A3120光藕

合集下载

变频器电路中光耦器件功能引脚图

变频器电路中光耦器件功能引脚图

变频器电路中光耦器件功能引脚图2012-11-13 16:52:00 来源:深圳市潮光科技有限公司 [关闭][打印]说明: 从应用的维修的角度,掌握一些光耦器件的引脚功能,便于测量部分引脚的电压(电 平)状态,判断光耦是否处于正常工作状态就够了。

光耦内部,具体是个什么电路, 是来不及也无须去管它的。

比如单片机电路,重点检测供电、复位、晶振、控制信号、 输入信号几个端子的电压(电平)状态,就可以了。

对于数字(包括光耦合器)电路, 一般情况下,知道器件引脚功能,便可根据输入、输出端的逻辑关系,测量判断 IC 的好坏了。

而模拟电路,在变频器电路中,一半是用于处理开关量信号的,如电压比 较器等,检测判断上,同数字电路是一样方便的。

部分处理模拟信号的模拟电路,可 据动、静态电压的明显变化,测其好坏,也不是太难的事。

因而,只要知晓两点,1:IC 是个什么类型的芯片,数字或模拟电路?2:引脚功能, 该脚为输入、输出或供电脚?便能实施测量了。

将变频器常用 IC 引脚功能图,集中 附录于后,就不必花费大量时间再去查阅相关的手册了。

一 IGBT 驱动光耦: TLP250 和 HCPL3120 可直接代换, 将输出引脚改动一下, 也可与 PC923 相代换。

PC923、 PC923 往往配套使用,而 A4504 和 MC33153 也是配套使用的,两者组合完成了 PC929 的功能。

二、常用光电耦合器: 4N 35 6N139TLP120TLP 591 A7840(HCPL7840)线性光耦 PC817 光电耦合器用于变频器的控制端子内电路,开关电源的电压采样与隔离等,只要是四 线端元件,往往可用 PC817 代换之。

线性光耦不能用普通光耦合器代换,最好用原型 号器件代换。

如若转载,请注明来源——潮光光耦网。

本信息来源于网络,不代表本站观点 如若转载请注明来源:中国自动化网 。

变频器基本电路图

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。

1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。

它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。

三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。

网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。

当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。

2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。

同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。

为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。

通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。

另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。

因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。

3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。

逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。

最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。

广州容济变频器维修培训资料

广州容济变频器维修培训资料

第五章变频器常见故障及修复广州容济变频器维修培训资料一、变频器故障监测划分故障监测划分为如下几类1、状态故障监测:如直流过/久压、直流过流、交流过流、速度偏差过大、接地故障、缺相等。

2、硬件故障检测:如电流板故障、触发板故障、IGBT故障、脉冲发生器故障等。

3、系统故障监测:如Watchdog故障、系统参数异常、时钟故障等。

4、通讯故障监测:如TIMEOUT、OVERRUN等。

5、电源故障监测:当控制电源过高/过低时报警。

二、变频器的保护及处理方法(一)、过电流保护功能变频器中,过电流保护的对象主要指带有突变性质的、电流的峰值超过了变频器的容许值的情形.由于逆变器件的过载能力较差,所以变频器的过电流保护是至关重要的一环,迄今为止,已发展得十分完善.1过电流的原因过流故障可分为加速、减速、恒速过电流。

其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。

这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查等方法进行处理。

如果断开负载变频器还是过流故障,很可能变频器逆变电路已环,需要更换或维修变频器。

(1)工作中过电流,即拖动系统在工作过程中出现过电流.其原因大致来自以下几方面:①电动机遇到冲击负载,或传动机构出现“卡住”现象,引起电动机电流的突然增加.②变频器的输出侧短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等.③变频器自身工作的不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。

例如由于环境温度过高,或逆变器件本身老化等原因,使逆变器件的参数发生变化,导致在交替过程中,一个器件已经导通、而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的“直通”,使直流电压的正、负极间处于短路状态。

(2)升速时过电流:重新启动时,一升速就跳闸,这是过电流十分严重的现象,主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。

变频器常见故障代码及处理实例之欧阳育创编

变频器常见故障代码及处理实例之欧阳育创编

一、过流(OC)过流是变频器报警最为频繁的现象。

1.1现象(1) 重新启动时,一升速就跳闸。

这是过电流十分严重的现象。

主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。

(2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。

(3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。

1.2 实例(1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC”分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。

