|2=-+-x y x ,求代数式222y xy x +-的值。

的值。

9.求3y 4-6x 3y -4y 4+2yx 3的值,其中x =-2,y =3。

10.10.已知已知213-+b a y x与252x 是同类项,求b a b a b a 2222132-+的值。

的值。

11.求多项式13243222--++-+x x x x x x 的值,其中x =-2.12. 求多项式322223b ab b a ab b a a +-++-的值,其中a =-3,b=2.13.有理数a,b,c在数轴上的位置如图所示化简aa+bbcc----14已知:多项式6-2x2-my-12+3y-nx2合并同类项后不含有x、y,的值。

求:2m+3n-mn的值。

15.有一道题目是一个多项式减去x+14x-6,小强误当成了加法计算,,正确的结果应该是多少?结果得到2 x2-x+3,正确的结果应该是多少?。

人教版初一数学合并同类项及移项练习题

人教版初一数学合并同类项及移项练习题

人教版初一数学合并同类项及移项练习题
一、选择题(共4小题)
1. 解方程,下列移项正确的是
A. B.
C. D.
2. 某同学解方程时,把处数字看错解得,它把处看成了
A. C.
3. 方程的解是
A. B. C. D.
4. 若是方程的解,则的值是
A. B. C.
二、填空题(共3小题)
5. 按下面的程序计算:
若输入,则输出结果是;若输入,则输出结果是;若开始输入的数为正整数,且最后输出结果为,则开始输入的数的所有可能的值为.
6. 若是方程的解,则.
7. 若关于的方程的解与方程的解相同,则的值为 .
三、解答题(共3小题)
8. 解方程.
(1).
(2).
(3).
9. 已知是关于的方程的一个解,求的值.
10. 已知,,若,求:
(1)的值;
(2)的值.
答案
第一部分
1. A
2. A
3. B
4. A
第二部分
5. 或或或
第三部分
8. (1).
(2).
(3).
9. 将,解得:,
当时,.
10. (1).
(2).。

七上数学每日一练:利用合并同类项、移项解一元一次方程练习题及答案_2020年综合题版

七上数学每日一练:利用合并同类项、移项解一元一次方程练习题及答案_2020年综合题版

=n,点Q为线段PB的中点,求AQ的长.
答案解析
考点: 一元一次方程的解;利用合并同类项、移项解一元一次方程;线段的长短比较与计算;线段的中点;
答案解析
4. (2018海曙.七上期末) 解下列方程: (1) (2)
考点: 利用合并同类项、移项解一元一次方程;解含分数系数的一元一次方程;
答案解析
5. (2018嵩.七上期末) 同学们都知道:|3﹣(﹣2)|表示3与﹣2之差的绝对值,实际上也可理解为3与﹣2两数在数轴上所 对应的两点之间的距离.请你借助数轴进行以下探索: (1) 数轴上表示x与3的两点之间的距离可以表示为. (2) 如果|x﹣3|=5,则x=. (3) 同理|x+2|+|x﹣1|表示数轴上有理数x所对应的点到﹣2和1所对应的点的距离之和,请你找出所有符合条件的整数 x,使得|x+2|+|x﹣1|=3,这样的整数是. (4) 由以上探索猜想对于任何有理数x,|x+3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由
. 考点: 数轴及有理数在数轴上的表示;绝对值及有理数的绝对值;绝对值的非负性;利用合并同类项、移项解一元一次方程; 答案解析
2020年 七 上 数 学 : 方 程 与 不 等 式 _一 元 一 次 方 程 _利 用 合 并 同 类 项 、 移 项 解 一 元 一 次 方 程 练 习 题 答 案
1.答案:
123源自4(4) 根据所填表格,回答问题:随着 值的增大, 的值逐渐; 的值逐渐. 考点: 代数式求值;利用合并同类项、移项解一元一次方程;解含括号的一元一次方程;
3. (2019江阴.七上期末) 已知关于m的方程 (m-16)=-5的解也是关于x的方程2 (x-3)-n=3的解.

