2019年江苏省扬州市中考数学试卷

合集下载

2019年江苏省扬州市高邮市八校联考中考数学模拟试卷(4月份)(含答案)

2019年江苏省扬州市高邮市八校联考中考数学模拟试卷(4月份)(含答案)

2019年江苏省扬州市高邮市八校联考中考数学模拟试卷(4月份)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)在下列各数中,比﹣1.5小的数是()A.1B.﹣1C.﹣2D.02.(3分)下列运算正确的是()A.a6+a3=a9B.a2•a3=a6C.(2a)3=8a3D.(a﹣b)2=a2﹣b23.(3分)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.4.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.5.(3分)如图,给出了过直线AB外一点P,作已知直线AB的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线品行D.过直线外一点有且只有一条直线与这条直线平行6.(3分)某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为:6,10,5,3,4,8,4,这组数据的中位数和极差分别是()A.4,7B.7,5C.5,7D.3,77.(3分)△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1B.2:2:3C.2:3:2D.3:2:28.(3分)如图,在反比例函数y=﹣的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y =的图象上运动.若tan∠CAB=2,则k的值为()A.2B.4C.6D.8二、填空题(本大题10小题,每小题3分,共30分,不需要写出解答过程)9.(3分)月球距离地球平均为384000000米,用科学记数法表示其结果是米.10.(3分)因式分解:9x2y﹣y=.11.(3分)如图,是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a;如果投掷一枚硬币,正面向上的概率为b,则a b(填“>”“<”或“=”)12.(3分)已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为cm2.(结果保留π)13.(3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的度数为°.14.(3分)如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件.15.(3分)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=55°,则∠B=.16.(3分)关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a ≠0),则方程a(x﹣m+2)2+b=0解是.17.(3分)如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为.18.(3分)如图,边长为3的等边△ABC,D、E分别为边BC、AC上的点,且BD=CE,AD、BE交于P点,则CP的最小值为.三、解答题(本大题共10小题,共96分解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算或化简:(1)2cos45°﹣(﹣2)0+(2)先化简,再求值:(﹣x﹣1)÷,其中x=﹣;20.(8分)求不等式组的解集,并将解集在数轴上表示出来.21.(8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m=,n=,并补全条形统计图;(2)扇形统计图中“C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.22.(8分)一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.23.(10分)已知,一张矩形纸片ABCD,把顶点A和C叠合在一起,得折痕EF(如图).(1)猜猜四边形AECF是什么特殊四边形,并证明你的猜想;(2)若AB=9cm,BC=3cm,求折痕EF的长.24.(10分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?25.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cos A=,求CG的长.26.(10分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹)(1)作△ABC的外接圆圆心O;(2)设D是AB边上一点,在图中作出一个等边△DFH,使点F,点H分别在边BC和AC上;(3)在(2)的基础上作出一个正六边形DEFGHI.27.(12分)如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A 运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC 于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为x秒,当点P运动到点A时,P、Q两点同时停止运动.设PE=y;(1)求y关于x的函数关系式;(2)探究:当x为何值时,四边形PQBE为梯形?(3)是否存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.28.(12分)如图1,已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,且与x轴交于另一点C.(1)求b、c的值;(2)如图1,点D为AC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P 为△ACG内一点,连接P A、PC、PG,分别以AP、AG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR①求证:PG=RQ;②求P A+PC+PG的最小值,并求出当P A+PC+PG取得最小值时点P的坐标.2019年江苏省扬州市高邮市八校联考中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【解答】解:∵1>﹣1.5,﹣1>﹣1.5,﹣2<﹣1.5,0>﹣1.5,∴所给的各数中,比﹣1.5小的数是﹣2.故选:C.2.【解答】解:A、a6与a3不是同类项,不能合并,此选项错误;B、a2•a3=a5,此选项错误;C、(2a)3=8a3,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.3.【解答】解:根据题意的主视图为:,故选:B.4.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项不符合题意;B、既是中心对称图形又是轴对称图形,故本选项符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:B.5.【解答】解:由图形得,有两个相等的同位角,所以只能依据:同位角相等,两直线平行.故选:A.6.【解答】解:把数据重新排序后为3,4,4,5,6,8,10,∴中位数为5,极差为10﹣3=7.故选:C.7.【解答】解:∵P为三边角平分线的交点,∴点P到△ABC三边的距离相等,∵AB,BC,CA的长分别为6cm,4cm,4cm,∴△ABP,△BCP,△ACP的面积比=6:4:4=3:2:2.故选:D.8.【解答】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥x轴于点F,如图所示.由直线AB与反比例函数y=﹣的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴.∵tan∠CAB==2,∴CF=2AE,OF=2OE.又∵AE•OE=|﹣2|=2,CF•OF=|k|,∴k=±8.∵点C在第一象限,∴k=8.故选:D.二、填空题(本大题10小题,每小题3分,共30分,不需要写出解答过程)9.【解答】解:384000000=3.84×108,故答案为:3.84×108.10.【解答】解:原式=y(9x2﹣1)=y(3x+1)(3x﹣1).故答案为:y(3x+1)(3x﹣1).11.【解答】解:∵正六边形被分成相等的6部分,阴影部分占3部分,∴a==,∵投掷一枚硬币,正面向上的概率b=,∴a=b,故答案为:=.12.【解答】解:底面圆的半径为3cm,则底面周长=6πc,侧面面积=×6π×5=15πcm2.13.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故答案为:40.14.【解答】解:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.故答案为:AC=BD15.【解答】解:∵AE⊥BC于点E,AF⊥CD于点F.∴∠AEC=∠AFC=90°∵∠AEC+∠AFC+∠C+∠EAF=360°,且∠EAF=55°∴∠C=360°﹣90°﹣90°﹣55°=125°∵四边形ABCD是平行四边形∴∠B+∠C=180°∴∠B=55°故答案为55°16.【解答】解:方程a(x+m)2+b=0可变形为ax2+2amx+am2+b=0,∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,∴x1+x2=﹣2m=1,∴m=﹣.∵关于x的方程a(x﹣)2+b=0的解是x1=2,x2=﹣1,∴抛物线y=a(x﹣)2+b与x轴交于点(﹣1,0)和(2,0).将抛物线y=a(x﹣)2+b向左平移2个单位长度可得出抛物线y=a(x+)2+b,∴抛物线y=a(x+)2+b与x轴交于点(﹣3,0)和(0,0),∴方程a(x+)2+b=0的解为x1=﹣3,x2=0.故答案为:x1=﹣3,x2=0.17.【解答】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△F AE和△EAF′中,∴△F AE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.18.【解答】解:∵在等边△ABC中,∠ABC=∠C=60°,AB=BC,BD=CE,∴△ABD≌△BCE,∴∠CBE=∠BAP,而∠CBE+∠ABP=60°,∴∠BAP+∠ABP=∠APE=60°,若CP取最小值,可得∠APC=120°,所以CP=,故答案为:三、解答题(本大题共10小题,共96分解答时应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)原式=2×﹣1+﹣1﹣=﹣1+﹣1﹣2=﹣2;(2)(﹣x﹣1)÷===﹣(x+2)(x﹣1)=﹣x2﹣x+2当x=﹣时,原式=﹣(﹣)2﹣(﹣)+2=﹣2++2=20.【解答】解:,解①得x>﹣2,解②得x≤,所以不等式组的解集为﹣2<x≤.用数轴表示为:.21.【解答】解:(1)从条形图可知,B组有15人,从扇形图可知,B组所占的百分比是15%,D组所占的百分比是30%,E组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m=30,n=20;(2)“C组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.22.【解答】解:(1)从箱子中任意摸出一个球是白球的概率是;(2)记两个白球分别为白1与白2,画树状图如右所示:从树状图可看出:事件发生的所有可能的结果总数为6,两次摸出球的都是白球的结果总数为2,因此其概率.23.【解答】解:(1)四边形AECF是菱形.理由如下:∵四边形ABCD为矩形,∴AB∥CD,∴∠AFE=∠CEF,∵矩形ABCD沿EF折叠,顶点A和C叠合在一起,∴AF=CF,∠AFE=∠CFE,∴∠CFE=∠CEF,∴CE=CF,∴CE=AF,而CE∥AF,∴四边形AFCE为平行四边形,∵AF=CF,∴四边形AFCE为菱形;(2)连结AC,如图,在Rt△ABC中,AB=9cm,BC=3cm,∴AC==3cm,设BF=xcm,则AF=CF=(9﹣x)cm,在Rt△BFC中,∵BF2+BC2=CF2,∴x2+32=(9﹣x)2,解得x=4,∴AF=5cm,∵S菱形AFCE=EF•AC=AF•BC,∴EF==(cm).24.【解答】解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得2(+)+=1,解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.25.【解答】(1)证明:如图1,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线.(2)解:如图2,∵AB=AC=10,AB是⊙O的直径,∴OA=OD=10÷2=5,由(1),可得OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∴△ODF∽△AGF,∴,∵cos A=,∴cos∠DOF=,∴=,∴AF=AO+OF=5,∴,解得AG=7,∴CG=AC﹣AG=10﹣7=3,即CG的长是3.26.【解答】解:(1)如图所示:点O即为所求.(2)如图所示,等边△DFH即为所求;(3)如图所示:六边形DEFGHI即为所求正六边形.27.【解答】解:(1)∵矩形ABCD,∴∠D=90°,AB=DC=3,AD=BC=4,∴在Rt△ACD中,利用勾股定理得:AC==5,∵PE∥CD,∴∠APE=∠ADC,∠AEP=∠ACD,∴△APE∽△ADC,又PD=x,AD=4,AP=AD﹣PD=4﹣x,AC=5,PE=y,DC=3,∴==,即==,∴y=﹣x+3;(2)若QB∥PE,四边形PQBE是矩形,非梯形,故QB与PE不平行,当QP∥BE时,∠PQE=∠BEQ,∴∠AQP=∠CEB,∵AD∥BC,∴∠P AQ=∠BCE,∴△P AQ∽△BCE,由(1)得:AE=﹣x+5,P A=4﹣x,BC=4,AQ=x,∴==,即==,整理得:5(4﹣x)=16,解得:x=,∴当x=时,QP∥BE,而QB与PE不平行,此时四边形PQBE是梯形;(3)存在.分两种情况:当Q在线段AE上时:QE=AE﹣AQ=﹣x+5﹣x=5﹣x,(i)当QE=PE时,5﹣x=﹣x+3,解得:x=;(ii)当QP=QE时,∠QPE=∠QEP,∵∠APQ+∠QPE=90°,∠P AQ+∠QEP=90°,∴∠APQ=∠P AQ,∴AQ=QP=QE,∴x=5﹣x,解得:x=;(iii)当QP=PE时,过P作PF⊥QE于F,可得:FE=QE=(5﹣x)=,∵PE∥DC,∴∠AEP=∠ACD,∴cos∠AEP=cos∠ACD==,∵cos∠AEP===,解得:x=;当点Q在线段EC上时,△PQE只能是钝角三角形,如图所示:∴PE=EQ=AQ﹣AE,AQ=x,AE=﹣x+5,PE=﹣x+3,∴﹣x+3=x﹣(﹣x+5),解得:x=.综上,当x=或x=或x=或x=时,△PQE为等腰三角形.28.【解答】解:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,3),∵抛物线y=﹣x2+bx+c过A、B两点,∴解得,∴b=﹣2,c=3.(2),对于抛物线y=﹣x2﹣2x+3,令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,∴点C坐标(1,0),∵AD=DC=2,∴点D坐标(﹣1,0),∵BE=2ED,∴点E坐标(﹣,1),设直线CE为y=kx+b,把E、C代入得到解得,∴直线CE为y=﹣x+,由解得或,∴点M坐标(﹣,).(3)①∵△AGQ,△APR是等边三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60°,∴∠QAR=∠GAP,在△QAR和△GAP中,,∴△QAR≌△GAP,∴QR=PG.②如图3中,∵P A+PG+PC=QR+PR+PC=QC,∴当Q、R、P、C共线时,P A+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K.∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q坐标(﹣6,3),在RT△QCN中,QN=3,CN=7,∠QNC=90°,∴QC==2,∵sin∠ACM==,∴AM=,∵△APR是等边三角形,∴∠APM=60°,∵PM=PR,cos30°=,∴AP=,PM=RM=∴MC==,∴PC=CM﹣PM=,∵==,∴CK=,PK=,∴OK=CK﹣CO=,∴点P坐标(﹣,).∴P A+PC+PG的最小值为2,此时点P的坐标(﹣,).。