在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。

模块装上上电运行一切良好。

(2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。

分析与维修:首先检查逆变模块没有发现问题。

其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。

二、过压(OU)过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。

2.1 实例一台台安N2系列3.7kW变频器在停机时跳“OU”。

分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。

常用光耦(光电耦合器)代换大全

常用光耦(光电耦合器)代换大全

常用光耦(光电耦合器)代换大全
光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。

它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。

当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。

以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。

各品牌光耦替代型号。

变频器常见故障代码及处理实例

变频器常见故障代码及处理实例

一、过流(OC)之阳早格格创做过流是变频器报警最为一再的局里.(1) 沉新开用时,一降速便跳闸.那是过电流格中宽沉的局里.主要本果有:背载短路,板滞部位有卡住;顺变模块益坏;电效果的转矩过小等局里引起.(2) 上电便跳,那种局里普遍不克不迭复位,主要本果有:模块坏、启动电路坏、电流检测电路坏.(3) 沉新开用时本去不坐时跳闸而是正在加速时,主要本果有:加速时间树坐太短、电流上限树坐太小、转矩补偿(V/F)设定较下.1.2 真例(1) 一台LG-IS3-4 3.7kW变频器一开用便跳“OC”分解与维建:挨开机盖不创制所有烧坏的迹象,正在线丈量IGBT(7MBR25NF-120)基础推断不问题,为进一步推断问题,把IGBT拆下后丈量7个单元的大功率晶体管开通与关关皆很佳.正在丈量上半桥的启动电路时创制有一路与其余二路有明隐辨别,经小心查看创制一只光耦A3120输出足与电源背极短路,调换后三路基础一般.模块拆上上电运止十足良佳.(2) 一台BELTRO-VERT 2.2kW变频通电便跳“OC”且不克不迭复位.分解与维建:最先查看顺变模块不创制问题.其次查看启动电路也不非常十分局里,预计问题不正在那一齐,大概出正在过流旗号处理那一部位,将其电路传感器拆掉后上电,隐现十足仄常,故认为传感器已坏,找一新品换上后戴背载真验十足仄常.二、过压(OU)过电压报警普遍是出当前停机的时间,其主要本果是减速时间太短或者制动电阻及制动单元有问题.2.1 真例一台台安N2系列3.7kW变频器正在停机时跳“OU”.分解与维建:正在建那台呆板之前,最先要搞领会“OU”报警的本果何正在,那是果为变频器正在减速时,电效果转子绕组切割转化磁场的速度加快,转子的电动势战电流删大,使电机处于收电状态,回馈的能量通过顺变关节中与大功率开关管并联的二极管流背曲流关节,使曲流母线电压降下所致,所以咱们该当着沉查看制动回路,丈量搁电电阻不问题,正在丈量制动管(ET191)时创制已打脱,调换后上电运止,且赶快停车皆不问题.三、短压(Uu)短压也是咱们正在使用中时常遇到的问题.主假如果为主回路电压太矮(220V系列矮于200V,380V系列矮于400V),主要本果:整流桥某一路益坏或者可控硅三路中有处事不仄常的皆有大概引导短压障碍的出现,其次主回路交触器益坏,引导曲流母线电压耗费正在充电电阻上头有大概引导短压.另有便是电压检测电路爆收障碍而出现短压问题.3.1 举例(1) 一台CT 18.5kW变频器上电跳“Uu”.分解与维建:经查看那台变频器的整流桥充电电阻皆是佳的,然而是上电后不听到交触器动做,果为那台变频器的充电回路不是利用可控硅而是靠交触器的吸合去完毕充电历程的,果此认为障碍大概出正在交触器或者统制回路以及电源部分,拆掉交触器单独加24V曲流电交触器处事仄常.既而查看24V曲流电源,经小心查看该电压是通过LM7824稳压管稳压后输出的,丈量该稳压管已益坏,找一新品调换后上电处事仄常.(2) 一台DANFOSS VLT5004变频器,上电隐现仄常,然而是加背载后跳“ DC LINK UNDERVOLT”(曲流回路电压矮).分解与维建:那台变频器从局里上瞅比较特天,然而是您如果小心分解一下问题也便不是那么搀纯,该变频器共样也是通过充电回路,交触器去完毕充电历程的,上电时不创制所有非常十分局里,预计是加背载时曲流回路的电压下落所引起,而曲流回路的电压又是通过整流桥齐波整流,而后由电容仄波后提供的,所以应着沉查看整流桥,经丈量创制该整流桥有一路桥臂开路,调换新品后问题办理.四、过热(OH)过热也是一种比较罕睹的障碍,主要本果:周围温度过下,风机堵转,温度传感器本能不良,马达过热.一台ABB ACS500 22kW变频器客户反映正在运止半小时安排跳“OH”.分解与维建:果为是正在运止一段时间后才有障碍,所以温度传感器坏的大概性不大,大概变频器的温度真真太下,通电后创制风机转化缓缓,防备罩内里堵谦了很多棉絮(果该变频器是用正在纺织止业),经挨扫后开机风机运止良佳,运止数小时后不再跳此障碍.五、输出不仄衡输出不仄衡普遍表示为马达抖动,转速不稳,主要本果:模块坏,启动电路坏,电抗器坏等.一台富士G9S 11KW变频器,输出电压出入100V安排.分解与维建:挨开呆板收端正在线查看顺变模块(6MBI50N-120)出创制问题,丈量6路启动电路也出创制障碍,将其模块拆下丈量创制有一路上桥大功率晶体管不克不迭仄常导通战关关,该模块已经益坏,经确认启动电路无障碍后调换新品后十足仄常.六、过载过载也是变频器跳动比较一再的障碍之一,通常瞅到过载局里咱们本去最先该当分解一下到底是马达过载仍旧变频器自己过载,普遍去道马达由于过载本领较强,只消变频器参数表的电机参数树坐恰当,普遍不大会出现马达过载.而变频器自己由于过载本领较好很简单出现过载报警.咱们不妨检测变频器输出电压.七、开关电源益坏那是稠密变频器最罕睹的障碍,常常是由于开关电源的背载爆收短路制成的,丹佛斯变频器采与了新式脉宽集成统制器UC2844去安排开关电源的输出,共时UC2844还戴有电流检测,电压反馈等功能,当爆收无隐现,统制端子无电压,DC12V,24V风扇不运止等局里时咱们最先该当思量是可开关电源益坏了.八、SC障碍SC障碍是安川变频器较罕睹的障碍.IGBT模块益坏,那是引起SC障碍报警的本果之一.别的启动电路益坏也简单引导SC障碍报警.安川正在启动电路的安排上,上桥使用了启动光耦PC923,那是博用于启动IGBT模块的戴有搁大电路的一款光耦,安川的下桥启动电路则是采与了光耦PC929,那是一款内里戴有搁大电路,及检测电路的光耦.别的电机抖动,三相电流,电压不仄衡,有频次隐现却无电压输出,那些局里皆有大概是IGBT模块益坏.IGBT模块益坏的本果有多种,最先是中部背载爆收障碍而引导IGBT模块的益坏如背载爆收短路,堵转等.其次启动电路老化也有大概引导启动波形得真,或者启动电压动摇太大而引导IGBT益坏,进而引导SC障碍报警.九、GF—交天障碍交天障碍也是通常会遇到的障碍,正在排除电机交天存留问题的本果中,最大概爆收障碍的部分便是霍我传感器了,霍我传感器由于受温度,干度等环境果数的做用,处事面很简单爆收飘移,引导GF报警.十、限流运止正在通常运止中咱们大概会遇到变频器提示电流极限.对付于普遍的变频器正在限流报警出现时不克不迭仄常仄滑的处事,电压(频次)最先要落下去,曲到电流下落到允许的范畴,一朝电流矮于允许值,电压(频次)会再次降下,进而引导系统的不宁静.丹佛斯变频器采与内里斜率统制,正在不超出预约限流值的情况下觅找处事面,并统制电机稳固天运止正在处事面,并将告诫旗号反馈客户,依据告诫疑息咱们再去查看背载战电机是可有问题.。