合并同类项50题(有答案)

合并同类项50题(有答案)

合并同类项专项练习50题(一)一、选择题1 .下列式子中正确的是( )A.3a+2b =5abB.752853x x x =+ C.y x xy y x 22254-=- D.5xy-5yx =02 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与 C 、xy 与2pxy D 、11113+--+-n n n n x y y x 与3 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 4 .如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( )A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩ C .21a b =⎧⎨=⎩ D .11a b =⎧⎨=⎩5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n - B.5xy 和5xy C.-1和14 D.2a 和3x6 .下列合并同类项正确的是 ( )(A)628=-a a ; (B)532725x x x =+ ;(C) b a ab b a 22223=-; (D)y x y x y x 222835-=--7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为A.yxB.x y +C.10x y +D.100x y +9 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%x D 、51%x10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题11.写出322x y -的一个同类项_______________________. 12.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。 13.若2243abx y x y x y -+=-,则a b +=__________.14.合并同类项:._______________223322=++-ab b a ab b a15.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________.16.某公司员工,月工资由m 元增长了10%后达到_______元。三、解答题17.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .18.化简:)32()54(722222ab b a ab b a b a --+-+.19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x x xy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。参考答案一、选择题 1 .D 2 .C 3 .D 4 .A 5 .D 6 .D 7 .C 8 .D 9 .A 10.C 二、填空题11.322x y (答案不唯一) 12.4; 13.314.ab b a -25; 15.1- 16.11.m三、解答题 17.解:)4(3)125(23m m m -+--=m m m 31212523-++-( )=134+-m 当3-=m 时,2513)3(4134=+-⨯-=+-m18.)32()54(722222ab b a ab b a b a --+-+=2222232547ab b a ab b a b a +-+-=22)35()247(ab b a ++--( )=228ab b a +19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分) 当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-= 23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3合并同类项专项练习50题(二)1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2( ) ⑶bc a 22与-2c ab 2( ) (4)4xy 与25yx ( ) (5)24 与-24 ( ) (6) 2x 与22 ( ) 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯(1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( ) (3)8x y x xy y 3339=-( ) (4)2122533=-m m ( ) (5)5ab+4c=9abc ( ) (6)523523x x x =+ ( ) (7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( ) 3.与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( ) A.z x 221 B. xy 21 C.2yx - D. x 2y 4.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。

合并同类项50题(有答案)

合并同类项50题(有答案)