2019年江苏省扬州市中考数学模拟测试试卷附解析

2019年江苏省扬州市中考数学模拟测试试卷附解析

2019年江苏省扬州市中考数学模拟测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.把抛物线226y x =−+平移后所得的新抛物线在 x 轴上截得的线段长为 2,则原抛物线应( )A . 向上平移 4 个单位B .向下平移4个单位C . 向左平移 4 个单位D .向右平移4 个单位2.在梯形ABCD 中,AD BC ∥,AB DC =,E F G H ,,,分别是AB BC CD DA ,,,的中点,则四边形EFGH 是( )A .等腰梯形B .矩形C .菱形D .正方形3.在下列汽车商标图案中,是中心对称图形的是( )4.下列函数:①18y x =;②18y x =−;③22y x =;④2y x=.其中是一次函数的个数为( ) A . 0个 B .1个 C . 2个 D .3个5.已知点P 关于x 轴的对称点为(a ,-2),关于y 轴的对称点为(1,b ),那么点P 的坐标为( )A .(a ,-b )B .(b ,-a )C .(-2,1)D .(-1,2)6.下列说法中,错误的是( )A .同旁内角互补,两直线平行B .两直线平行,内错角相等C .对顶角相等D .同位角相等7.如图,直线12l l ∥,l 分别与12l l ,相交,如果2120∠=,那么1∠的度数是( )A .30 B .45 C .60 D .758.现实生活中存在大量的平移现象,下列现象属于平移变换的是( ) A .行进中自行车车轮的运动 B .急刹车后汽车在路面上的滑动 C .人与镜子中的像 D .台球在桌面上从一点到另一点的运动9. 计算32()x 的结果是( )A .5xB .6xC .8xD .9x l l 1 l 21 210.2007年10月,“欧洽会”在浙江上虞举行,总投资额累计达8700万欧元. 总投资额用记数法表示( )A .38.710⨯欧元B .78.710⨯欧元C .38710⨯ 欧元D .48.710⨯欧元 11.下列各组数中,互为倒数的是( ) A . -1与-1B . 0.1与 1C .-2与 0.5D .-43与43 12.一个数的绝对值是最小的正整数,那么这个数是( )A .0B .-1C .1D .1± 二、填空题13.关于x 的方程2(1)10x k x +−−=的一个根为2,那么k 的值为 . 14.请给假命题“两个锐角的和是锐角”举出一个反例: . 15.已知平行四边形的面积是144cm 2,相邻两边上的高分别为8cm 和9cm ,则这个平行四边形的周长为 .16.如图,△ABC 是等边三角形,P 是三角形内任一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 周长为12,PD+PE+PF= .17.如图所示,以五边形的各顶点为圆心,l cm 长为半径,画五个等圆,则图中阴影部分的面积之和为 cm 2.18.当2009x =时,代数式2913x x −−+的值为 . 19.把12()a −写成同底数幂的乘积的形式(写出一种即可):如:12()a −= × = × × .20.一个口袋中装有 4个白球,2 个红球,6 个黄球,摇匀后随机从中摸出一个球是白球的概率是 .21.如图,在直角三角形ABC 中,∠ACB=90°,CD ⊥AB , 点D 为垂足. 在不添加辅助线的情况下,请写出图中一对相等的锐角: .(写出一对即可).22.对于加法,我们有 3+5=5+3,11112332+=+,(-3) +(-0.5) = (-0. 5)+(-3),…,用字母可以表示成 .23.相反数等于本身的数是.三、解答题24.如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.25.如图,在矩形 ABCD 中,AB =6 cm,BC=12 cm,点P从点A出发,沿 AB 边向点 B 以1cm/s的速度移动,同时点 Q从点B 出发沿 BC 边向点C 以2cm/s 的速度移动,回答下列问题:(1)设运动后开始第 t(s)时,五边形 APQCD 的面积为 S(m2),写出 S与t的函数关系式,并指出自变量 t 的取值范围;(2)t 为何值时S最小?求出 S的最小值.26.如图,∠A=36°,∠DBC=36°,∠C=72°,找出图中的一个等腰三角形,并给予证明.我找的等腰三角形是: .证明:27.如图,AC =AE ,∠BAM =∠BND =∠EAC , 图中是否存在与△ABE 全等的三角形?并说明理由.28.先化简2(21)(31)(31)5(1)x x x x x −−+−+−,再选取一个你喜欢的数代替x 求值.29.解方程组278ax by cx y +=⎧⎨−=⎩时,小明正确地解出32x y =⎧⎨=−⎩,小红把c 看错了,解得22x y =−⎧⎨=⎩,试求a ,b ,c 的值.30.某工厂做一批零件共 m 个,第一周完成了12,第二周因为人手减少只完成了全部的剩下部分的12. (1)问现在还剩多少零件?(2)若剩下部分为 100 个零件,则零件总数m 为多少个?A D M CB E N【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.C5.D6.D7.C8.B9.B10.B11.A12.D二、填空题13. 12−14. 如50α=,60β=,90αβ+>(答案不惟一) 15.68cm16.417.32π18. 200519.不唯一,如:2()a −,10()a −;4()a −,6()a −,2()a − 20.1321. 答案不唯一,如∠1 =∠A ,∠2=∠B 等22.a+b=b+a23.三、解答题24.如图,阴影部分即为小明的活动区域.25.(1) PBQ ABCD S S S ∆=−矩形=1126(6)22t t ⨯−−⋅=2672t t −+, t 的取值范围为 0≤t<6. (2) 2672s t t =−+2(3)63t =−+,∴当 t=3 时,63s =最大值cm 2. 26.我所找的等腰三角形是:△ABC (或△BDC 或△DAB ). 证明:在△ABC 中,∵∠A=36°,∠C=72°, ∴∠ABC=180°-(72°+36°)=72°.∵∠C=∠ABC ,∴AB=AC ,∴△ABC 是等腰三角形.27.存在△ABE ≌△ADC ,理由略28.92x −+;29.4a =,5b =,2c =−30. (1) 14m (2)40O。