变频器的常见故障解读1-民熔

变频器的常见故障一民熔变频器的常见故障变频器在工农业生产中有着广泛的应用。

笔者针对民熔变频器的一些常见故障做一个小结,希望在今后的变频器维护工作中能够给大家提供一些帮助。

常见的故障如下。

1.过电流跳闸变频器最常见的现象是电。

警报主要原因有:模块损坏、驱动电路损坏、电源故障损坏。

重新启动时,速度一提高,它就会运行是的主要原因是负载侧短路、机械故障、逆变管损坏、发动机初始扭矩小、驱动系统故障。

重新启动时,它不会立即驱动,而是开始工作(包括速度和速度)。

可能的原因有:转速设定过短;转速设定过短;转矩补偿(U/F比)设定过高,造成低频时空负载电流过大;电子热继电器设定错误,而且动作电流调节过小,导致故障。

例如,lg-is3-4 3.7千瓦变频器“OC”一启动就跳在没有发现打开盖子的着火迹象,IGBT(7mbr25nf-120)的在线测量基本没有问题。

为了进一步评估这一问题,在移除IGBT后测量的七个单元的高性能晶体管得到了很好的发展。

关闭。

上半基座驱动圆的测量结果与其他两个电路有明显的不同。

经仔细检查,确定光耦a3120的输出自旋与电源负极短路。

交换后,三个电路基本相同,模块安装运行很好,一个另一个例子是,如果Beltro Vert 2.2kW变频器打开,它将绊倒“OC”,无法复位。

问题。

二是检查驱动电路无异常现象。

估计问题出在区域间信号处理部分。

拆下开关传感器后,将其打开,表明一切正常。

因此,假设传感器损坏。

新产品更换后一切都装上,是正常的。

2.过电压跳闸过载的主要原因是:供电电压过高;延时时间设定过短;再生制动放空装置在延时过程中不能正常工作,其中没有时间卸载(应增加外部制动电阻和制动系统)和卸载分支缺失,但实际上没有下载到示例将在N2系列3.7千瓦变频器“Ou”上升时触发它右前这台机器的修理应该先把“Ou”报警的原因弄清楚是的。

这是因为变频器减速时,发动机转子风的旋转磁场切割速度加快,转子的电动势和电流增大,使发动机处于发电状态,在直流逆变电路中,反馈能量通过二极管流到连接处,使直流电压升高。

TLP3506驱动工作原理电路

TLP3506驱动工作原理电路FOD3120,TLP350,TLP250这三款是用来进行IGBT栅级驱动和POWER MOSFET栅极驱动的8 PIN DIP封装的光电耦合器,其中FOD3120,TLP350的输出峰值电流IO = ±2.5A (max),TLP250的输出峰值电流IO =±1.5A (max。

),因此他们非常合适用来驱动1200V(20100)A的IGBT,由于IGBT在直流和交流无刷电机驱动器,逆变器,UPS,开关电源,变频器等方面的广泛应用,因此IGBT驱动光耦同样可以应用在这些产品上。

由于功率 IGBT 在电力电子设备中多用于高压场合,所以驱动电路必须与整个控制电路在电位上完全隔离,利用光电耦合器进行隔离,具有体积小、成本低、结构简单、应用方便、输出脉宽不受限制等优点。

一些基本参数输入电流 IF=5mA电源电压VCC=15 to 30V电源电流ICC=2mA (TLP250 ICC=11mA)延迟时间tpLHtpHL= 500 ns (max)动作过程当IF输入 H 时,Tr1导通,Tr2截止,因此 VO=Vcc –Vtr1=H 此时Io的电流向外,基于此点,故可以接一个栅极电阻后直接驱动IGBT,无需外接电路当IF输入 L 时,Tr1截止,Tr2导通,此时 VO=Vgnd+Vtr2=L 此时如果IGBT栅极上有残存的电荷,可通过Tr2到GND进行放电,关闭IGBT逻辑关系如下注意事项1. 为了保证电压的稳定,防止电压突变损坏IGBT,需要在8脚与5脚间需要接一个0.1uF的电容。

2. IGBT大多是工作于感性负载状态,当其处于关断状态,反并二极管正在反向恢复过程时,就会有很大的dvdt加于CE两端,由于米勒电容的存在,I=C*dudt,将会产生瞬间电流流向驱动电路,与栅极电阻作用,将产生电压,此电压若超过IGBT栅极开启电压,则会造成IGBT误触发导通,因此提供负偏压Vge能有效防止误触发,建议VE接负压。