合并同类项专项练习50题(一)一、选择题1 .下列式子中正确的是( )A.3a+2b =5abB.752853x x x =+C.y x xy y x 22254-=-D.5xy-5yx =0 2 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与 C 、xy 与2pxy D 、11113+--+-n n n n x y y x 与 3 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 4 .如果23321133a b x y x y +--与是同类项,那么a 、b 的值分别是( ) A.12a b =⎧⎨=⎩ B.02a b =⎧⎨=⎩ C .21a b =⎧⎨=⎩ D .11a b =⎧⎨=⎩ 5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xy C.-1和14 D.2a 和3x 6 .下列合并同类项正确的是 ( ) (A)628=-a a ; (B)532725x x x =+ ;(C) b a ab b a 22223=-; (D)y x y x y x 222835-=-- 7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为A.yxB.x y +C.10x y +D.100x y + 9 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%xD 、51%x 10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题11.写出322x y -的一个同类项_______________________.12.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________? 13.若2243a b x y x y x y -+=-,则a b +=__________.14.合并同类项:._______________223322=++-ab b a ab b a15.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________.16.某公司员工,月工资由m 元增长了10%后达到_______元?三、解答题17.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m . 18.化简:)32()54(722222ab b a ab b a b a --+-+.19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a . 20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a 22.给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x x xy ---+,其中1,22x y =-=. 24.先化简,再求值?(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2?27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-?”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么? 28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值? 参考答案一、选择题1 .D2 .C3 .D4 .A5 .D6 .D7 .C8 .D9 .A10.C二、填空题11.322x y (答案不唯一)12.4;13.314.ab b a -25;15.1-16.11.m三、解答题17.解:)4(3)125(23m m m -+--=m m m 31212523-++-( )=134+-m 当3-=m 时,2513)3(4134=+-⨯-=+-m18.)32()54(722222ab b a ab b a b a --+-+=2222232547ab b a ab b a b a +-+-=22)35()247(ab b a ++--( )=228ab b a + 19.解:原式=32 20.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分) 当1,2x y =-=,原式=2(1)(1)326-+-+⨯= (2)(212x x +)-(2132x y +) =3x y - (去括号2分) 当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-= 23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+ 当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=0 24.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2 =-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-425.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-∴此题的结果与x 的取值无关?28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y +∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3 合并同类项专项练习50题(二)1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2 ( )⑶bc a 22与-2c ab 2 ( )(4)4xy 与25yx ( )(5)24 与-24 ( )(6) 2x 与22 ( )2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯(1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( )(3)8x y x xy y 3339=-( ) (4)2122533=-m m ( ) (5)5ab+4c=9abc ( ) (6)523523x x x =+ ( )(7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( )3.与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( ) A.z x 221 B. xy 21 C.2yx - D. x 2y 4.下列各组式子中,两个单项式是同类项的是( ) A.2a 与2a B.5b a2 与b a 2 C. xy 与y x 2 D. 0.3m 2n 与0.3x 2y5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解一元一次方程(一)合并同类项与移项》提高练习1
1. 把方程3x—4 = 5x—7移项,结果正确的是( )
A . 3x —5x=—7 + 4 B. 3x+ 5x=—7 + 4
C. 3x—5x =—7 —4 D . 3x+ 5x=—7 —4
2. 小明在假期里参加了连续四天一期的科技艺术节,这四天的日期之和是66,则科技
艺术节第一天的日期是( )
A. 14 日
B. 15 日
C. 16 日
D. 17 日
3. 若关于x的方程3x—1+ k= 0的解为x=—1,贝U k=( )
A . 4
B . —4
C . 2
D . —2
2
4. 若代数式4x—7与代数式5 x 的值相等,则x的值是( )
5
A . —9
B . 1
C . —5
D . 3
5 .解下列方程:
(1)5x + 4=一1;
(2)3x + 2= 2x—4;
(3)4x + 6= 5x—7 .
6. 已知关于x的方程3x+ 2a = x+乙小刚在解这个方程时,把方程右端+ 7抄成了一7,
解得的结果为x=2,求原方程的解.
7. 牧羊人赶着一群羊找一个草长得茂盛的地方,一个过路人牵着一只羊从
后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加
一倍,再加上原来这群羊的一半,又加上原来这群羊的一半的一半,
把你这只羊也算进去,才刚好
凑满100只.”牧羊人的这群羊共有多少只?
&聪聪到希望书店帮同学买书,售货员主动告诉他,如果用20元钱办“希望书店会员
卡”,将享受到8折优惠,请问:
(1)在这次买书中,聪聪在什么情况下,办会员卡与不办会员卡一样?
(2)当他想买标价总共为200元的书时,怎么做合算,能省下多少钱?
参考答案
1 . A【解析】A中将5x由右边移到左边变了号,—4由左边移到右边也变了号,而B 中的5x移项却没有变号,所以错误,C中的一4没有变号,而D中的两项移项均未变号,
所以选A
2 . B【解析】可设第一天的日期为x,则其后连续三天的日期分别为x+ 1, x+ 2, x+ 3, 列方程x + x+ 1 + x+ 2 + x+ 3= 66得x= 15 .
3 . A【解析】方程的解为x=—1,则就把x=—1代入方程则等式一定成立,即可求出
k= 4
2
4. A【解析】根据条件可得到一个关于x的方程:即4x—7= 5 X •解出方程可
5
得x=—9,所以选A
5. (1) x=—1【解析】先移项,将4移到右边变为—4,得5x=—5.再化系数为1, 两边同时除以5得x=—1
(2)x= —6【解析】先进行移项,注意变号,方程变为3x—2x=—4—2,再合并同类项得x=—6
(3)x= 13【解析】先进行移项,变为4x—5x= —7—6,合并得到一x=—13,再化系数为1,得x= 13
6. 【解】由题意可知x= 2是方程3x+ 2a = x—7的解,贝U 3 x 2 + 2a = 2 —乙6+ 2a= —5,「. 2a=—11,
这样原方程为3x—11 = x+ 7,「. 3x—x= 7+ 11,「. 2x= 18,「. x= 9.
1 1
7.【分析】此题注意找关键词:一半即一,一半的一半即一,增加一倍即2 倍.
24
【解】设牧羊人的这群羊有x
只, 得
1 1
2x+ x+ x+ 1= 100,
2 4
11
x= 99, x= 36.
4
36只. 答:牧羊人的这群羊共有
&【解】(1)设当价格为x元时,办卡与不办
卡样,则可列方程:x= 0.8x+ 20.解
得:x= 100.
答:在所买书的价格为100元时,两种情况花费一样.
(2)当书价为200元时,按第二种情况算,则他应付200 X 0.8+ 20= 180 (元).所以他应选择办卡能省下200 —180= 20 (元).。

相关文档
最新文档