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。

2019年江苏省扬州市中考数学名师模拟试卷附解析

2019年江苏省扬州市中考数学名师模拟试卷附解析

2019年江苏省扬州市中考数学名师模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.圆的切线( )A .垂直于半径B .平行于半径C .垂直于经过切点的半径D .以上都不对2.已知抛物线21(4)33y x =−−的部分图象如图所示,图象再次与x 轴相交时的坐标是( )A .(5,0)B .(6,0)C .(7,0)D .(8,0) 3.对于任何整数n ,多项式22(3)n n +−都能被( )A .3n +整除B .n 整除C .3整除D .不能确定4.下列式子成立的是( )A .(2a -1)2=4a 2-1B .(a+3b )2=a 2+9b 2C .(-a+b )(-a-b )=a 2-b 2D .(-a -b )2=a 2-2ab+b 2 5.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( )A .72B .108C .144D .216 6.下列说法错误的是 ( )A .(-3)2的平方根是±3B .绝对值等于它的相反数的数一定是负数C .单项式235x y z 与322zy x −是同类项D .近似数3.14×103有三个有效数字7.以下图形中,不是立体图形的是 ( )A .正方体B .圆C .棱柱D .圆锥 8.把1−,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误..的是( )二、填空题9.从 1、2、3、4、5 中任选2 个数,两个数都小于4 的概率是 ,两个数的乘积是偶数的概率是 . 10.一斜坡的坡比为 1:2,斜面长为 l5m ,则斜面上最高点离地面的高度为 m .11.如图,点A ,B ,D 在⊙O 上,25A =∠,OD 的延长线交直线BC 于点C ,且40OCB =∠,直线BC 与⊙O 的位置关系为_________.12.若函数2(1)21y a x x =−−+的图象与x 轴只有一个交点,则a= .13.某超市一月份的营业额为200万元,第一季度的营业额共1000万元,如果平均每月增长率为x ,则有题意列方程为 .14.□ABCD 的周长为l8cm ,对角线AC ,BD 相交于点O ,△AOB 的周长比△COB 的周长大2 cm ,则AB= ,PC= .15.如图,AB=AC ,0120BAC ∠=,AB 的垂直平分线交BC 于点D ,那么ADC ∠= .16. Rt △ARC 中,∠C=90°,若CD 是AB 边的中线,且CD=4cm ,则AB= cm ,AD= BD= cm.17.如图,AB ∥CD ,∠C =65°,CE ⊥BE ,垂足为点E ,则∠B= .18.长方形是轴对称图形,它有 条对称轴.19.判断正误,正确的打“√”,错误的打“×(1)6662x x x ⋅= ( )(2)336x x x += ( )(3)4416x x x ⋅= ( )(4)348()()()ab ab ab ab ⋅⋅= ( )(5)6253473a a a a a a a ⋅+⋅+= ( )20.如图所示,四边形ABCD 为正方形,它被虚线分成了9个小正方形,则△DBE 与△DEC 的面积之比为 .21.用简便方法计算22−⨯+= .200140022000200022.化简:(7y - 3z)- (8y - 5z)= .23.(-2)3的底数是,指数是,幂是.三、解答题24.如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.25.如图,已知图中的两个正五边形是位似图形.(1)AE的对应线段是哪条线段?(2)请在图中画出位似中心 0,并说明画法.26.已知抛物线y= x2-2x-8,若该抛物线与x轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积.△ABP面积为27.27.菱形的一边与它的两条对角线所构成的两角之比为5:4,求菱形的各内角.28.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数为多少?并说明理由.29.如图所示,△ABC与△DFE全等,AC与DE是对应边.(1)找出图中相等的线段和相等的角;(2)若BE=14 cm,FC=4 cm,求出EC的长.30.计算:(1)|2||2|−++;(2)|2||3|−⨯+【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.C5.B6.B7.B8.D二、填空题9.3 10,71010.11.相切12.213.200+200(1+x)+200(1+x)2=100014.5.5 cm,3.5 cm15.6016.8.417.25°18.219.(1)× (2)× (3)× (4)× (5)√20.1:221.122.−+23.y z2三、解答题24.解:(1)∵在△ABO中,OA=OB,∠OAB=30°∴∠AOB=180°-2×30°=120°∵PA、PB是⊙O的切线∴OA⊥PA,OB⊥PB.即∠OAP=∠OBP=90°∴在四边形OAPB中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP,∵PA 、PB 是⊙O 的切线,∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA °=33.(1)FG.(2)连结两个对应点的两条线段的交点即为位似中心0.26.27.100°,80°,l00°,80°28.45°或l35°29.(1)BF=CE ,AC=DE ,AB=DF ,BC=EF ,∠A=∠D ,∠B=∠EFD ,∠ACB=∠E ;(2)5 cm 30.(1)4 (2)6 B A O 图①。

江苏省扬州市2019年中考:数学考试真题与答案解析

江苏省扬州市2019年中考:数学考试真题与答案解析

江苏省扬州市2020年中考:数学考试真题与答案解析一、 选择题本大题共有8小题,每小题3分,共24分. 在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上。

1. 实数3的相反数是( )A. ﹣3B.C. 3D. 133±2. 下列各式中,计算结果为的是( )6m A.B. C.D. 23m m ⋅33+m m 122m m ÷()32m3. 在平面直角坐标系中,点所在的象限是()()22,3P x +-A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限4. “致中和,天地位焉,万物育焉”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光. 在下列与扬州有关的标识或简图中,不是轴对称图形的是()A B. C. D.5. 某班级组织活动,为了了解同学们喜爱的体育运动项目,设计了如下尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A. ①②③B.①③⑤C. ②③④D. ②④⑤6. 如图,小明从点A 出发沿着直线前进10米到达点B ,向左转45°后又沿直线前进10米到达点C ,再向左转45°后沿直线前进10米到达点D.........照这样走下去,小明第一次回到出发点A 时所走的路程为( )A. 100米B. 80米C. 60米D. 40米(第6题)(第7题)(第8题)7. 如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都各点上,以AB 为直径的圆经过点C 、D ,则sin ∠ACD 的值为( )A.B.C.D.23328. 小明同学利用计算机软件绘制函数(a ,b 为常数)的图像如图所示,由学习()2axy x b =+函数的经验,可以推断常数a 、b 的值满足( )A. a >0,b >0B. a >0,b<0C. a<0,b >0D. a<0,b<0二、 填空题本大题共有10小题,每小题3分,共30分. 不需写出解答过程,请把答案直接填写在答题卡相应位置上。