变频器常见故障代码及处理实例

一、过流(OC)之相礼和热创作过流是变频器报警最为频繁的征象.(1) 重新启动时,一升速就跳闸.这是过电流非常严重的征象.次要缘故原由有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等征象惹起.(2) 上电就跳,这种征象一样平常不克不及复位,次要缘故原由有:模块坏、驱动电路坏、电流检测电路坏.(3) 重新启动时其实不马上跳闸而是在加速时,次要缘故原由有:加速工夫设置太短、电流下限设置太小、转矩抵偿(V/F)设定较高.1.2 实例(1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC”分析与维修:打开机盖没有发现任何烧坏的迹象,在线丈量IGBT(7MBR25NF-120)基本判别没有成绩,为进一步判别成绩,把IGBT拆下后丈量7个单元的大功率晶体管开通与关闭都很好.在丈量上半桥的驱动电路时发现有一起与其他两路有分明区别,经细致检查发现一只光耦A3120输入脚与电源负极短路,更换后三路基本一样.模块装上上电运转统统良好.(2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不克不及复位.分析与维修:首先检查逆变模块没有发现成绩.其次检查驱动电路也没有异常征象,估计成绩不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,表现统统正常,故以为传感器已坏,找一新品换上后带负载实验统统正常.二、过压(OU)过电压报警一样平常是出如今停机的时分,其次要缘故原由是减速工夫太短或制动电阻及制动单元有成绩.2.1 实例一台台安N2系列3.7kW变频器在停机时跳“OU”.分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的缘故原由何在,这是由于变频器在减速时,电动机转子绕组切割旋转磁场的速率加快,转子的电动势和电流增大,使电机处于发电形态,回馈的能量经过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压降低所致,以是我们应该偏重检查制动回路,丈量放电电阻没有成绩,在丈量制动管(ET191)时发现已击穿,更换后上电运转,且快速停车都没有成绩.三、欠压(Uu)欠压也是我们在运用中经常碰到的成绩.次要是由于主回路电压太低(220V系列低于200V,380V系列低于400V),次要缘故原由:整流桥某一起损坏或可控硅三路中有工作不正常的都有可能导致欠压毛病的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻下面有可能导致欠压.还有就是电压检测电路发生毛病而出现欠压成绩.3.1 举例(1) 一台CT 18.5kW变频器上电跳“Uu”.分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触器动作,由于这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因而以为毛病可能出在接触器或操纵回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常.继而检查24V直流电源,经细致检查该电压是经过LM7824稳压管稳压后输入的,丈量该稳压管已损坏,找一新品更换后上电工作正常.(2) 一台DANFOSS VLT5004变频器,上电表现正常,但是加负载后跳“ DC LINK UNDERVOLT”(直流回路电压低).分析与维修:这台变频器从征象上看比较特别,但是你假如细致分析一下成绩也就不是那么复杂,该变频器异样也是经过充电回路,接触器来完成充电过程的,上电时没有发现任何异常征象,估计是加负载时直流回路的电压下降所惹起,而直流回路的电压又是经过整流桥全波整流,然后由电容平波后提供的,以是应偏重检查整流桥,经丈量发现该整流桥有一起桥臂开路,更换新品后成绩处理.四、过热(OH)过热也是一种比较稀有的毛病,次要缘故原由:四周温度过高,风机堵转,温度传感器功能不良,马达过热.一台ABB ACS500 22kW变频器客户反映在运转半小时左右跳“OH”.分析与维修:由于是在运转一段工夫后才有毛病,以是温度传感器坏的可能性不大,可能变频器的温度的确太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运转良好,运转数小时后没有再跳此毛病.五、输入不服衡输入不服衡一样平常表示为马达抖动,转速不稳,次要缘故原由:模块坏,驱动电路坏,电抗器坏等.一台富士G9S 11KW变频器,输入电压相差100V左右.分析与维修:打开机器初步在线检查逆变模块(6MBI50N-120)没发现成绩,丈量6路驱动电路也没发现毛病,将其模块拆下丈量发现有一起上桥大功率晶体管不克不及正常导通和关闭,该模块曾经损坏,经确认驱动电路无毛病后更换新品后统统正常.六、过载过载也是变频器跳动比较频繁的毛病之一,平常看到过载征象我们其实首先应该分析一下到底是马达过载还是变频器本身过载,一样平常来讲马达由于过载才能较强,只需变频器参数表的电机参数设置得当,一样平常不大会出现马达过载.而变频器本人由于过载才能较差很容易出现过载报警.我们可以检测变频器输入电压.七、开关电源损坏这是众多变频器最稀有的毛病,通常是由于开关电源的负载发生短路形成的,丹佛斯变频器采取了新型脉宽集成操纵器UC2844来调整开关电源的输入,同时UC2844还带有电流检测,电压反馈等功能,当发生无表现,操纵端子无电压,DC12V,24V风扇不运转等征象时我们首先应该考虑能否开关电源损坏了.八、SC毛病SC毛病是安川变频器较稀有的毛病.IGBT模块损坏,这是惹起SC毛病报警的缘故原由之一.此外驱动电路损坏也容易导致SC毛病报警.安川在驱动电路的计划上,上桥运用了驱动光耦PC923,这是公用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采取了光耦PC929,这是一款外部带有放大电路,及检测电路的光耦.此外电机抖动,三相电流,电压不服衡,有频率表现却无电压输入,这些征象都有可能是IGBT模块损坏.IGBT模块损坏的缘故原由有多种,首先是外部负载发生毛病而导致IGBT模块的损坏如负载发生短路,堵转等.其次驱动电路老化也有可能导致驱动波形失真,或驱动电压动摇太大而导致IGBT损坏,从而导致SC毛病报警.九、GF—接地毛病接地毛病也是平常会碰到的毛病,在清除电机接地存在成绩的缘故原由外,最可能发生毛病的部分就是霍尔传感器了,霍尔传感器由于受温度,湿度等环境因数的影响,工作点很容易发生飘移,导致GF报警.十、限流运转在平常运转中我们可能会碰到变频器提示电流极限.对于一样平常的变频器在限流报警出现时不克不及正常平滑的工作,电压(频率)首先要降上去,直到电流下降到容许的范围,一旦电流低于容许值,电压(频率)会再次上升,从而导致零碎的不波动.丹佛斯变频器采取外部斜率操纵,在不超出预定限流值的状况下探求工作点,并操纵电机颠簸地运转在工作点,并将警告信号反馈客户,根据警告信息我们再往检查负载和电机能否有成绩.。