2019年江苏扬州市中考数学试卷及答案-8页文档资料

2019年江苏扬州市中考数学试卷及答案-8页文档资料

江苏省2009年中考数学试卷说明:1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号.3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格6.某商场试销一种新款衬衫,一周内销售情况如下表所示: 型号(厘米) 383940414243数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:其中,能使ABC DEF △≌△的条件共有( )BA 1-10 a b (第3题)圆柱 圆锥 球 正方体 (第5题) 图②甲 乙 图① 甲乙A DA .1组B .2组C .3组D .4组8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; 第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭L.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.计算2(3)-= .10.使1x -有意义的x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2019年农民人均年收入为7 800元,计划到2019年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= . 17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:154 32 (第15题) OBA CDADE B CF (第16题) (第17题) (第18题)(1)0|2|(12)4--++;(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少? 22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程. 23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC =时,求证:ABCD Y是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离; (2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:3 1.73≈,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展AD C FE B x yO 1 2 32 1 1- 1- 2-221y xx =-- A北东C D BEl60°76°30% 30% 40% 农村县镇城市各类学生人数比例统计图等第 人数 类别 A B C D 农村 ▲ 200 240 80 县镇 290 132 130 ▲ 城市 240 ▲ 132 48(注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格) 各类学生成绩人数比例统计表平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量) 请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.江苏省2009年中考数学试卷参考答案及评分建议 一、选择题(本大题共有8小题,每小题3分,共24分) 题号 123456 78 选项A B C B DBC A 二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x +=14.1 15.< 16.25 17.2π 18.16三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程)19.解:(1)原式2123=-+=. ····························································· (4分)A C DB 图① ACD B 图② FEE D CF B A 图③ E D C A B FG C 'D ' A DE C BFG α 图④ 图⑤ 1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升. 15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升. 五月份销售记录OxyEP DA B M C O x (万升) y (万元)C B A4 5.5 10(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. ············· (8分) 20.解:(1)280,48,180. ···································································· (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=, 估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ·········································· (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=.答:出现1个男婴,2个女婴的概率是38. ···················································· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米? (3分) 解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y=⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ··············································· (7分) 答:普通公路长为60km ,高速公路长为120km . ············································ (8分)解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ·················· (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h . 根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,················································ (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h . ····························· (8分) 23.(1)解:13AD BC =. ····································································· (1分) 理由如下:∴四边形ABED 和四边形AFCD 都是平行四边形.(男男男) (男男女) 男 女 男(男女男) (男女女) 男 女 女(女男男) (女男女) 男 女 男(女女男) (女女女)男 女女男女开始第一个 第二个 第三个所有结果又Q 四边形AEFD 是平行四边形,AD EF ∴=.13AD BC ∴=. ······················································································ (5分) (2)证明:Q 四边形ABED 和四边形AFCD 都是平行四边形, 又Q 四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. ························· (10分)24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,.··············································(3分) 因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C 的坐标为(20),. ······(6分) (2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),.因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩, 解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ································· (10分)25.解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==g °,°(km ). ∴观测点B 到航线l 的距离为3km . ····························································· (4分) (2)在Rt AOD △中,tan 6023OD AD ==g °. 在Rt BOE △中,tan 6033OE BE ==g °.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=g °,,°.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈(km/h ).答:该轮船航行的速度约为40.6km/h . ······················································· (10分) 26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD平分BAC ∠,所以BAD CAD ∠=∠. 又由折叠知,90AGE DGE ∠=∠=°, xyO 1 2 3211- 1-2-221y x x =--ABlCAFEG所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =, 即AEF △为等腰三角形. ········································ (5分)(2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°. 从而9067.522.5α∠=-=°°°. ······························································ (10分) 27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升). 答:销售量x 为4万升时销售利润为4万元. ················································ (3分) (2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),.设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩,∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ··························· (6分)从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元).∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),.设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩,所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. ···························· (9分) (3)线段AB . ···················································································· (12分) 解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤. 当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ················································ (3分) (2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,即 1.52(45)y x x =-≤≤. ····································································· (6分)把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升).当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.54.45⨯+⨯==(元).所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤. ······························· (9分) (3)线段AB . ···················································································· (12分) 28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ················································· (2分) (2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时,有3532t -≤,即43t ≥. 当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO ∠=∠,得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤.∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. ······················· (5分)②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ······························· (7分) 当PA PB =时,有PC AB ⊥,3535t t ∴-=-.解得35t =. ····················· (9分) 当PB AB =时,有221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ··············································· (11分)∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =. ············· (12分)O xyE PC D B Q A M F。

2019届江苏省扬州市中考二模数学试卷【含答案及解析】

2019届江苏省扬州市中考二模数学试卷【含答案及解析]姓名____________ 班级_______________ 分数____________、选择题1.下面的数中,与-2的和为0的是()A. 2 B . - 2 C D2 22.在“ 2015高淳国际马拉松赛”中,有来自肯尼亚、韩国、德国等16个国家和地区约10100名马拉10100用科学记数法可表示为(A. x >- 1 B . x > 2 C .x v- 1 D . x v 21.01 X 105 D . 0.101 X 1043 .计算(-a2)3的结果是()A.a5 B . - a5 C.a6D-a6BAE、/ AED.Z ED外角, 5.从下列不等式中选择一个与那么可以选择的不等式可以是(x+1组成不等式组,如果要使该不等式组的解集为A. 10.1 X 103 B . 1.01 X 104 C4.如图,五边形ABCD中, AB// CD,则/ 1+Z 2+Z3 等于()210°Z 2、/分别是/A. x >- 1 B . x > 2 C .x v- 1 D . x v 26.下列四个几何体中,主视图与其它三个不同的是(B D7. 如图,点C是OO上的动点,弦AB=4, Z C=45。

,贝US A ABC的最大值是()A :+4B . 8C •;' +4D . 4J +4EAF=45 ° ,△ EC周长为8. 如图,在正方形ABCD中, E、F分别是边BC CD上的点,Z二、填空题9. 若代数式有意义,则x满足的条件是 __________ .10. 分解因式:x3 - 4x= .11. 一组数据3, 2, x, 2, 6, 3的唯一众数是2,则这组数据的中位数为D12. 在直角坐标系中,将点(-2, 3)关于原点的对称点向左平移2个单位长度得到的点的坐标是13. 甲、乙两台机器分别罐装每瓶质量为500克的矿泉水•从甲、乙罐装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:S甲2=4.8 , S乙2=3.6 •那么罐装的矿泉水质量比较稳定.14. 已知m2+叶仁0,则m3+2m2+2014=15. 用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm 那么这张扇形纸片的面积是cm216. 已知:如图,在△ABC AD丄BC,垂足为点D, BE丄AC,垂足为点E, M为AB边的中点,连结ME MD ED.设AB=4,Z DBE=30,则△ EDM的面积为iX-S(%-2) <217. 若关于x的不等式组门十2玄有解,则实数a的取值范围是------- >愛18. 如图,己知△ ABC, / C=90 ° ,Z A=30 °AC^ .动点D在边AC上,以BD为边作等边△ BDE (点E、A在BD的同侧)•在点D从点A移动至点C的过程中,点E移动的路线长为二、计算题19. 计算:tan SO3- 卅(1-柏心四、解答题元购进第二批该款套尺,购进时单价是第一批的一倍, 所2°.先化简再计算: ,其中x 是一元二次方程 x2 - 2x - 2=0的正数根. 21.设中学生体质健康综合评定成绩为 x 分,满分为100分,规定: 75W x <85为B 级,60<x <75为C 级,x V 60为D 级.现随机抽取福海中学部分学生的综 合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题: 人 名学生,a = % ; (1) (2) (3) (4) 在这次调查中,一共抽取了 补全条形统计图;扇形统计图中C 级对应的圆心角为 若该校共有2000名学生,请你估计该校 D 级学生有多少名?度; 22.某市举办中学生足球赛,初中男子组共有市直学校的 A B 两队和县区学校的e 、f 、g 、 h 四队报名参赛,六支球队分成甲、乙两组,甲组由 A 、e 、f 三队组成,乙组由B 、g 、h 三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛. (1) 在甲组中,首场比赛抽到 e 队的概率是 ;(2) 请你用画树状图或列表的方法,求首场比赛出场的两个队都是县区学校队的概率.BA 丄 ADBC=DC BE 丄 C 于点 E.(1) 求证:△ ABD^A EBD(2) 过点E 作EF// DA 交BD 于点F ,连接AF .求证:四边形AFED 是菱形. 24.某文化用品商店用1 000元购进一批“晨光”套尺, 很快销售一空;商店又用1 500(1) 求第一批套尺购进时单价是多少?(2) 若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?25. 如图,△ AB中,以BC为直径的圆交AB于点D,Z ACD=Z ABC.A(1)求证:CA是圆的切线;26. 定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理【解析】 (1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB BC为边的两个对等四边形ABCD(2)如图2,在圆内接四边形ABCD中, AB是OO的直径,AC=BD求证:四边形ABCD是对等四边形;(3)如图3,点D B分别在x轴和y轴上,且 D (8, 0), B (0, 6),点A在BD边上,且AB=2试在x轴上找一点C,使ABO(是对等四边形,请直接写出所有满足条件的C点坐标.27. 从M地到N地有一条普通公路,总路程为120km 有一条高速公路,总路程为126km甲车和乙车同时从M地开往N地,甲车全程走普通公路,乙车先行驶了另一段普通公路,然后再上高速公路.假设两车在普通公路和高速公路上分别保持匀速行驶,其中在普通公路上的行车速度为60km/h,在高速公路上的行车速度为100km/h .设两车出发xh时,距N地的路程为y km,图中的线段AB与折线ACD分别表示甲车与乙车的y与x之间的函数关系.五、填空题28.已知,在平面直角坐标系中,点P (0,2),以P 为圆心,0P 为半径的半圆与y 轴的另一个交点是C, 一次函数y=-二x+m ( m 为实数)的图象为直线l , I 分别交x 轴,y3轴于A , B 两点,如图1. (1) B 点坐标是(用含m 的代数式表示),/ ABO= ° ;(2) 若点N 是直线AB 与半圆CO 的一个公共点(两个公共点时, N 为右侧一点),过点 N 作OP 的切线交x 轴于点E,如图2.①是否存在这样的 m 的值,使得△ EBN 是直角三角形?若存在,求出 m 的值;若不存在, 请说明理由.(2) (3) CD 所表示的y 与x 之间的函数关系式;两车在何时间段内离 N 地的路程之差达到或超过30km ?求线段AB参考答案及解析第1题【答案】A【解析】试题分析:设这个数知9由题育得:X+ ( - 2) =0」x-2=0,故选:A.第2题【答案】B第3题【答案】j【解析】试题分析:根抿积的乘方法则:把毎一个因式分别乘方.再把所得的显相乘,进行计算即可.故选D・第4题【答案】【解析】试题分析:TABf/CD,.\ZB+ZC=180"』■\Z4+Z5=1SO6,根据多边形的外角下咗理,ZL+Z2^Z3+Z4+Z5=350°, J.Zl+Z 24Z3=360 -100° =190°,故选E.第5题【答案】A【解析】试题井析:x+l^Z,解得:心1[根据犬犬取大可得号一个不等式的解集一定是盂不大于1 •第6题【答案】故选;hD【解析】试题井析:拟的壬视图是第一层两个小正方脇第二层■左边一个小正方形; J的主视團是第一层两个小正方开离第二层左边一牛小1E方形,氣的主视團是第一层两个小正方形』第二层左边一个小正方形,X的主视團是第一层两个小正方勉第二层左两个小正方形'故选:D -第7题【答案】D【瞬析】试题井析:过点0作倆丄AB于点® 0E的反向延长线交O0于点D,连接0旺OS.丁噩杲定值,二恥越论则也ABC的面积越大,'/ZC=i5^ ・.'.ZAOB^* ,-■-AOABft等腰直甬三角形,/.0A=2^ .TOE 丄AB ?.'.J1E=2?…OE ~J。

【附5套中考模拟试卷】江苏省扬州市2019-2020学年中考数学第三次调研试卷含解析

江苏省扬州市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC2.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.3.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+4.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为()A.35B.93C7D.476.某中学篮球队12名队员的年龄如下表:年龄:(岁)13 14 15 16 人数 1 5 4 2 关于这12名队员的年龄,下列说法错误的是( )A.众数是14岁B.极差是3岁C.中位数是14.5岁D.平均数是14.8岁7.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A.8073 B.8072 C.8071 D.80708.对于不为零的两个实数a,b,如果规定:a★b=()()a b a baa bb+<⎧⎪⎨-≥⎪⎩,那么函数y=2★x的图象大致是()A .B .C .D.9.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A .B.C .D .10.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.11.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π-B.2233π-C.433π-D.4233π-12.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为_____.14.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .16.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.17.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为__________.18.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、点B 、点C 均落在格点上. (I )计算△ABC 的边AC 的长为_____.(II )点P 、Q 分别为边AB 、AC 上的动点,连接PQ 、QB .当PQ+QB 取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ 、QB ,并简要说明点P 、Q 的位置是如何找到的_____(不要求证明).20.(6分)(1)计算:20(2)(3)12sin 60π︒-+-+-;(2)化简:2121()a a a a a--÷-.21.(6分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据: 成绩x学生 70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲 ______ ______ ______ ______ ______ ______ 乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示: 学生极差平均数中位数众数方差甲______ 83.7 ______ 86 13.21乙24 83.7 82 ______ 46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.22.(8分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率A a 0.2B 12 0.24C 8 bD 20 0.4(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.23.(8分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:(1)∠C=°;(2)此时刻船与B港口之间的距离CB的长(结果保留根号).24.(10分)先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 25.(10分)某电视台的一档娱乐性节目中,在游戏PK 环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA 1、BB 1、CC 1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA 1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.26.(12分)先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 27.(12分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE 是△ABC 的中位线,所以易得B 、D 答案正确,D 是AB 中点,所以DB=DA ,故C 正确.【详解】根据题意可知DE 是三角形ABC 的中位线,所以DE ∥BC ;∠B+∠1+∠C=180°;∵BD=AD ,∴△DBA 是等腰三角形.故只有A 错,BA≠CA .故选A . 【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作. 2.C 【解析】 【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解. 【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、不是中心对称图形,是轴对称图形,故本选项错误;C 、既是中心对称图形,又是轴对称图形,故本选项正确;D 、是轴对称图形,不是中心对称图形,故本选项错误. 故选C . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.A 【解析】分析:甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。

2019年江苏省扬州教育学院附属中学中考数学三模试卷(解析版)