光耦A3150


VCC - VEE “Positive Going”
VCC - VEE “Negative-Going”
LED
(i.e., Turn-On)
(i.e., Turn-Off)
VO
OFF ON ON ON
0 - 30 V 0 - 11 V 11 - 13.5 V 13.5 - 30 V
0 - 30 V 0 - 9.5 V 9.5 - 12 V 12 - 30 V
N/C 1 ANODE 2 CATHODE 3
SHIELD
16 VCC 15 VO 14 VEE
CATHODE 3
N/C 4
SHIELD HCPL-3150
TRUTH TABLE
6 VO 5 VEE
ANODE 6 CATHODE 7
N/C 8
SHIELD HCPL-315J
11 VCC 10 VO 9 VEE
8
7
6
5
OPTION CODE*
LAND PATTERN RECOMMENDATION 1.016 (0.040)
A 3150 Z YYWW
6.350 ± 0.25 (0.250 ± 0.010)
10.9 (0.430)
MOLDED
1
2
3
4
1.27 (0.050)
2.0 (0.080)
1.19 (0.047) MAX.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.635 ± 0.25 (0.025 ± 0.010)
12° NOM.
*MARKING CODE LETTER FOR OPTION NUMBERS.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.0 Amp Output Current IGBT Gate Drive Optocoupler Technical DataHCPL-3120HCPL-J312HCNW3120Features• 2.0 A Minimum Peak Output Current• 15 kV/µs Minimum Common Mode Rejection (CMR) at V CM = 1500 V• 0.5 V Maximum Low Level Output Voltage (V OL )Eliminates Need for Negative Gate Drive• I CC = 5 mA Maximum Supply Current• Under Voltage Lock-Out Protection (UVLO) with Hysteresis• Wide Operating V CC Range:15 to 30 Volts• 500 ns Maximum Switching Speeds• Industrial Temperature Range: -40°C to 100°C • Safety Approval UL Recognized2500 Vrms for 1 min. for HCPL-31203750 Vrms for 1 min. for HCPL-J3125000 Vrms for 1 min. for HCNW3120CSA ApprovalVDE 0884 Approved V IORM = 630 Vpeak for HCPL-3120 (Option 060)V IORM = 891 Vpeak for HCPL-J312V IORM = 1414 Vpeak for HCNW3120BSI Certified (HCNW3120only) (Pending)Applications• IGBT/MOSFET Gate Drive • AC/Brushless DC Motor Drives• Industrial Inverters • Switch Mode Power SuppliesA 0.1 µF bypass capacitor must be connected between pins 5 and 8.CAUTION: It is advised that normal static precautions be taken in handling and assembly of this componentto prevent damage and/or degradation which may be induced by ESD.Functional DiagramTRUTH TABLEV CC - V EE V CC - V EE“POSITIVE GOING”“NEGATIVE GOING”LED (i.e., TURN-ON)(i.e., TURN-OFF)V O OFF 0 - 30 V 0 - 30 V LOW ON 0 - 11 V 0 - 9.5 V LOW ON 11 - 13.5 V 9.5 - 12 V TRANSITIONON13.5 - 30 V12 - 30 VHIGH13SHIELD 248675N /CCATHODE ANODE N/C V CC V O V O V EE13SHIELD248675N /CCATHODE ANODE N/C V CC N/C V O V EEHCNW3120HCPL-3120/J312DescriptionThe HCPL-3120 contains a GaAsP LED while the HCPL-J312 and the HCNW3120 contain an AlGaAs LED. The LED is optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of theoutput stage provides the drivevoltages required by gatecontrolled devices. The voltageand current supplied by theseoptocouplers make them ideallysuited for directly driving IGBTswith ratings up to 1200 V/100 A.For IGBTs with higher ratings,the HCPL-3120 series can beused to drive a discrete powerstage which drives the IGBT gate.The HCNW3120 has the highestinsulation voltage ofV IORM=1414Vpeak in theVDE0884. The HCPL-J312 has aninsulation voltage ofV IORM=891Vpeak and theV IORM=630Vpeak is alsoavailable with the HCPL-3120(Option060).Selection GuidePart Number HCPL-3120HCPL-J312HCNW3120HCPL-3150* Output Peak Current ( I O) 2.0 A 2.0 A 2.0 A0.5 AVDE0884 Approval V IORM=630 Vpeak V IORM=891 Vpeak V IORM=1414 Vpeak V IORM=630 Vpeak(Option 060)(Option 060)*The HCPL-3150 Data sheet available. Contact Agilent sales representative or authorized distributor.Ordering InformationSpecify Part Number followed by Option Number (if desired)Example:HCPL-3120#XXX060 = VDE0884, V IORM = 630 Vpeak (HCPL-3120 only)300 = Gull Wing Surface Mount Option500 = Tape and Reel Packaging OptionOption 500 contains 1000 units (HCPL-3120/J312), 750 units (HCNW3120) per reel.Other options contain 50 units (HCPL-3120/J312), 42 units (HCNW312) per tube.Option data sheets available. Contact Agilent sales representative or authorized distributor.(0.025 ± 0.005)MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076 - 0.051+ 0.003) - 0.002)Package Outline DrawingsHCPL-3120 Outline Drawing (Standard DIP Package)HCPL-3120 Gull Wing Surface Mount Option 300 Outline DrawingDIMENSIONS IN MILLIMETERS AND (INCHES).+ 0.076 - 0.051(0.010+ 0.003)- 0.002)* MARKING CODE LETTER FOR OPTION NUMBERS. "V" = OPTION 060OPTION NUMBERS 300 AND 500 NOT MARKED.Package Outline DrawingsHCPL-J312 Outline Drawing (Standard DIP Package)HCPL-J312 Gull Wing Surface Mount Option 300 Outline DrawingDIMENSIONS IN MILLIMETERS AND (INCHES).0.254+ 0.076 - 0.051(0.010+ 0.003)- 0.002)* MARKING CODE LETTER FOR OPTION NUMBERS. "V" = OPTION 060OPTION NUMBERS 300 AND 500 NOT MARKED.(0.025 ± 0.005)MAX.(0.100)BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).+ 0.076 - 0.051+ 0.003) - 0.002)1.78 ± 0.15 MAX.BSCDIMENSIONS IN MILLIMETERS (INCHES).LEAD COPLANARITY = 0.10 mm (0.004 INCHES).HCNW3120 Outline Drawing (8-Pin Wide Body Package)HCNW3120 Gull Wing Surface Mount Option 300 Outline Drawing1.78 ± 0.15 + 0.076 - 0.0051+ 0.003) - 0.002)Reflow Temperature ProfileRegulatory InformationAgency/StandardHCPL-3120HCPL-J312HCNW3120Underwriters Laboratory (UL)Recognized under UL 1577, Component RecognitionProgram, Category, File E55361Canadian Standards Association (CSA)File CA88324, per Component Acceptance Notice #5Verband Deutscher Electrotechniker (VDE)DIN VDE 0884 (June 1992)Option 060British Standards Institute (BSI)PendingCertification According to BS EN60065: 1994(BS415:1994), BS EN60950: 1992 (BS7002:1992)240TIME – MINUTEST E M P E R A T U R E – °C220200180160140120100806040200260MAXIMUM SOLDER REFLOW THERMAL PROFILE(NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS RECOMMENDED.)Insulation and Safety Related SpecificationsValueHCPL-HCPL-HCNWParameter Symbol 3120J3123120Units ConditionsMinimum External L(101)7.17.49.6mmMeasured from input terminals to Air Gap (Clearance)output terminals, shortest distance through air.Minimum External L(102)7.48.010.0mmMeasured from input terminals to Tracking (Creepage)output terminals, shortest distance path along body.Minimum Internal 0.080.5 1.0mmInsulation thickness between emitter Plastic Gapand detector; also known as distance (Internal Clearance)through insulation.Tracking Resistance CTI >175>175>200VoltsDIN IEC 112/VDE 0303 Part 1(Comparative Tracking Index)Isolation GroupIIIa IIIa IIIaMaterial Group (DIN VDE 0110, 1/89,Table 1)VDE0884 Insulation Related CharacteristicsHCPL-3120DescriptionSymbolOption 