上教习网( ),百万精品课件教案试卷免费下!2019年江苏省扬州教育学院附属中学中考数学三模试卷一.选择题(共8小题,满分24分,每小题3分)1.若|﹣x|=5,则x等于()A.﹣5B.5C.D.±52.下列运算正确的是()A.a2•a3=a6B.a3÷a﹣3=1C.(a﹣b)2=a2﹣ab+b2D.(﹣a2)3=﹣a63.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.4.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A.B.C.D.5.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8B.9,9C.9.5,9D.9.5,86.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.80°7.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A.B.C.D.8.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A 后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y 与x的函数关系,则点Q的运动速度可能是()A.a B.a C.2a D.3a二.填空题(共10小题,满分30分,每小题3分)9.58万千米用科学记数法表示为:千米.10.在函数y=中,自变量x的取值范围是.11.分解因式:4m2﹣16n2=.12.一个正多边形的每个内角等于108°,则它的边数是.13.当x=1时,代数式px5+3qx3+4的值为2014,则当x=﹣1时,代数式px5+3qx3+4的值为.14.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为.15.已知反比例函数y=在第一象限的图象如图所示,点A是在图象上AB⊥OB,且S△AOB =3,则k=.16.如图,在△ABC中,∠BAC=120°,AB=AC=4,现将△ABC绕点C顺时针旋转60°得到△A′B′C,其中点B的运动路径为,点A的运动路径为,则图中阴影部分的面积是.17.如图,⊙O的直径AB的长为10,C为直径AB上方半圆上一动点(不与A、B重合),CD平分∠ACB交⊙O于D,AE平分∠CAB交CD于E,下列结论:①点D是定点;②AC•BC的最大值为50;③D为△ABE的外心;④CA+CB的最大值为10,其中一定正确的是.18.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为.三.解答题(共10小题)19.(1)解不等式组:(2)计算:(﹣π)0﹣(cos45°)﹣1﹣12016+|1﹣2|20.先化简,再求值(1﹣)÷,其中x=4.21.某校为了调查八年级学生参加“乒乓”、“篮球”、“足球”、“排球”四项体育活动的人数,学校从八年级随机抽取了部分学生进行调查,根据调查结果制作了如下不完整的统计表、统计图:请你根据以上信息解答下列各题:(1)a=;b=;c=;(2)在扇形统计图中,排球所对应的圆心角是度;(3)若该校八年级共有600名学生,试估计该校八年级喜欢足球的人数?.22.在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是事件,“从中任意抽取1个球是黑球”是事件;(2)从中任意抽取1个球恰好是红球的概率是;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.23.如图,已知AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB 的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)若BF=2,tan∠BDF=,求⊙O的半径.24.轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.25.已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.26.如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向的50海里处,船B位于船A的正西方向且与灯塔P相距海里.(本题参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)27.中考前,某校文具店以每套5元购进若干套考试用具,为让利考生,该店决定售价不超过7元,在几天的销售中发现每天的销售数量y(套)和售价x(元)之间存在一次函数关系,绘制图象如图.(1)y与x的函数关系式为(并写出x的取值范围);(2)若该文具店每天要获得利润80元,则该套文具的售价为多少元?(3)设销售该套文具每天获利w元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?28.如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)和B(3,0),与y轴交于C 点,点C关于抛物线的对称轴的对称点为点D.抛物线顶点为H.(1)求抛物线的解析式.(2)当点E在抛物线的对称轴上运动时,在直线AD上是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S=3,若在△PAD x轴上存在以动点Q,使PQ+QB最小,若存在,请直接写出此时点Q的坐标及PQ+ QB的最小值.2019年江苏省扬州教育学院附属中学中考数学三模试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】直接利用绝对值的性质得出答案即可.【解答】解:∵|﹣x|=5,∴﹣x=±5,∴x=±5.故选:D.【点评】此题主要考查了绝对值,利用绝对值等于一个正数的数有两个进而得出是解题关键.2.【分析】根据同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方逐一计算可得.【解答】解:A、a2•a3=a5,此选项错误;B、a3÷a﹣3=a6,此选项错误;C、(a﹣b)2=a2﹣2ab+b2,此选项错误;D、(﹣a2)3=﹣a6,此选项正确;故选:D.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂的乘法、完全平方公式及同底数幂的除法、幂的乘方的运算法则.3.【分析】俯视图就是从物体的上面看物体,从而得到的图形.【解答】解:由立体图形可得其俯视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.4.【分析】根据中心对称图形的概念对各个选项中的图形进行判断即可.【解答】解:A、B、C都不是中心对称图形,D是中心对称图形,故选:D.【点评】本题考查的是中心对称图形的概念,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.5.【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.【点评】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.6.【分析】根据平行线的性质求出∠4,根据三角形的外角的性质计算即可.【解答】解:∵AB∥CD,∴∠4=∠2=50°,∴∠3=∠4﹣∠1=20°,故选:A.【点评】本题考查的是平行线的性质,三角形的外角的性质,掌握两直线平行,内错角相等是解题的关键.7.【分析】过C作CD⊥AB于D,依据AB=6,AC=8,可得CD≤8,进而得到当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大.【解答】解:如图,过C作CD⊥AB于D,∵AB=6,AC=8,∴CD≤8,∴当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大,∴BC==10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10,故选:C.【点评】本题主要考查了三角形的面积以及勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.8.【分析】本题根据动点之间相对位置,讨论形成图形的变化趋势即可,适于采用筛选法.【解答】解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ 的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.【点评】本题考查双动点条件下的图形面积问题,分析时要关注动点在经过临界点时,相关图形的变化规律.二.填空题(共10小题,满分30分,每小题3分)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:根据58万=580000,用科学记数法表示为:5.8×105.故答案为:5.8×105.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意知,解得:x>1,故答案为:x>1.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数且分母不等于零得出不等式是解题关键.11.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解.【解答】解:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,∴这个正多边形是正五边形.故答案为:5.【点评】本题考查了多边形的内角与外角,对于正多边形,利用多边形的外角和除以每一个外角的度数求边数更简便.13.【分析】将x=1代入可得p+3q=2010,将p+3q整体代入到px5+3qx3+4=﹣p﹣3q+4可得代数式的值.【解答】解:∵当x=1时,px5+3qx3+4=2014,∴p+3q+4=2014,即p+3q=2010;当x=﹣1时,px5+3qx3+4=﹣p﹣3q+4=﹣(p+3q)+4=﹣2010+4=﹣2006.故答案为:﹣2006.【点评】本题主要考查整体思想求代数式的值,由条件求出p+3q是解题的关键,属中档题.14.【分析】直接根据概率公式计算可得.【解答】解:∵共有6名学生干部,其中女生有2人,∴任意抽一名学生干部去参加一项活动,其中是女生的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.15.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.【解答】解:根据题意可知:S△AOB=|k|=3,∵反比例函数图象有第一象限,∴k>0,∴k=6故答案为:6.【点评】此题主要考查了反比例函数系数k的几何意义,正确表示出三角形面积是解题关键.16.【分析】图中阴影部分的面积=扇形CBB'的面积+三角形A'B'C的面积﹣三角形ABC 的面积﹣扇形CAA'的面积.又由旋转的性质知△ABC≌△A'B'C,代入计算可得结论.S 扇形CB'B【解答】解:如图1,过A作AD⊥BC于D∵∠BAC=120°,AB=AC=4,∴AD=2,BD=CD=2∴BC=4∵根据旋转的性质知∠BCB'=∠ACA'=60°,△ABC≌△A'B'C,∴S△ABC =S△A'B'C,∴S阴影=S扇形CB'B+S△A'B'C﹣S△ABC﹣S扇形CA'A=﹣=.故答案是:π.【点评】本题考查了扇形面积的计算.解题的难点是找出图中阴影部分的面积=扇形CBB'的面积﹣扇形CAA'的面积.17.【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②先根据勾股定理得:AC2+BC2=AB2=102=100,由完全平方公式:(AC﹣BC)2≥0,展开可作判断;③证明AD=DE=BD,可作判断;④根据完全平方公式(AC+BC)2=AC2+2AC•BC+BC2,代入可得:(AC+BC)2≤200,开方可判断.【解答】解:①∵CD平分∠ACB,∴∠ACD=∠BCD,∴,∵AB是⊙O的直径,∴D是半圆的中点,即点D是定点;故①正确;②∵AB是⊙O的直径,∴∠ACB=90°,∴AC2+BC2=AB2=102=100,∵AC>0,BC>0,∴AC2+BC2≥2AC•BC,∴2AC•BC≤100,∴AC•BC≤50,∴AC•BC的最大值为50;故②正确;③∵,∴AD=BD,∵CD平分∠ACB,AE平分∠CAB,∴∠ACD=∠BCD=∠BAD,∠CAE=∠BAE,∵∠AED=∠ACD+∠CAE,∠DAE=∠BAD+∠BAE,∴∠AED=∠DAE∴AD=ED=BD,∴D为△ABE的外心,故③正确;④∵(AC+BC)2=AC2+2AC•BC+BC2=AB2+2AC•BC≤100+100,∴AC+BC≤10,即CA+CB的最大值为10,故④正确;其中一定正确的是:①②③④,故答案为:①②③④.【点评】此题考查了三角形的外心的定义、等腰三角形的判定、完全平方公式及圆有关的性质,角平分线的定义,②和④最值的计算,此类题有难度,注意与完全平方公式相结合解决问题.18.【分析】如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.【解答】解:如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.∵CH=EF,CH∥EF,∴四边形EFHC是平行四边形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四边形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周长的最小值=2+4,故答案为2+4.【点评】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.三.解答题(共10小题)19.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;(2)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1),由①得:x≥﹣4,由②得:x≤1,则不等式组的解集为﹣4≤x≤1;(2)原式=1﹣﹣1+﹣1=﹣1.【点评】此题考查了解一元一次不等式组,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=(﹣)÷=•=,当x=4时,原式==.【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.【分析】(1)先根据篮球的人数及其所占百分比求得总人数,即c的值,再根据频率=频数÷总人数分别求得a,b的值;(2)用360°乘以排球所对应的频率即可得;(3)用总人数乘以样本中喜欢足球对应的频率即可得.【解答】解:(1)∵被调查的总人数c=20÷20%=100(人),∴a=100×0.3=30,b=15÷100=0.15,故答案为:30,0.15,100;(2)在扇形统计图中,排球所对应的圆心角是360°×(1﹣0.3﹣0.2﹣0.15)=126°,故答案为:126;(3)估计该校八年级喜欢足球的人数为600×0.15=90(人).【点评】本题考查扇形统计图、频数分布表、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型22.【分析】(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.【解答】解:(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为:必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为:;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:=;则选择乙的概率为:,故此游戏不公平.【点评】此题主要考查了游戏公平性,正确列出树状图是解题关键.23.【分析】(1)连AD,OD,则∠ADB=∠ADC=90°,由直角三角形斜边上的中线性质得:EA=ED,∠EDA=∠EAD,由等腰三角形的性质得:∠ODA=∠OAD,证得∠EDO=∠EAO,即可得出结论;(2)由切线的性质得:∠ODF=∠FDB+∠ODB=∠FAD+∠OBD=90°,证出∠FDB =∠FAD,∠F为公共角,得出△FDB∽△FAD,由对应边成比例即可得出结论.【解答】(1)证明:连AD,OD,如图所示:∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵E是AC的中点,∴EA=ED,∴∠EDA=∠EAD,∵OD=OA,∴∠ODA=∠OAD,∴∠EDO=∠EAO,∵AB⊥AC,∴∠EAO=90°,∴∠EDO=90°,∴DE为⊙O的切线;(2)解:∵DE为⊙O的切线,∴∠ODF=∠FDB+∠ODB=∠FAD+∠OBD=90°,∵OD=OB,∴∠ODB=∠OBD,∴∠FDB=∠FAD,∵tan∠BDF=,∴=又∵∠F为公共角,∴△FDB∽△FAD,∴=,∵BF=2∴=∴DF=4,AF=8∴AB=8﹣2=6∴⊙O的半径是3.【点评】本题考查了相似三角形的判定与性质、切线的判定与性质、直角三角形斜边上的中线性质、等腰三角形的性质等知识;熟练掌握切线的判定与性质、相似三角形的判定与性质是解决问题的关键.24.【分析】关键描述语为:“顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等”;本题的等量关系为:逆水航行46千米用的时间+顺水航行34千米所用的时间=静水航行时80千米所用的时间.【解答】解:设船在静水中的速度是x千米/时.则:+=.解得:x=20.经检验,x=20是原方程的解.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.航行问题常用的等量关系为:逆水速度=静水速度﹣水流速度,顺水路程=静水速度+水流速度.25.【分析】(1)根据勾股定理得到AE=EC=,根据余角的性质得到∠BAE=∠BCF 根据全等三角形的性质得到BE=GE,根据平行四边形的性质得到AB=CD=4,根据勾股定理即可得到结论;(2)取GE的中点M,连接KM,MC,得到GM=ME,根据三角形的中位线的性质得到KM∥BG,KM=BG,根据全等三角形的性质得到∠EAH=∠ECM,根据全等三角形的性质得到KM=CQ,于是得到结论.【解答】解:(1)∵AE⊥BC,AE=EC,AC=,∴在Rt△AEC中,AE=EC=,∵AB⊥CF,∴∠ABE+∠BAE=∠ABE+∠BCF=90°,∴∠BAE=∠BCF在△AEB和△CEG中,∴△AEB≌△CEG(ASA),∴BE=GE,∵四边形ABCD为平行四边形,∴AB=CD=4,∴在Rt△AEB中,BE=,∴GE=BE=;(2)证明:取GE的中点M,连接KM,MC,∴GM=ME,∵点K和点E为BH的三等分点,∴KE=EH=BK,∴KM为△BEG的中位线,∴KM∥BG,KM=BG,由(1)知△AEB≌△CEG,∴BE=GE,∴ME=EH,∴∠MKE=∠GBE=∠ACE=45°,在△AEH和△CEM中,∴△AEH≌△CEM(SAS),∴∠EAH=∠ECM,∵AH⊥QK,∴∠EAH=∠QKE,∴∠KCM=∠QKE,在△KMC和△CQK中,∴△KMC≌△CQK(ASA),∴KM=CQ,∴BG=2CQ.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,三角形的中位线的性质,勾股定理,正确的识别图形是解题的关键.26.【分析】(1)过P作PC⊥AB交AB于C,根据三角函数的定义即可得到结论;(2)根据三角函数的定义得到AC=AP•sin53°=50×0.8=40海里,BC=PB=10,于是得到结论.【解答】解:(1)过P作PC⊥AB交AB于C,在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,∴PC=AP•cos53°=50×0.60=30海里,在Rt△PBC中,∵PB=20,PC=30,∴cos∠BPC==,∴∠BPC=30°,∴船B在灯塔P的南偏东30°的方向上;(2)∵AC=AP•sin53°=50×0.8=40海里,BC=PB=10,∴AB=AC﹣BC=(40﹣10)海里,答:两船相距(40﹣10)海里.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.27.【分析】(1)设y与x的函数关系式为:y=kx+b,把(5.5,90)和(6,80)代入y =kx+b即可得到结论;(2)根据题意得方程即可得到结论;(3)根据题意得二次函数解析式,根据二次函数的性质即可得到结论.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(5.5,90)和(6,80)代入y=kx+b得,,解得:,∴y与x的函数关系式为:y=﹣20x+200(5≤x≤7);故答案为:y=﹣20x+200;(2)根据题意得,(x﹣5)(﹣20x+200)=80,解得:x1=6,x2=9(不合题意舍去),答:该套文具的售价为6元;(3)根据题意得,w=(x﹣5)(﹣20x+200)=﹣20x2+300x﹣1000,当x=﹣=﹣=7.5,∵7.5>7,∴当x=7时,文具店每天的获利最大,最大利润是(7﹣5)(﹣20×7+200)=120(元),答:销售单价应为7元时,才能使文具店每天的获利最大,最大利润是120元.【点评】本题考查了二次函数的应用,主要利用了待定系数法求一次函数解析式二次函数的关系式的求解,比较简单,根据获利=每件商品的利润×销售量是解题的关键.28.【分析】(1)代入已知点坐标,应用待定系数法求解便可.(2)分别以已知线段AC为边、为对角线,找到所有的点F,利用平移的思路求点F的坐标.(3)根据三角形的面积求得点P的坐标,将PQ+QB转换为共线线段,用三角函数求得相关的线段长度.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)和B(3,0),∴,解得,,∴抛物线的解析式为:y=;(2)存在,分三种情况讨论,①如图1所示,∵四边形ACEF为平行四边形,∴EF可由AC平移得到,C、E为对应点,A、F为对应点,∵C(0,),点E的横坐标为1,∴向右平移了一个单位,∵A(﹣1,0),∴F的横坐标为0,∵直线AD的解析式为y=x+,∴当x=0时,y=,∴F(0,).②如图2所示,此时点F与点D重合,∴F(2,).③如图3所示,根据平移的规律,得知点F的横坐标为﹣2,当x=﹣2时,y=﹣,∴F(﹣2,﹣).综上所述:点F的坐标为(0,)或(2,)或(﹣2,﹣).(3)如图4所示,过点B作AD的平行线交抛物线的对称轴于点N,过点P作PH垂直于BN,与x轴的交点即为点Q,设直线BN的解析式为y=x+b,过点B(3,0),解得b=﹣,∴直线BN的解析式为y=x﹣,∵抛物线的对称轴为直线x=1,∴N(1,﹣1),设直线AD与抛物线的对称轴的交点为点M,∴M(1,1),=PM•(x D﹣x A)•=3,∵S△ADP∴PM=2,∴P(1,3),∵tan∠ABN=,∴QB=QH,∴PQ+QB=PQ+QH,∴当P、Q、H三点共线时,PQ+QB最小,即为PH,∵PN=4,∠NPH=∠ABN,∴PH=.∴PQ+QB的最小值为.【点评】此题考查了待定系数法求函数解析式,平行四边形与二次函数的结合,线段的和差最值与二次函数的结合,将不共线的线段转化为共线为解题关键.。