060HCPL-J312HCNW3120UnitInstallation classification per DIN VDE 0110/1.89, Table 1for rated mains voltage ≤150 V rms I-IV I-IV I-IV for rated mains voltage ≤300 V rms I-IV I-IV I-IV for rated mains voltage ≤450 V rms I-IIII-III I-IV for rated mains voltage ≤600 V rms I-III I-IV for rated mains voltage ≤1000 V rms I-III Climatic Classification55/100/2155/100/2155/100/21Pollution Degree (DIN VDE 0110/1.89)222Maximum Working Insulation Voltage V IORM 6308911414V peak Input to Output Test Voltage, Method b*V PR118116702652V peakV IORM x 1.875 = V PR , 100% Production Test, t m = 1 sec, Partial Discharge < 5pC Input to Output Test Voltage, Method a*V PR 94513362121V peak V IORM x 1.5 = V PR , Type and SampleTest, t m = 60 sec, Partial Discharge < 5pC Highest Allowable Overvoltage*V IOTM600060008000V peak(Transient Overvoltage, t ini = 10 sec)Safety Limiting Values – maximum values allowed in the event of a failure,also see Figure 37. Case Temperature T S175175150°C Input Current I S INPUT 230400400mA Output PowerP S OUTPUT600600700mW Insulation Resistance at T S , V IO = 500 VR S≥109≥109≥109Ω*Refer to the VDE0884 section (page 1-6/8) of the Isolation Control Component Designer's Catalog for a detailed description of Method a/b partial discharge test profiles.Note: These optocouplers are suitable for “safe electrical isolation” only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.All Agilent data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions areneeded as a starting point for the equipment designer whendetermining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creep-age, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered. There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will alsochange depending on factors such as pollution degree and insulation level.Absolute Maximum RatingsRecommended Operating ConditionsElectrical Specifications (DC)Over recommended operating conditions (T A = -40 to 100°C, I F(ON) = 7 to 16 mA, V F(OFF) = -3.0 to 0.8 V, V CC = 15 to 30 V, V EE = Ground) unless otherwise specified.*All typical values at T A = 25°C and V CC - V EE = 30 V, unless otherwise noted.Switching Specifications (AC)Over recommended operating conditions (T A = -40 to 100°C, I F(ON) = 7 to 16 mA, V F(OFF) = -3.0 to 0.8 V, V CC = 15 to 30 V, V EE = Ground) unless otherwise specified.*All typical values at T A = 25°C and V CC - V EE = 30 V, unless otherwise noted.Package CharacteristicsOver recommended temperature (T A = -40 to 100°C) unless otherwise specified.Parameter Symbol Device Min.Typ.Max.Units Test Conditions Fig.NoteInput-Output V ISO HCPL-31202500V RMS RH < 50%,8, 11Momentary HCPL-J3123750t = 1 min.,9, 11Withstand Voltage**HCNW31205000T A = 25°C 10, 11Resistance R I-O HCPL-31201012ΩV I-O = 500 V DC 11(Input-Output)HCPL-J312HCNW312010121013T A = 25°C1011T A = 100°CCapacitance C I-O HCPL-31200.6pF f = 1 MHz (Input-Output)HCPL-J3120.8HCNW31200.50.6LED-to-Case θLC 467°C/W Thermocouple 28Thermal Resistance LED-to-Detector θLD 442°C/W Thermal ResistanceDetector-to-Case θDC 126°C/W Thermal Resistance*All typicals at T A = 25°C.**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”located at center underside ofpackage Notes:1. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA/°C.2. Maximum pulse width = 10 µs,maximum duty cycle = 0.2%. This value is intended to allow forcomponent tolerances for designs with I O peak minimum = 2.0 A. See Applications section for additional details on limiting I OH peak.3. Derate linearly above 70°C free-air temperature at a rate of4.8 mW/°C.4. Derate linearly above 70°C free-air temperature at a rate of5.4 mW/°C.The maximum LED junction tempera-ture should not exceed 125°C.5. Maximum pulse width = 50 µs,maximum duty cycle = 0.5%.6. In this test V OH is measured with a dc load current. When driving capacitive loads V OH will approach V CC as I OH approaches zero amps.7. Maximum pulse width = 1 ms,maximum duty cycle = 20%.8. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥3000 Vrms for 1 second (leakage detection current limit, I I-O ≤ 5 µA).9. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≥4500 Vrms for 1 second (leakage detection current limit, I I-O ≤ 5 µA).10. In accordance with UL1577, eachoptocoupler is proof tested by applying an insulation test voltage ≥6000 Vrms for 1 second (leakage detection current limit, I I-O ≤ 5 µA).11. Device considered a two-terminaldevice: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8shorted together.12. The difference between t PHL and t PLHbetween any two HCPL-3120 parts under the same test condition.13. Pins 1 and 4 need to be connected toLED common.14. Common mode transient immunity inthe high state is the maximum tolerable dV CM /dt of the common mode pulse, V CM , to assure that the output will remain in the high state (i.e., V O >15.0V).15. Common mode transient immunity ina low state is the maximum tolerable dV CM /dt of the common mode pulse,V CM , to assure that the output will remain in a low state (i.e., V O <1.0V).16. This load condition approximates thegate load of a 1200 V/75A IGBT.17. Pulse Width Distortion (PWD) isdefined as |t PHL -t PLH | for any given device.Figure 7. I CC vs. Temperature.Figure 8. I CC vs. V CC .Figure 4. V OL vs. Temperature.Figure 5. I OL vs. Temperature.Figure 6. V OL vs. I OL .Figure 1. V OH vs. Temperature.Figure 2. I OH vs. Temperature.Figure 3. V OH vs. I OH .