扬州市2019年中考数学模拟试卷及答案

扬州市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

1. 一个数的绝对值是5,这个数是A.5 B 、-5 C .5和-5 D .02. 2017年我省粮食总产量695.2亿斤,居历史第二高位,695.2亿用科学记数法表示为A.695.2×108B.6.952×109C.6.952×1010D.6.952×10113. 下列运算正确的是 D A .2a 2•a 3=2a6B .(3ab )2=6a 2b2C .2abc +ab =2D .3a 2b +ba 2=4a 2b4.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是5.设一元二次方程(1x +)(3x -)=m (m >0)的两实数分别为α、β且α<β,则α、β满足 A.-1<α<β<3 B.α<-1且β>3 C.α<-1<β<3 D.-1<α<3<β 6. 如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示的点是A. 点MB. 点NC. 点PD. 点Q7. 如图,在⊙O 中,AB =AC ,∠AOB =40°,则∠ADC 的度数是 A .40° B .30° C .20° D .15°8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是N A .①B .②C .①③D .②③9.如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为A.B.C.D.10.. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米. 设甲车的速度为x 千米/小时,依题意列方程正确的是 A.304015x x =+ B. 304015x x =+ C. 304015x x =- D. 304015x x =- 二、填空题(本大共6小题,每小题4分,满分24分) 11.分解因式:a 3-9a= ___________.12.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°,得到的点A ′的坐标 为 .13.关于x 的不等式组2131x a x +>⎧⎨->⎩的解集为1<x <4,则a 的值为 .14.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .15.若一个等腰三角形有两边长为3和4,则它的周长为 .16.若圆锥的底面积为216cm π,母线长为cm 12,则它的侧面展开图的圆心角为 °第11题图三、(本大题共2小题 ,满分80分)17. (本题满分6分)计算:18. (本题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2.(1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.19.(本题满分10分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.20.(10分)某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有 篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率. 21. (本题满分12分)在正方形网格中,建立如图所示的平面直角坐标系的三个顶点都在格点上,点A 的坐标,请解答下列问题:画出关于y 轴对称的,并写出点、、的坐标;2021*******-⎪⎭⎫⎝⎛+---将绕点C逆时针旋转,画出旋转后的,并求出点A到的路径长.22.(本小题满分8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23.(本题满分12分)如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y. 求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2ab,仅当a=b时,a+b=2ab).24.(本题满分14分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,N ⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共8页)
2019年江苏省扬州市中考数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,一
项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.(3分)下列图案中,是中心对称图形的是( )

A. B. C. D.
2.(3分)下列各数中,小于﹣2的数是( )
A.﹣ B.﹣ C.﹣ D.﹣1
3.(3分)分式可变形为( )

A. B.﹣ C. D.﹣
4.(3分)一组数据3、2、4、5、2,则这组数据的众数是( )
A.2 B.3 C.3.2 D.4
5.(3分)如图所示物体的左视图是( )

A. B.
C. D.
6.(3分)若点P在一次函数y=﹣x+4的图象上,则点P一定不在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.(3分)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n
的值有( )
A.4个 B.5个 C.6个 D.7个
8.(3分)若反比例函数y=﹣的图象上有两个不同的点关于y轴的对称点都在一次函数
第2页(共8页)

y=﹣x+m的图象上,则m的取值范围是( )
A.m>2 B.m<﹣2
C.m>2或m<﹣2 D.﹣2<m<2
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程请把答案直接
填写在答题卡相应位置上)
9.(3分)2019年5月首届大运河文化旅游博览会在扬州成功举办,京杭大运河全长约
1790000米,数据1790000米用科学记数法表示为 .
10.(3分)分解因式:a3b﹣9ab= .
11.(3分)扬州某毛绒玩具厂对一批毛绒玩具进行质鼠抽检的结果如下:
抽取的毛绒玩具数n
20 50 100 200 500 1000 1500 2000
优等品的频数m
19 17 91 184 462 921 1379 1846
优等品的频率
0.950 0.940 0.910 0.920 0.924 0.921 0.919 0.923

从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 .(精确到
0.01)
12.(3分)一元二次方程x(x﹣2)=x﹣2的根是 .
13.(3分)计算:(﹣2)2018(+2)2019的结果是 .
14.(3分)将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD= .

15.(3分)如图,AC是⊙O的内接正六边形的一边,点B在上,且BC是⊙O的内接正
十边形的一边,若AB是⊙O的内接正n边形的一边,则n= .

16.(3分)如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作
正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,
第3页(共8页)

则MN= .
17.(3分)如图,将四边形ABCD绕顶点A顺时针旋转45°至四边形AB′C′D′的位置,
若AB=16cm,则图中阴影部分的面积为 .

18.(3分)如图,在△ABC中,AB=5,AC=4,若进行以下操作,在边BC上从左到右依
次取点D1、D2、D3、D4、…;过点D1作AB、AC的平行线分别交AC、AB于点E1、F1;
过点D1作AB、AC的平行线分别交AC、AB于点E2、F2;过点D3作AB、AC的平行线
分别交AC、AB于点E3、F3…,则4(D1E1+D2E2+…+D2019E2019)+5(D1F1+D2F2+…
+D2019F2019)= .

三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要
的文字说明、证明过程或演算步骤)
19.(8分)计算或化简:
(1)﹣(3﹣π)0﹣4cos45°;
(2)+.

20.(8分)解不等式组,并写出它的所有负整数解.
21.(8分)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所
第4页(共8页)

用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图
不完整的频数分布表和频数分布直方图.
每天课外阅读时间t/h 频数 频率
0<t≤0.5
24
0.5<t≤1
36 0.3
1<t≤1.5
0.4
1.5<t≤2
12 b
合计
a 1
根据以上信息,回答下列问题:
(1)表中a= ,b= ;
(2)请补全频数分布直力图;
(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.

22.(8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥
德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可
以表示为两个素数的和”.如20=3+17.
(1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是 ;
(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1
个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.
23.(10分)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治
任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙
工程队整治2400米所用的时间相等.求甲工程队每天修多少米?
24.(10分)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=
第5页(共8页)

10.
(1)求证:∠BEC=90°;
(2)求cos∠DAE.

25.(10分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.
(1)求证:BC是⊙O的切线;

(2)已知∠BAO=25°,点Q是上的一点.
①求∠AQB的度数;
②若OA=18,求的长.

26.(10分)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,
过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB
在直线l2上的正投影,其长度可记作T(AB,AD)或T,特别地线段AC在直线l
2

上的正投影就是线段A1C.
请依据上述定义解决如下问题:
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)═9,求△ABC
的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T
(AD,AC)

=2,T(BC,AB)=6,求T(BC,CD),
第6页(共8页)

27.(12分)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作
等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运
动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设
PQ与AB之间的距离为x.
(1)若a=12.
①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为 ;
②在运动过程中,求四边形AMQP的最大面积;
(2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a
的取值范围.

28.(12分)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B
不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B′.
(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为 ;
(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为 ;
(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的面积是
否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线1变化过程中,求△ACB′面积的最大值.
第7页(共8页)
第8页(共8页)

相关文档
最新文档