(V O H – V C C ) – H I G H O U T P U T V O L T A G E D R O P – V-4T A – TEMPERATURE – °C -1-2-3I O H – O U T P U T HI G H C U R R E N T – AT A – TEMPERATURE – °C (V O H – V C C ) – O U T P U T H I G H V O L T A G E D R O P – VI OH – OUTPUT HIGH CURRENT – AV O L – O U T P U T L O W V O L T A G E – V0T A – TEMPERATURE – °C 0.250.050.150.200.10I O L – O U T P U T L O W C U R R E NT – AT A – TEMPERATURE – °CV O L – O U T P U T L O W V O L T A G E– VI OL – OUTPUT LOW CURRENT – A3412I C C – S U P P L Y C U R R E N T – m A1.5T A – TEMPERATURE – °C 3.02.53.52.0I C C – S U P P L Y C U R R E N T –m A1.5V CC – SUPPLY VOLTAGE – V3.02.53.52.0Figure 9. I FLH vs. Temperature.Figure 10. Propagation Delay vs. V CC .Figure 11. Propagation Delay vs. I F .Figure 12. Propagation Delay vs.Temperature.Figure 14. Propagation Delay vs. Cg.Figure 13. Propagation Delay vs. Rg.I F L H – L O W T O H I G H C U R R E N T T H R E S H O L D – m AT A – TEMPERATURE – °C 32415I F L H – L O W T O H I G H C U R R E N T T H R E S H O L D – m AT A – TEMPERATURE – °C HCPL-J312I F L H – L O W T O H I G H C U R R E N T T H R E S H O L D – m AT A – TEMPERATURE – °CHCNW3120T p – P R O P A G A T I O N D E L A Y – n s100V CC – SUPPLY VOLTAGE – V 400300500200T p – P R O P A G A T I O N D E L A Y – n s100I F – FORWARD LED CURRENT – mA 400300500200T p – P R O P A G A T I O N DE L A Y – n s100T A – TEMPERATURE – °C400300500200T p – P R O P A G A T I O N D E L A Y – n s100Rg – SERIES LOAD RESISTANCE – Ω400300500200T p – P R O P A G AT I O N D E L A Y – n s100Cg – LOAD CAPACITANCE – nF400300500200Figure 15. Transfer Characteristics.Figure 16. Input Current vs. Forward Voltage.Figure 17. I OH Test Circuit.V O – O U T P U T V O L T A G E – V00I F – FORWARD LED CURRENT – mA5251513025342010HCPL-3120 / HCNW3120V O – O U T P U T V O L T A G E – V0I F – FORWARD LED CURRENT – mA1352551525341020HCPL-J31230I F – F O R W A R D C U R R E N T – m AV F – FORWARD VOLTAGE – VOLTSV F – FORWARD VOLTAGE – VOLTSI F – F O R W A R D C U R R E N T – m ACC = 15 to 30 VI F = 7 to 16 mAFigure 20. V OL Test Circuit.Figure 21. I FLH Test Circuit.Figure 19. V OH Test Circuit.Figure 18. I OL Test Circuit.Figure 22. UVLO Test Circuit.CC = 15 to 30 VCC = 15 to 30 VI F 16 mACC = 15 to 30 VCC = 15 to 30 VI FFigure 24. CMR Test Circuit and Waveforms.Figure 23. t PLH , t PHL , t r , and t f Test Circuit and Waveforms.CC = 15 to 30 V I= 30 VCM V OSWITCH AT B: I F = 0 mAV OSWITCH AT A: I F = 10 mA V OLV OHApplications InformationEliminating Negative IGBT Gate Drive (Discussion appliesto HCPL-3120, HCPL-J312, and HCNW3120)To keep the IGBT firmly off, the HCPL-3120 has a very low maximum V OL specification of 0.5V. The HCPL-3120 realizes this very low V OL by using a DMOS transistor with 1Ω(typical) on resistance in its pull down circuit. When the HCPL-3120 is in the low state, the IGBT gate is shorted to the emitter by Rg + 1Ω. Minimizing Rg and the lead inductance from the HCPL-3120 to the IGBT gate andemitter (possibly by mounting the HCPL-3120 on a small PC board directly above the IGBT) can eliminate the need for negative IGBT gate drive in many applica-tions as shown in Figure 25. Care should be taken with such a PC board design to avoid routing theIGBT collector or emitter traces close to the HCPL-3120 input as this can result in unwantedcoupling of transient signals into the HCPL-3120 and degrade performance. (If the IGBT drain must be routed near the HCPL-3120 input, then the LED should be reverse-biased when in the off state, to prevent the transient signals coupled from the IGBT drain from turning on the HCPL-3120.)Figure 25. Recommended LED Drive and Application Circuit.ACCONTROLINPUTSelecting the Gate Resistor (Rg) to Minimize IGBTSwitching Losses. (Discussion applies to HCPL-3120, HCPL-J312 and HCNW3120)Step 1: Calculate Rg Minimum from the I OL Peak Specifica-tion. The IGBT and Rg in Figure 26 can be analyzed as a simple RC circuit with a voltage supplied by the HCPL-3120.(V CC – V EE - V OL )Rg ≥–––––––––––––––I OLPEAK(V CC – V EE - 2 V)=–––––––––––––––I OLPEAK (15 V + 5 V - 2 V)=––––––––––––––––––2.5 A =7.2 Ω ≅ 8 ΩThe V OL value of 2V in the pre-vious equation is a conservative value of V OL at the peak current of 2.5A (see Figure 6). At lower Rg values the voltage supplied by the HCPL-3120 is not an ideal voltage step. This results in lower peak currents (more margin)than predicted by this analysis.When negative gate drive is not used V EE in the previous equation is equal to zero volts.Figure 26. HCPL-3120 Typical Application Circuit with Negative IGBT Gate Drive.AC- HVDCCONTROLINPUTStep 2: Check the HCPL-3120Power Dissipation and Increase Rg if Necessary. The HCPL-3120 total power dissipation (P T ) is equal to the sum of the emitter power (P E ) and the output power (P O ):P T = P E + P OP E = I F •V F •Duty CycleP O = P O(BIAS) + P O (SWITCHING)= I CC •(V CC - V EE )+ E SW (R G , Q G )•f For the circuit in Figure 26 with I F(worst case) = 16mA, Rg = 8Ω, Max Duty Cycle = 80%, Qg = 500 nC,f =20 kHz and T A max = 85C:P E = 16 mA •1.8 V •0.8 = 23 mW P O = 4.25 mA •20 V+ 5.2 µJ •20 kHz = 85 mW + 104 mW = 189 mW> 178 mW (P O(MAX) @ 85C = 250 mW −15C*4.8 mW /C)The value of 4.25 mA for I CC in the previous equation was obtained by derating the I CC max of 5 mA(which occurs at -40°C) to I CC max at 85C (see Figure 7).Since P O for this case is greater than P O(MAX), Rg must be increased to reduce the HCPL-3120 power dissipation.P O(SWITCHING MAX)= P O(MAX) - P O(BIAS)= 178 mW - 85 mW = 93 mWP O(SWITCHINGMAX)E SW(MAX)=–––––––––––––––f93 mW= ––––––– = 4.65 µW 20 kHzFor Qg = 500 nC, from Figure 27,a value of E SW = 4.65 µW gives a Rg = 10.3 Ω.P EParameterDescription I F LED Current V FLED On Voltage Duty CycleMaximum LED Duty CycleP O ParameterDescription I CC Supply Current V CC Positive Supply Voltage V EENegative Supply VoltageE SW (Rg,Qg)Energy Dissipated in the HCPL-3120 for eachIGBT Switching Cycle (See Figure 27)f Switching FrequencyFigure 27. Energy Dissipated in the HCPL-3120 for Each IGBT Switching Cycle.E s w – E N E R G Y P E R S W I T C H I N G C Y C L E – µJ0Rg – GATE RESISTANCE – Ω6144121082Thermal Model(Discussion applies to HCPL-3120, HCPL-J312and HCNW3120)The steady state thermal model for the HCPL-3120 is shown in Figure 28. The thermal resistance values given in this model can be used to calculate the tempera-tures at each node for a given operating condition. As shown by the model, all heat generated flows through θCA which raises the case temperature T Caccordingly. The value of θCAdepends on the conditions of the board design and is, therefore,determined by the designer. The value of θCA = 83°C/W wasobtained from thermal measure-ments using a 2.5 x 2.5 inch PCboard, with small traces (no ground plane), a single HCPL-3120 soldered into the center of the board and still air. The absolute maximum powerdissipation derating specifications assume a θCA value of 83°C/W.From the thermal mode in Figure 28 the LED and detector IC junction temperatures can be expressed as:T JE = P E • (θLC ||(θLD + θDC ) + θCA )θLC * θDC+ P D •(–––––––––––––––– + θCA )+ T AθLC + θDC + θLDθLC •θDCT JD = P E (––––––––––––––– + θCA)θLC + θDC + θLD+ P D •(θDC ||(θLD + θLC ) + θCA ) + T AInserting the values for θLC and θDC shown in Figure 28 gives:T JE = P E •(256°C/W + θCA ) + P D •(57°C/W + θCA ) + T A T JD = P E •(57°C/W + θCA )+ P D •(111°C/W + θCA ) + T A For example, given P E = 45 mW,P O = 250 mW, T A = 70°C and θCA = 83°C/W:T JE = P E •339°C/W + P D •140°C/W +T A= 45 mW •339°C/W + 250 m W•140°C/W + 70°C = 120°C T JD = P E •140°C/W + P D •194°C/W +T A= 45 mW •140C/W + 250 m W•194°C/W + 70°C = 125°CT JE and T JD should be limited to 125°C based on the board layout and part placement (θCA ) specific to the application.T JE =LED junction temperatureT JD =detector IC junction temperatureT C =case temperature measured at the center of the package bottom θLC =LED-to-case thermal resistance θLD =LED-to-detector thermal resistance θDC =detector-to-case thermal resistance θCA =case-to-ambient thermal resistance∗θCA will depend on the board design and the placement of the part.Figure 28. Thermal Model.θLD = 442 °C/W T JET JDθLC = 467 °C/WθDC = 126 °C/WθCA = 83 °C/W*T CT ALED Drive CircuitConsiderations for Ultra High CMR Performance.(Discussion applies to HCPL-3120, HCPL-J312, and HCNW3120)Without a detector shield, the dominant cause of optocoupler CMR failure is capacitivecoupling from the input side of the optocoupler, through the package, to the detector IC as shown in Figure 29. The HCPL-3120 improves CMR performanceby using a detector IC with an optically transparent Faraday shield, which diverts the capaci-tively coupled current away from the sensitive IC circuitry. How-ever, this shield does noteliminate the capacitive coupling between the LED and optocoup-ler pins 5-8 as shown in Figure 30. This capacitivecoupling causes perturbations in the LED current during common mode transients and becomes the major source of CMR failures forFigure 29. Optocoupler Input to OutputCapacitance Model for Unshielded Optocouplers.Figure 30. Optocoupler Input to OutputCapacitance Model for Shielded Optocouplers.a shielded optocoupler. The main design objective of a high CMR LED drive circuit becomes keeping the LED in the proper state (on or off) during common mode transients. For example,the recommended application circuit (Figure 25), can achieve 15kV/µs CMR while minimizing component complexity.Techniques to keep the LED in the proper state are discussed in the next two sections.CMR with the LED On (CMR H).A high CMR LED drive circuit must keep the LED on during common mode transients. This is achieved by overdriving the LED current beyond the input threshold so that it is not pulled below the threshold during a transient. A minimum LED cur-rent of 10 mA provides adequate margin over the maximum I FLH of 5mA to achieve 15kV/µs CMR.CMR with the LED Off(CMR L).A high CMR LED drive circuitmust keep the LED off (V F≤V F(OFF)) during common modetransients. For example, during a-dV cm/dt transient in Figure 31,the current flowing through C LEDPalso flows through the R SAT andV SAT of the logic gate. As long asthe low state voltage developedacross the logic gate is less thanV F(OFF), the LED will remain offand no common mode failure willoccur.The open collector drive circuit,shown in Figure 32, cannot keepthe LED off during a +dVcm/dttransient, since all the currentflowing through C LEDN must besupplied by the LED, and it is notrecommended for applicationsrequiring ultra high CMR Lperformance. Figure 33 is analternative drive circuit which,like the recommended applicationcircuit (Figure 25), does achieveultra high CMR performance byshunting the LED in the off state.CM • • •• • •Figure 33. Recommended LED Drive Circuit for Ultra-High CMR.Figure 31. Equivalent Circuit for Figure 25 During Common Mode Transient.Figure 32. Not Recommended Open Collector Drive Circuit.Under Voltage Lockout Feature. (Discussion applies toHCPL-3120, HCPL-J312, and HCNW3120)The HCPL-3120 contains an under voltage lockout (UVLO)feature that is designed to protect the IGBT under fault conditions which cause the HCPL-3120supply voltage (equivalent to thefully-charged IGBT gate voltage)to drop below a level necessary to keep the IGBT in a low resistance state. When the HCPL-3120output is in the high state and the supply voltage drops below the HCPL-3120 V UVLO– threshold (9.5<V UVLO– < 12.0) the opto-coupler output will go into the low state with a typical delay,UVLO Turn Off Delay, of 0.6µs.When the HCPL-3120 output is in the low state and the supply voltage rises above the HCPL-3120 V UVLO+ threshold (11.0 <V UVLO+ < 13.5) the optocoupler output will go into the high state (assumes LED is “ON”) with a typical delay, UVLO Turn On Delay of 0.8 µs.Figure 34. Under Voltage Lock Out.V O – O U T P U T V O L T A G E – V(V CC - V EE ) – SUPPLY VOLTAGE – V1014268412Figure 37. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per VDE 0884.(DUE TO OPTOCOUPLER)= (t PHL MAX - t PHL MIN ) + (t PLH MAX - t PLH MIN ) = (t PHL MAX - t PLH MIN ) – (t PHL MIN - t PLH MAX ) = PDD* MAX – PDD* MIN*PDD = PROPAGATION DELAY DIFFERENCENOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATIONDELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.V OUT1I LED2V OUT2I LED1Figure 35. Minimum LED Skew for Zero Dead Time.Figure 36. Waveforms for Dead Time.*PDD = PROPAGATION DELAY DIFFERENCENOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYSARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.V OUT1I LED2V OUT2I LED1IPM Dead Time and Propagation DelaySpecifications. (Discussionapplies to HCPL-3120, HCPL-J312, and HCNW3120)The HCPL-3120 includes a Propagation Delay Difference (PDD) specification intended to help designers minimize “dead time” in their power inverterdesigns. Dead time is the time period during which both the high and low side powertransistors (Q1 and Q2 in Figure 25) are off. Any overlap in Q1and Q2 conduction will result in large currents flowing through the power devices between thehigh and low voltage motor rails.O U T P U T P O W E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C1000400600800200100300500700900O U T P U T P O W E R – P S , I N P U T C U R R E N T – I S0T S – CASE TEMPERATURE – °C 600400800200100300500700。

相关文档
最新文档